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Časopis pro pěstovánf matematiky, roč. 111 (1986), Praha 

COVARIANT CONSTRUCTIONS IN THE THEORY OF LINEAR 
DIFFERENTIAL EQUATIONS 

FRANTISEK NEUMAN, Brno 

Dedicated to Professor Jaroslav Kurzweil on the occasion of his sixtieth birthday 

(Received April 26, 1985) 

Consider a linear differential homogeneous equation of the n-th order, n ^ 2, 
of the form 

'(1) y(w) + pn-2(x) y(""2) + Pn-Z(x) >>("-3) + ... + Po(x) y = 0 on /, 

or simply Pn(y, x;I) = 0, where/ a R is an open interval and p(e C°(l), i = 1, ... 
..., n — 2, are real functions. Moreover, we shall suppose p„-2e Cn"2(l). For a fixed 
integer n, n _ 2, let Dn denote the set of all fl-th order linear differential equations 
of the type (1). 

It is known [7] that the most general pointwise transformation that globally 
transforms all solutions of each equation Pn(y, x; I) = 0 from Dn into all solutions 
of an equation Qjz, t; J) = 0 from Dn, i.e., into 

z™ + qn-2(t)z<"-V + qn_3(t)z("-3) + ... + q0(t)z = 0 on J, 

is 

(2) 2 (0 = c|dh(OH<1-»'2xltW)» 
where 

(3) h e Cn + 1(J), dh(t)ldt 4= 0 on J , h(j) = / , 

and c =t= 0 is a real constant. 
To express that an equation Pn(y, x; I) = 0 is globally transformed into 

Qn(z, t; J) = 0 in the sense of the relation (2), we shall simply write h(Pn) = Qn. 
Denote by A the set of all real functions f:R -> R being expressible in a power 

series (centred at zero) that converges on the whole R. Let ADn denote all differential 
equations from Dn whose coefficients are in A. 

We shall consider mappings Fn of AD2 into ADn constructed in the following way: 
for each integer n, n = 2, there are n functions 
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Fni: R2 — {(0,0)} -» R, i = \,...,n, such that for each couple of linearly in­
dependent solutions ui9 u2 of an equation from AD2, 

(p) u" + p(x) u = 0 , p 6 A , 

the n functions x h-> Fni(Mlvx), w2(x)), x e f l , form an tz-tuple of linearly independent 
solutions of an equation from ^4D„. Moreover, we require this w-th order equation 
from ADn to depend only on the original equation (p) and not on the choice of its 
solutions u1 and u2. The /i-th order equation from ADn constructed in this way will 
be denoted by Fn(p). 

The aim of this paper is to study the mappings, or constructions Fn satisfying 

(4) F„ h(p) = h Fjp) 

for all p s A and each h whenever h(p) is defined. 
We shall prove that the commutativity condition (4) characterizes the construc­

tion Fn, and F„(P) is the so-called iterative equation to (p). It occurs that this F„ 
is the only construction covariant with respect to transformations. 

The category of linear differential equations as objects and their global transforma­
tions as morphisms was introduced in [6], For covariant functors in the theory of 
categories, see e.g. [5]. 

Theorem. Let n be a fixed integer, n _ 2, and let Fn: AD2 -> ADn be a mapping 
satisfying (4). Then Fn is uniquely determined and is described by the following 
construction. 

Ifut and u2 denote two linearly independent solutions of (p), then 

(5) y/x) = urXx). u2~
 l(x), i = 1, ..., n , 

are n linearly independent solutions of the equation Fn(p)e ADn. The equation 
Fn(p) is well-defined, i.e., it does not depend on the particular choice of solutions ut 

and u2 of (p). 
Moreover, the mapping Fn given by (5) can be extended to Fn defined on the subset 

of the second order equations from D2 with coefficients of class C~2(I), I a R, and 
this extension is an injection to Dn. 

Proof. Consider an equation (p), p e A, and its linearly independent solutions ut 

and u2. Evidently ux e A, u2 e A, and the Wronski determinant W(u1? u2) = k = 
= const. 4= 0. Choose arbitrary he A satisfying (3) for I = J = R. Denote by 
(q) : = h(p) the equation obtained from equation (p) by means of the transforma­
tion h, i.e. 

(q) v" + q(t) v = 0, qeA. 

Due to (2), see also [2, Chap. 11] or [4, Chap. 7], 

vt(t) = |dh(*)/dt|~1/2 ut(h(t)) ; i = 1, 2 ; teR 

are two linearly independent solutions of (q). 
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Let a mapping Fn satisfy the assumptions of the theorem. Consider the linear 
differential equations of the n-th order, 

Fn(p) and Fn(q). 

Hence yt(x) = F^w^x), u2(x)), / = 1,..., n, are linearly independent solutions 
of Fn(p). Due to (4), h Fn(p) is defined because h(p) = (q) exists. In fact, the same 
change x h-> h(t) occurs in both of the transformations of the equation (p) to (q) 
and the equation Fn(p) to Fn(q), since the mapping Fn is a pointwise transformation 
and the independent variable, x, is not changed when mapping (p) to Fn(p). The 
equation h Fn(p) coincides with the equation Fn(q), as follows from (4). Moreover, 
due to (2), 

zlt):=\dh(t)ldt\^^ylh(t)), i=l,...,n, 

are linearly independent solutions of Fn(q). 
At the same time, Fn(q) is Fn(h(p)), i.e., 

*>i(o,f2(0) = Fj\w{t)\-^Ul(h(t)), ih'(ori/2uziKt))),. - 1 , . . . . » , 
are n linearly independent solutions of Fn(q). Hence 

-i(0\ l-7.i(«i(fc(0). «2(fc(0))\ 
. . . =|dh(0/dr|«-»>/2. = 

-,(0/ W - i W O ) . «-(K0))/ 

tF^ddAW/drl"1!3
 Ul(fc(0). |d/ .(0W1 /2 «2(*(0))\ 

' \>|J(|dA(0/dr|--/-« «.(*(0),' idKO/dil-1!2 «V(A(0J)/ 

for a unique nonsingular constant n by n matrix C. Since (p), «lf w2, and h (n' 4= 0, 
u\ + u\> 0) were arbitrarily chosen, the last relation for |dh(i)/dt|-1/2 = : a, 
ut(h(t)) = : r, and u2(h(t)) = : s reads 

/Fjar, as)\ ^ tFjr, s)\ 

\Fjar, as)) \Fjr,s)j 

for Fnt: R
2 - {(0, 0)} -* R and all a > 0. By specifying a := 1 we get 

tFBl(r,5)\ JFHl(r,s)\. 

\F„n(r, s)f \Fjr, s)J 

The last relation is satisfied for the unit matrix / instead of C. Due to the uniqueness 
of C, C = /. We have 

(6) Fjar, as) = a"~l Fjr, s) , i = 1,..., n , 
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i.e., each Fni is a homogeneous function in two variables of the order n — 1. Fol­
lowing the method of "specification of variables", see J. Aczel [1], put a := 1/r 
for r > 0. Then 

(7) Fni(l,slr) = rl-»Fni(r,s) or 

Fni(r, 5) = r"-1 Frti(l, sjr) = r""1 Gni(sjr) , r > 0 , 

where Gni\ R -• W are defined on the whole W. 
For a moment, let p = 0 on R in (p). Chose ut(x) = 1 and w2(*) = x for x e R. 

Evidently P, ul9u2e A. Since FW(P) e AD,,, we have 

Fni(l,x)eA for i=l,...,n. 
Thus 

G„i(x) = Fn , . ( l ,x)6 .4 ) 

or 
00 

(8) Gni(x) = ani0 + anilx + ani2x
2 + . . . = Y, a ^ x ' , 

./=o 

where 
limsup|anf,.|

," = 0 . 
./-•oo 

For the same equation (p), i.e. with p = 0 on R, change the order of its solutions 
uuu2. Again F„/.x, 1), f = 1, . . . , n, are linearly independent solutions of the 
equation Fn(p) from ADn, and hence 

Fni(x, 1) e _4 , i = 1, . . . , n . 
We have 

(9) .Fni(x,l) = t bnijx* 
J=o 

with lim sup \bnij\
1/J = 0. 

I-*oo 

Due to (7), we can write 

Fni(x,l) = x"-1G / l i(l/x) for x > 0 

or, by comparing (8) and (9), 
09 CO 

(10) I ^ i x i = xn~1X«„ooc"; on R+. 
I=o , .,=0 

Define 
00 CO 

H(x) := £ tf„i,v+„-iX"v - £ b«iv*v + («„i,„-i ~ Km) + 
v = l v = n 

+ («»i,„-2 - fe„.l)* + ••• + («„il ~ Ki,n-2)X"-2 + (ani0 - &„,-,„-!) X"_1 . 

From (10) we have H(x) = 0 for all xeW+ . Due to the conditions on anij 

and b„ij in the relations (8) and (9), the complex function H(z) of the complex 
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variable z vanishes on C. Hence all coefficients in the expansion of H(z) must 
be zeros. 

From (8) we get 
Gni(x) = ani0 + anilx + . . . + a^^^"1 on R , 

and due to (7), 

Fm(r, s) = £ a l l l J - 1 r " - V - 1 on /^2 - {0,0}, i = 1,. . . , n . 
1=i 

These Fni(u1(x)9 u2(x)), i= 1, ..., n, should be linearly independent. On the 
other hand, another linear combination with constant coefficients giving n linearly 
independent functions determines the same linear differential equation. Hence we 
may choose 

Fni(r,5) = r " - V " 1 , / = l , . . . , n , 
if we show that 

(i) un
1~

l(x)ul
2~

1(x)9 i = 1, ..., n, are of class A with nonvanishing Wronski de­
terminant on R, 

(ii) the n-th order linear differential equation having these n functions as solutions 
is of class ADn9 

(iii) the differential equation is the same if another pair of solutions of the equation 
(p) is taken. 

Since ul9 u2 e A, we have u\~lul
1~

1 ~ A for i = 1, ..., n. In view of utu2 — u\u2 = 
= k = const. + 0, we have the Wronski determinant 

W(un
1-

1
9u

n
1-

2u29...9u
n
2~

1) = 

= WK-11, <_1W"i), . . , « r W M ) = 

( j \ « ( n - l ) / 2 

j^luM W(l9x9...9x
n~1) = 

= un
1

in"1\(u'2u1 - u2w;)wi-2)"(n-1)/20! 1! ... (n - 1)! = 
= K = constant + 0, except at isolated zeros of the solution ux. 

However, this Wronski determinant is at least of class C1(R)9 hence it is a nonzero 
constant on R, and the condition (i) is verified. 

Due to the fact that the Wronski determinant is a constant, the property (i) 
implies (ii). 

For each i e 1, ..., n and constants cll9 cll9 c2l9 c22 such that c11c22 — ci2c2i + 0, 
we have 

n 

(C11U1 + C12U2)
n~i(c21U1 + C22U2y~l = YJ

dJUTJu2~i , 
7 = 1 

where dj are suitable constants. Hence the property (iii) is also established. 
It remains to show that the construction Fn can be extended from AD2 onto the 

second order equations from D2, 
(p) u" + p(x) u = 0 , 
where p e Cn~2(I), I <~ R. This subset of equations (p) from D2 will be denoted by D2. 
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In fact, since p e Cn~2(l), we have ut e Cn(I) and u2 e Cn(I) for each pair of linearly 
independent solutions ut and u2 of (p). All steps of introducing the mapping Fn 

have required derivatives at most of the order n. Hence we may define in the same 
manner the equation 

UP) 
as the unique /t-th order linear differential equation having the n functions u\~l. uf1 

as its solutions. The coefficients of the equation Fn(p) are continuous, the coefficient 
of the (n — l)-st derivative is zero because the Wronski determinant of the solutions 
is a nonzero constant, and the coefficient of the (n — 2)-nd derivative is of class 
Cn~2(I) if the leading coefficient is 1, because solutions are of class Cn(l). Hence 
Fn: D2 -» Dn. Denote Dn : = Fn(D2). 

In fact, the equation Fn(p) coincides with the so-called iterative equation generated 
by /?, and it can be written in the form 

m = /•> + (" 3 ^) p~(x) ŕ"~2) + ' (" 4 ~) p,w y(n~3) + ... = 0. 

see, e.g. [3]. We can see that for different (p) we get different Fn(p), hence Fn is an 
injection. Q.E.D. 

CONCLUSION 

We have proved that a special construction of iterative equations is unique and 
in this sense natural, if the commutativity of constructions with transformations 
and a regularity condition are required. 

Due to the injectivity of the mapping Fn9 we can complete the relation (4) to 

Fnh(p) = hFn(p) and hI,;'(I5-) = I7--1!t(I5-) 

for all pe D2 and P„ e Dn whenever h is defined. 

Remark. In the proof of the theorem the regularity assumption on Fn was used 
only to establish that Fn maps the equation M" = 0 on R to an equation from ADn. 
Hence the assertion of the theorem remains true if its assumption is weakened in 
this sense. 

Corollary. The mapping Fn is a covariant functor from the category AD2 to 
the category ADn. 

Indeed, one can check that 

and 

because 
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h(p) = (p) implies h Fn(p) = Fn(p) , 

h k(p) = (q) implies hk Fn(p) = Fn(q) , 

|(*fcyp-->'2 y(hk) = Ifc'l*1-""2 fl/i'l*1-""2 y(h)) (k) . 
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