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Časopis pro pěstování matematiky, roč. 111 (1986). Praha 

BETWEENNESS SPACES AND TREE ALGEBRAS 

JANIS CIRULIS, Riga 

(Received August 9, 1983) 

By a betwenness space we mean a pair (X, /?), where X is a nonvoid set, and 
p cz X3 is a ternary relation on X subject to the following axioms:1) 
PI: Pabb, 
P2: fiaba => a = b, 
P3: pabc => Pcba, 
P4: £abc A Pacd => £6cd, 
P5: Pabc A jSfccd A fe 4= c => jSabd. 

Here, Pxyz means that y lies between x and z. If, for every a, b, there is only a finite 
number of elements between a and b, we call the space (X, p) discrete. 

The betweenness relation p may be called connected, or linear, whenever the ad­
ditional condition 

L: Pabc v pbca v Pcab 

is also fulfilled. The axiom system P2—p5, L for linear betweenness has appeared 
already in [1], [4], where it is proved that each of these axioms is independent of 
the others and that pi follows from L and P2. Clearly, pi cannot be derived from 
the conditions P2 —p5 alone, hence, our axiom system is also independent. In [2] we 
considered betweenness spaces in which P fulfils, instead of L, two weaker conditions 
of smoothness 

IS: pacb A Padb => Pacd v Padc, 
OS: pabc A Pabd => pacd v Padc, 

both being consequences of p2 —p5, L (cf. [4]). Here we shall deal with spaces 
in which, in addition to pi —p5, the following axiom for /? is valid: 
M: 3x(paxb A pbxc A Pcxa). 
We call these spaces M-spaces. Obviously, pi is a consequence of M and p2. It 
will be shown that the notion of an M-space is equivalent to that of a tree algebra 
[3], [5], and, using a result from [5], a one-to-one correspondence between discrete 
M-spaces and trees will be established. 

*) Here, as well as throughout the whole paper, we omit the universal quantifiers which might 
be placed in front of a formula to bound the free variables occurring in it. 
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In what follows, let (X, ft) be a fixed betweenness space, if not otherwise stated. 
Elements of X will be referred to as points. For brevity, we write xyz for fixyz. 
Those properties of /? that will be needed below are summarized in the following 
lemma, where \i c X4 is a relation on X defined by 

\iabcp <=> apb A bpc A cpa . 

Lemma. For arbitrary a, b9c9p9qeX we have: 
\xl: \iabcp <=> \ibacp <=> fiacbp, 
|i2: fxabcb <-> abc9 

JJ3: \iabcp A cdp => fiabdp, 
p4: fiabcp A bed A; c =# P => \iabdp9 

|i5: \iabcp A cqp A bqd A p =\= q => \iabdp9 

|i6: \iabcp A abd A acd =>p = bvp = c. 
If P fulfils the condition M, then IS holds and, moreover, the following implications 
are valid: 
111: juabcp A bde => apd9 

|i8: fiabcp A \iabcq => p = q9 

|i9: jiabcp A ptabdq A apd => fiacqp, 
|ilO: fiabcp A \iabdq A p =j= q => pbcdp v fibedq. 

Proof. ^1 and |i2 are obvious. 
H-3: cPa A cdp => dpa [P4] 

cpb A cdp => dpb [P4] 
apb A dpa A dpb => fiabdp. [|xl] 

|i4: bpc A bed => ped [P4] 
ape A ped A c =# p => apd [05] 
bpc A ped A c #= p => bpd [P5] 
apb A bpd A apd => \iabdp. [jxl] 

|x5: fiabcp A cqp => \iabqp [|i3] 
fiabqp A bqd A p 4= q A fiabdp. [|x4] 

1̂ 6: abd A apb => pbd [|34] 
cpb A pbd - > j ) = t v cpd [p5] 
ape A acd => ped [P4] 
cpd A ped => p = c v dpd [P3, P5] 
dpd A ped => p = c. [P2, P2] 

IS: \iacdx0 [M] 
\iacdx0 A acb A adb => x0 = c v x0 = d [|A6] 
\iacdx0 A (x0 = c v x0 = d) => acd v adc. [(il, }i2] 

|i7: bpc A bde => bpd v bdp [IS] 
bdp A bpa => apd [p4, p3] 
bpd A bde => pdc [P4] 
pdc A ape => apd. [P3, P4] 
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u8: ixabcp A bqc => apq [p7] 
\iabcq A bpc => aqp [p7] 
apq A aqp => p = q v apa [P3, P5] 
apa A aqp => p = q. [P2, p2] 

I.A9: pbadq A apd => b#p [p7] 
^acfcP A bqp => jxacqp. [u3] 

plO: apb A aqb => apg v aqp [IS] 
jxdbaq A apq A bpc A p 4= q => /xbcdq [p5, pi ] 
/^cbap A aqp A bqp A p 4= q => fibcdp. [p5, p i ] 

We say that p is the median of the points a, b, c, if p is the unique point that satisfies 
the condition fiabcp. From u8 we get 

Corollary. (X9 p) is an M-space if and only if every three points of X have the 
median. 

Following [3], we call a pair (X, m) a tree algebra, if m : X -> X is a ternary 
operation on X which satisfies the following axioms (we write (xyz) for m(xyz)): 
ml: (aab) = a, 
m2: (abc) = (bac) = (acb), 
m3: ((abc) bd) = (ab(cbd)), 
m4: (abd) * (bed) # (acd) => (abd) = (acd). 
Then the operation m is said to be a median operation. As in [5], we omit the con­
dition (explicit in [3]) that X must be finite. Note that m4 may be rewritten in the 
form 
m4': (abd) = (bed) v (bed) = (acd) v (abd) = (acd). 

Any median operation m has the following properties: 
m5: ((abc) be) = (abc), [m3, m2, ml] 
m6: (acd) = (bed) => (abc) = (abd). 
For m6 see [3], Theorem 1.3. Now we shall prove the main 

Theorem. Let m be a ternary operation, and let p be a ternary relation on X. 
Then 

a) if(X, m) is a tree algebra, and if ft is defined by 

(*) jffabc <=> m(abc) = b , 

then (X, P) is an M-space, and the condition 

(**) m(abc) = popapb A jSbpc A jScpa 
holds; 

b) if (X, p) is an M-space, and if m is defined by (**), then (X, m) is a tree 
algebra, and p fulfils (*). 

Proof, (a) Assume m is a median operation and p fulfils (*). Then pi —p3 easily 
follow from pi and u2. Furthermore, if (abc) = b and (acd) = c, then 
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(bed) = ((abc) cd) = (bc(acd)) = (bec) = c ; 

hence, p4 is valid. To prove P5, assume that (abc) = b, (bed) = c, b 4= c. Then 
(abd) 4= c, for otherwise, owing to m5, we should have 

b = (abc) = (ab(abd)) = (abd) = c. 

Hence, (acb) 4= (cdb) 4= (adb), and, in virtue of m4, (abd) = b. To prove M, let 
x0 = (abc). Then by m5, (ax0b) = x0, (bx0c) = x0, (cx0a) = x0. Finally, (**) now 
means that 

(abc) = po(apb) = (bpc) = (cpa) = p. 

By m5 the left hand equality implies the right hand ones. The converse follows from 
m6: if (apb) = (bpcf, then (abc) = (cpa) = p. 

(b) Assume /? is a betweenness and m fulfils (**). Let us check that ml — m4and 
(*) are valid. By \il, \i2 we have \iabbb, hence, by |x8, \iabbp implies p = b, and 
ml follows. m2 means that 

fiabcp A \xbacq A fiacbr => p = q = r, 

and this is true in virtue of |il and |i8. To prove m3, we need to show that 

fiabcp A fipbdq A ficbdr A ptabrs => q = s. 
If p = q, then 

fiabcp => ptbcaq [|xl] 
pbcaq A fibcdr A bqd => pbarq [|i9] 
pbarq A fiabrs => q = s. Qi8] 

If r = s, then 
/icbdr => fidcbs [|il] 
jibcds A fibcap A fesa => fibdps [|i9] 
/ibdps A fipbdq => g = s. Qi8] 

If p 4= q and r 4= s, then 
fidbpq A bpa => fidbaq [|x4] 
wafers A brd => fiabds [|j.4] 
fidbaq A /labds => ^ = s. [|il, |i8] 

Furthermore, m4 means that 

fiabdp A /jbcdq A fiacdr Ap^q/\q^r=>p = r. 

But we have 
fiadbp A juadcr A p -)= r => fidbcp v jxdbcr [^10] 
judfecP A fibedq => p = g [jil, |i8]. 
juc/fcer A fibedq => r = q. Qil, ^8] 

Finally, (*) coincides with |i2. 
Therefore, there is a one-to-one correspondence between M-spaces and tree 

algebras. In [5], such a correspondence is established between the so called discrete 
tree algebras and trees. This result includes the finite as well as infinite case, 
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and is a generalization of a result in [3] for finite trees. The resulting correspondence 
between discrete M-spaces and trees may be explicitly described as follows. Let 
(X, E) be a tree, where X is the set of its vertices and E is the set of edges. Let Pa be 
mean that there is a path in the tree from a t oe passing through b. Then (X, fi) 
is a discrete M-space. Vice versa, if (X, 0) is such a space and 

E = {(a, b) e X2: a * b A Vx(paxb => a = x v x = b)} 

then (X, E) is a tree. 
Added November 5, 1984. In the meantime, several papers, in which ternary 

spaces and/or ternary algebras are discussed, have appeared. We comment here 
three of them being more or less closely connected with our main subject. The class 
of ternary spaces considered in [6] includes our betweenness spaces and, hence, 
M-spaces as well. Furthermore, every tree algebra is a medium in the sense of [6]. 
Theorem 2.1 [6] asserts that any medium is a ternary space, and Proposition 3.5 
shows when a discrete ternary space is the ternary space of a medium. Some results 
on tree algebras are contained in Sect. 6 of [7]; this paper has also a valuable 
bibliography. In [8], a theorem from [5] is disproved concerning independence of 
a certain system of conditions on segments in tree algebras. 

The author is indebted to the referee for indicating two inaccuracies in the proof 
of Lemma. 
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