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112 (1987) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 1, 66—79 

ON GRAPHS WITH ISOMORPHIC, NON-ISOMORPHIC 
AND CONNECTED ^-NEIGHBOURHOODS 

ZDENEK RYJACEK, Plzeii 

(Received April 18, 1984) 

Summary. The subgraph N2(w, G) induced by the edges xy of G for which min {Q(X, U), 
c(y> w)} = 1 is called the neighbourhood of the second type of the vertex u. In the paper three 
questions are studied: existence and properties of graphs with N2-neighbourhoods isomorphic 
to a given graph, existence of graphs with non-isomorphic N2-neighbourhoods and existence 
and properties of graphs with connected N2-neighbourhoods. 

INTRODUCTION 

Let G = (V(G), E(G)) be a finite undirected graph without loops and multiple 
edges. The neighbourhood of an arbitrary vertex u e V(G) (i.e. the subgraph induced 
on the set of vertices adjacent to u) will be denoted by Nt(u) and called the neigh­
bourhood of the first type of w. Following [2] let us denote by N2(u, G) (or, briefly, 
N2(u)), the neighbourhood of the second type of u, i.e. the subgraph of G with the 
set of edges containing all the edges vw of G for which min {Q(V, u), Q(W, U)} = 1 and 
with the corresponding set of vertices (Q(X, y) denotes the distance of vertices x, y). 
Then the following questions can be formulated: 

1. Given a graph G, does there exist G such that for every vertex u e V(G), Ni(u) is 
isomorphic to G? (For i = 1 this is the well-known Trahtenbrot-Zykov problem, 
sec eg. [1], [3], [4], [5], [6].) 

2. Does there exist a graph G such that for every u, v e V(G) the neighbourhoods 
Nt(u) and Ni(v) are non-isomorphic? (For i = 1 see [2], for 2-neighbourhoods 
defined as subgraphs induced on the sets of vertices at distance 2 see [7], [8].) 

3. What are sufficient conditions for G to be NrIocally connected and what are 
the properties of 1Vrlocally connected graphs? (G is said to be Nrlocally connected 
if for every v e V(G) the neighbourhood Nt(v) is a connected graph. For i = 1 see 
W, [10]) 

Investigation of these questions for i = 2 is the main aim of the present paper. 
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N2-REALIZABLE GRAPHS ' 2 

We say that a graph G is N2-realizable if there exists a nonempty graph G (called 
an N^realization of G) such that for every vertex u e V(G), N2(u, G) is isomorphic 
to G. We can assume without loss of generality that G is connected. 

An N2-realizable graph obviously cannot contain isolated vertices. Let us observe 
some other properties of N2-realizable graphs. Denote by A(G) (S(G)) the maximum 
(minimum) degree of G. 

Theorem 1.1. If G is an N2-realization ofG, then 

A(G) ^ A(G) = A(G) + 1 . 

If moreover d(G) = 2, then 

S(G) = 5(G) + 1 . 

Proof. 1. Obviously A(G) ^ A(G). Suppose that there exists u e V(G) such that 
d&(u) ^ A(G) + 2 (d&(u) denotes the degree of u in G). Then N2(v, G) for arbitrary v 
adjacent to u contains a vertex of degree at least A(G) + 1 and therefore cannot 
be isomorphic to G. 

2. Suppose that there exists u e V(G) such that dG(u) <; 5(G) and consider again 
N2(v, G) for an arbitrary v e V(G) adjacent to u. Then the following two possibilities 
can occur: 

a ) N2(v) does not contain u. Then dQ(u) = 1 and since 5(N2(u)) = 2, necessarily 
dG\p) = 3. Therefore v is adjacent to another vertex w 4= u and it is easily seen that w 
has degree 1 in N2(u) which is a contradiction. 

b) N2(v) contains u. Then 

«(G) = dN2iv)(u) = dG(u) - 1 = 5(G) - 1 

which is again a contradiction. 

Corollary. An N2-realization of a regular graph of degree d ^ 2 is a regular 
graph of degree d + 1. 

A set M c= V(G) is said to be a covering set, if every edge of G has at least one 
vertex in M. The minimum number of vertices in a covering set will be denoted 
by a(G). 

Theorem 1.2. If G is N^realizable then a(G) = A(G) + 1. 

Proof. If G = N2(u\ then every edge of G has at least one vertex adjacent to u 
and hence the set of all vertices of G which are adjacent to w is a covering set. The 
proof is completed by using Theorem 1.1. 
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Corollaries. 1. If G is N2-realizable then 

\E(G)\^A(G).(A(G) + l) 

(\M\ denotes the number of elements of M). 

Proof : One vertex can cover not more A(G) edges, hence \E(G)\ = a(G). A(G) 
and we can use Theorem 1.2. 

2. If G is an N ̂ realizable regular graph of degree d then |V(G)| = 2(d + 1). 

Proof. Use Corollary 1 for A(G) = d, \E(G)\ = i |V(G)| . d. 

3. a) For n _ 7 the circuit Cn is not N2-realizable. 
b) If G is a cubic (i.e. regular of degree 3) graph and |V(G)| _ 9 then G 

is not N2-realizable. 
c) For n = 1 the path Pn is not N2-realizable. 

Denote by g(G) the girth of G, i.e. the length of the shortest circuit in G (if G 
contains no circuits, put g(G) '= oo). 

Theorem 1.3. Suppose G is an N2-realization of G 4= C3 and 5(G) = 3. Then G 
contains a path of length 3 if and only if g(G) = 4. 

Proof. Let P c G be a path of length 3 , P c N2(u). Then the vertices of P 
adjacent to u together with u determine in G a circuit of length at most 4. The con­
verse is evident. 

Theorem 1.4. If G is an N^realizable regular graph of degree d = 2 then G 
is 2-connected. 

Proof. 1. Suppose G is disconnected. For every regular graph G' of degree d 
we obviously have |V(G')| ^ d + 1 which together with Corollary 2 of Theorem 1.2 
shows that G has 2 components (each of them on d + 1 vertices) and hence G = 
= 2Kd+1. From a(Kn) = n — 1 and from Theorem 1.2 it follows that G is not 
N2'TQsAizabh. 

2. Suppose G has an articulation (cutvertex) x. Since each of the blocks of G has 
(including x) at least d + 1 vertices and |V(G)| ^ 2(d + 1), necessarily one of the 
blocks of G has exactly d + 1 vertices. Hence the degree-sequence of this block is 

d,d,...,d,a 

d-times 

for some a < d, which can be easily proved to be impossible. 
We shall further use the following simple assertion: 

Theorem 1.5. Suppose \E(G)\ = 1 and let G, G be N^realizations of G such 

that G cz G. Then G = G. 
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Proof is easy. 
One can easily observe that the unique N2-realization of the complete graph Kn 

for n > 2 is Kn+i. (Here and in the sequel the term "unique" is meant up to iso­
morphism.) Let us consider N2-realizability of some other classes of graphs. 

Theorem 1.6. The circuits C3, C5, C6 have a unique N ̂ realization while C4 

and Cnfor n _ 7 are not N2-realizable. 

Proof, n = 3: Let N2(w) -̂  C3 (-^ denotes isomorphism). We have (up to iso­
morphism) the following two possibilities: dQ(u) = 2 or dG(u) = 3. In the first case 
we obtain an N2-realization of C3 isomorphic to K4, in the second case considering 
N2(v) of any vertex v adjacent to u we are led again to an N2-realization isomorphic 
to K4. 

n = 4: Let N2(w) £. C4. Then some two non-adjacent vertices vi9 v2 of C4 must 
be joined with u by an edge, which implies that v2 has degree 3 in N2(i>i) — a contra­
diction. 

n = 5: If N2(u) ~ C5 then there necessarily exist three vertices vi9 v29 v3 on C5 

such that (say) vi is not adjacent to v2 and v3 but v2 is adjacent to v3 and all of them 
are adjacent to u. Considering N2(t>i) and using Theorem 1.5 we obtain the only 
possible N2-realization to be C3 x Pi9 i.e. the graph of the trigonal prism. 

n = 6: Similarly as in the preceding case it can be proved that the only N2-
realization of C6 is the graph of the 3-dimensional cube. 

For n ^ 7 see Corollary 3a of Theorem 1.2. 

A vertex u e V(G) is said to be universal if it is adjacent to all other vertices of G. 

Theorem 1.7. If G has exactly one universal vertex and |V(G)j = n = 4, then one 
of the following possibilities occurs: 

a) G ^ Ki.„-i and G is uniquely N2-realizable; 
b) n is odd, G -̂  K22t m%tf 2ti and G has the unique 

1 
-(/i—1) times 

N2-realization G ~ K 2 , 2 , . . . , 2 » 

- (n-f-1) times 
2 

c) G is not N2-realizable. 

Proof. Suppose that N2(uQ) ~ G has n vertices ui9...9un9 uv is universal in 
N2(u0) and G is an N2-realization of G. 

Case 1. Suppose w0, ui are adjacent in G. Then the neighbourhood N2(ui) must 
have a universal vertex and without loss of generality we may assume that it is u0. 
If there exists a vertex uk (k + 0,1) which is adjacent to both u0 and ui then an easy 
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consideration shows that both M0 and ut are universal in N2(Mfc) which is a contra­
diction. Hence no uk is adjacent to both u0 and u1 and by considering N2(u1) and 
using Theorem 1.5 it is seen that the only possble G is the "double-star", i.e. the 
tree consisting of the edge u0ul9 n — 1 edges uku1 for 2 _" k _J n and n — 1 other 
edges adjacent to M0; the resulting graph is an N2-realization of the star Klt„_1. 

Case 2. If M0, MX are not adjacent in G then the universality of u1 in N2(u0) implies 
that M0 is adjacent to all ut for i = 2 , . . . , w. Now the neighbourhood N2(ux) for 
every i = 0, 1, ..., n has exactly n vertices and hence G cannot have any other 
vertices. We shall prove by induction the following assertion: 

Lemma. Let I be an integer such that 1 _ I _ \(n — l). If each of the graphs 
N2(ux)9 i = 0 , . . . , 2/ — 1 contains exactly one universal vertex then all pairs of 
vertices uh Uj for 0 _ i ^ 2/ - 1 are adjacent in G except the pairs u2k, u2k+1 

for k = 0, 1 , . . . , / - 1. 

Proof. For / = 1 the lemma holds evidently. Suppose that / _J %(n - 1) and the 
assertion of our lemma is true for / — 1 — therefore the pairs of vertices u2k9 u2k+1 

are not adjacent for k = 0, 1 , . . . , / — 2. This implies that none of the vertices ux 

for i < 21 — 2 can be universal in N2(u2l_2); hence this universal vertex must be 
one of ux for 2/ — 1 g i _^ n and we may assume without loss of generality that it 
is M2J_!. Hence u2l_1 is adjacent in G to all u} for 2l_\j_\n and therefore the 
vertices M 2 I _ 2 , M 2 / _! cannot be adjacent in G (since in the other case M2J_! would 
be another universal vertex in N2(u0). This implies that all the pairs M 2 / _ 2 , US for 
21 _\ j _\ n are adjacent in G and the lemma is proved. 

Case 2a. n is odd. Using our lemma for / = _{n — 1) and observing that the 
vertices un-l9un cannot be adjacent in G (since otherwise both un-1 and ux would 
be universal in N2(u0)) it is proved that the only possibility is G _* K2t2 2 . 

v-_-_N^-__-> 

- (n-f-1) times 
2 

Case 2b. n is even. Then using the lemma for / = %(n — 2) and considering 
N2(un-2) we conclude that one of un-l9 un (say un_^) must be universal in N2(un_2). 
Then un-U un and one of the pairs of vertices M„_2 , un_1 and M„_2 , un must be adja­
cent. But in the first case un_1 and in the other case un is another universal vertex 
in N2(u0). This contradiction proves the non-existence of an N2-realization. 

Corollary. The wheels W3 and WA are uniquely N^realizable while Wnfor n = 5 
is not N^realizable (wheel Wn is Cn together with an aditional univesal vertex). 

Proof. ^3 _* Ks since W3 _* K4, JV4 _* K2.2.2 since JV4 2- K2,2,i, for n ^ 5 use 
Theorem 1.7. 
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Theorem 1.8. Let G be a disjoint union of stars, i.e. 

G = )JKkitl, ki = 2, i = 1 », « = 2 . 
i = i 

Then G is N2-realizable if and only if k± = fc2 = ... = kn = n - 1 and in this 
case G has infinitely many non-isomorphic N2-realizations. 

Proof. Suppose G is N2-realizable. First observe that if G is an N2-realization 
of G then an arbitrary vertex u e V(G) is adjacent in G to all centers of components 
of G and to no other vertices: if some end-vertex v of G were adjacent to u in G then 
its neighbourhood N2(v) should contain a path of length 3 which is a contradiction. 
Hence G is a regular graph of degree n and therefore necessarily kt = fc2 = ... 
... = kn = n - 1. 

Conversely, suppose fcx = fc2 = ... = kn = n — 1. Then G = nKn-ltl and ac­
cording to Theorem 1.3, G is N2-realized by an arbitrary regular graph G of degree n 
such that g(G) = 5. Existence of an infinite family of such graphs is proved in [12], 
Chapter III, Theorem 1.4'. 

Denote by Pki fc = 1, the path of length fc, i.e. with fc edges and fc + 1 vertices. 

n 

Theorem 1.9. Let G be a disjoint union of paths, i.e. G = (J Pki, kt = 1, i = 
» = i 

= 1, ...,n, fl_l. Then G is N2-realizable only in the following cases: 

n kt (i = 1,..., n) number of non-isomorphic 
(number of paths) (lengths of paths) N2-realizations 

1 1 2 
2 2 
3 1 
6 co 

2 1,1 oo 
2.3 co 
2.4 oo 

3 2,2,2 co 

Proof. If G N2-realizes G then according to Theorem 1.2 necessarily a(G) = 3. 
Hence n ^ 3 and it remains to consider the following possibilities: for n = 1: 
fc = 1, 2, 3, 4, 5, 6; for n = 2: fcf = 1,1; 1, 2; 1, 3; 1, 4; 2, 2; 2, 3; 2, 4; for n = 3: 
fcf= 1,1,1; 1, 1, 2; 1, 2, 2; 2, 2, 2. 
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Case n = 1. Non-realizability of P4 and P5 is proved and examples of N2-
realizations of Pl9 Pl9 P3 and P6 are given in [2]. It remains to prove the assertion 
concerning the number of N2-realizations. 

a) Let N2(M) _ Px. Then u is adjacent either to one of the vertices of Pt or to 
both of them. In virtue of Theorem 1.5 the first case yields C3 and the second case 
yields P3 as the only possible N2-realizations. 

b) Let N2(M) _ P2, let vl9v2, v3 be the three vertices of P2. We have (up to iso­
morphism) the following four possibilities: u is adjacent to v2; u is adjacent to v1 

and v2; u is adjacent to vt and v3; u is adjacent to vl9 v2 and v3. In the first case 
considering N2(v2) we obtain the first Normalization of P2 which is a tree on 6 vertices 
with exactly 2 of them of degree 3 while in the third case we obtain C4 as the second 
possible Normalization of P2. The second and fourth cases imply a contradiction. 

c) Let N2(u) _ P3. In a similar manner as in the preceding case it can be proved 
that the N2-realization which is shown in [2] (i.e. the circuit C5 with one diagonal 
edge) is the only one. 

d) In [2] it is shown that P6 is N2-realized by the graph of the m-gonal prism 
Cm x Px for arbitrary m ^ 5. 

Case n = 2. a) Cm N2-realizes 2P1 for an arbitrary m _ 5. 
b) Suppose N2(u) _ Pj u P2, V(Pt) = {vl9 v2}9 V(P2) = {wl9 w2, w3}. According 

to Theorem 1.1 d&(u) _ 3 and hence we obtain the following three possibilities: 
— M is adjacent to w2 and one of v(

9s (say v±); 
— M is adjacent to wl9 w3 and one of V;S (say t^); 
— u is adjacent to w2, v1 and v2. 

The last two cases immediately imply a contradiction while in the first case the con­
dition N2(w2) _ P! u P2 implies that either one of the vertices wl9w3 must have 
degree 1 or they are joined by another path P2. In both of these cases considering 
N2(w1) we obtain a contradiction. 

c) Let N2(M) _ P! u P3. Then necessarily dG(u) = 3. Since N2(u) => Pl9 the 
vertex u is adjacent to some vertex v of degree 2 in G and hence N2(v) cannot be 
isomorphic to Px u P3. 

d) Non-realizability of P1 u P4 can be proved similarly. 
e) Non-realizability of 2P2 _ 2K2>1 follows from Theorem 1.8. 
f) An Normalization of the, graph P2 u P3 can be constructed by using an arbitrary 

connected regular graph of degree 3 and replacing each of its vertices by C3. 
g) An N2-realization of the graph P2 u P4 can be constructed in a similar manner 

as in the above case by using a connected regular graph of degree 4 and the circuit C4. 

Case n = 3. a) If N2(M) is a graph with 3 components and one of them is Pt 

then M is adjacent to some vertex v such that dG(v) = 2 and hence N2(v) cannot 
be a graph with 3 components. Hence the graphs 3Pl5 2P1 u P2 and Pt u 2P2 are 
not N2-realizable. 
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b) 3P2 __ 3K2tl has infinitely many N2-realizations according to Theorem 1.8. 

Theorem 1.10. The complete bipartite graph Kmt„ is N2-realizable if and only 
if either min {m, n} = 1 or \m — n\ = 1. The graphs Kiti and Kl2 __ K2l have 
exactly two non-isomorphic N2-realizations while in the other cases the N^re­
alization ofKmn is unique. 

Proof. The assertion concerning Kltl __ Pt and K1>2 __ K2l c_ P2 follows 
from Theorem 1.9 while the assertion concerning Kit„ __ Kn%l for n ^ 3 follows 
from Theorem 1.7. 

Let G be an IY2-realization of G = Kmn, u0 e V(G), N2(u0) __ Kmn, m = 2, 
n = 2. Let A = {au ..., am}, B = [bl9..., bn} be the two classes of vertices of Kntftl. 
Then u0 is adjacent either to all a£'s or to all b/s since otherwise for a pair of vertices 
aio, bJo such that none of them is adjacent to u0 the edge aiobjo would not be in N2(u0). 
Further, u0 is adjacent either to all af's and no b/s or to all b/s and no a/s since 
in the first case for bjo adjacent to u0 the neighbourhood N2(^i) would contain the 
circuit of length 3 with vertices a2, bjo, w0;the second case is similar. Consequently, 
in the first case a e A => N2(a) _- __m_1>n+1, b e B => N2(b) __ N2(w0) __ Kmtn and 
hence m — n = 1 and G _. Km,w; in the second case a e A => N2(a) __ N2(u0) _-
_- __m,n, beB=> N2(b) __ Km+ljW_1 and hence n - m = 1 and 5 __ Kn>n. 

Theorem 1.11. The only N2-realizable cubic (i.e. regular of degree 3) graphs 
are the tetrahedron K4, the trigonal prism C3 x P1 and the 3-dimensional cube Q3, 
and each of them has a unique N2-realization. 

Proof. The only cubic graph with four vertices is the uniquely N2-realizable 
tetrahedron K4. For |V(G)| = 6 there exist 2 non-isomorphic cubic graphs, namely 

Fig. 1 

__3)3 and the trigonal prism C3 x Pt . K3>3 is not N2-realizable according to Theorem 
1.10. Suppose N2(u) -_ C3 x Pu uitj (i = 1, 2, 3, j = 1, 2) being its vertices. 
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Necessarily dG(u) = 4 and hence the only (up to isomorphism) possibility is that 
Mi,i> M2,i> M2,2 anc* w3,2 a r e adjacent to u (these vertices must form a covering set). 
The condition N2("i,i) --- C3 x Pt then implies that the vertices u3i and w1>2 are 
adjacent in G and hence we have obtained the unique Normalization which is shown 
in Fig. 1. 

If |V(G)| = 8 then a(G) = 4 according to Theorem 1.2 and hence G is necessarily 
bipartite. The only bipartite cubic graph with 8 vertices in the 3-dimensional cube 
the N2-realization of which is shown in Fig. 2. The proof of uniqueness is similar 
to the preceding case. 

Fig. 2 

For |V(G)| > 8 see Corollary 3b of Theorem 1.2. 

Corollaries. 

1. The only N2-realizable cube Qn is the 3-dimensional one. 

Proof. For Q2 ^ C4 and Q3 see Theorems 1.6 and 1.11. Qn is not N2-realizable 
for n ^ 4 according to Corollary 2 of Theorem 1.2 since Qn is regular of degree n and 
|V(en)| = 2 » > 2 ( n + l ) . 

2. The only N2-realizable graphs of Platonic bodies are the tetrahedron and 
the cube, and their N2-realizations are unique. 

Proof. N2-realizability of the tetrahedron and the cube and non-realizability of 
the dodecahedron is established by the preceding theorem. The icosahedron is not 
N2-realizable since it has no covering with at most 6 vertices. Suppose G is the graph 
of the octahedron, G its Normalization, u e V(G), N2(u) ~ G. Necessarily dG(u) = 5; 
hence we may denote by ut the vertex of G which is not adjacent to u, by u6 the only 
vertex of G which is not adjacent to ul9 and by «2, w3, w4, u5 the other vertices of G. 
G is regular of degree 5 and hence ux is necessarily adjacent in G either to w6 or to 
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another vertex v, but it can be shown that both of these possibilities lead to a con­
tradiction. 

2. GRAPHS WITH NON-ISOMORPHIC ^-NEIGHBOURHOODS 

Following [2] let us denote by ©2 the class of graphs with the following property: 
for every pair of vertices u, v of G the neighbourhoods N2(u) and N2(v) a r e n o t 

isomorphic. 

Theorem 2.1. Let n be an integer. Then there exists a connected graph Gn on n 
vertices belonging to ©2 if and only if n _ 7. 

We shall first prove some auxiliary assertions. 

Lemma 1. Let n = 7, G„ e ©2, suppose that Gn is connected, none of the vertices 
ux, ...,un of Gn is universal and the only vertex which is adjacent to un is wrt_2. 
Let us construct a graph Gn+1 on n + 1 vertices from Gn by adding a vertex un+1 

and making it universal in Gn+1. Then Gn + 1e(52, Gn + 1 is connected and un is 
adjacent only to wn_2 and un + 1. 

Proof. Suppose tha t / : N2(ua, Gn+1) -> N2(up, Gn+1) is an isomorphism. Without 
loss of generality we may assume that a + n + 1 and hence un+1e V(N2(ua, Gn+1)). 
!f /(ww+i) = "n+i then the partial mapping f\nGn) is an isomorphism N2(ua, Gn) 
onto N2(up, Gn). Hence f(un+1) = uy, y g n and uy is universal in N2(ufi, Gn+1). 
If p = n + 1 then N2(u0, Gn+1) = Gn and uy is universal in Gn. Hence j? _ n and 
therefore wn+1 is the second universal vertex in N2(up, Gn+1). Interchanging these 
two universal vertices we obtain an isomorphism /i:N2(wa , Gn+1) -> N2(up, Gn+1) 
such that /i(wr t+1) = un+1, which is a contradiction. 

Lemma 2. Let n = l,Gne ©2, V(Gn) = {ul9..., un), suppose that un is universal 
in Gn, the only vertex of degree 1 in N2(un, Gn) is un-1 and wn_x is adjacent only 
to w„_3 and un. Let us construct a graph Gn+1 on n + 1 vertices from Gn by adding 
a vertex un+1 and joining it to un-x by an edge. Then Gn+1 e ©2, Gn+1 is connected 
and has no universal vertex. 

Proof. The vertex un is universal in Gn and hence all vertices of Gn have (by 
assumption, non-isomorphic) ^-neighbourhoods on n — 1 vertices. The only 
vertices ut of Gn+1 for which N^W;, Gn+1) + N2(uh Gn) are evidently w„_3 and un 

(and, of course, w„+1). N2(un+l, Gn+1) has 3 vertices while both N2(wM_3, Gn+1) 
and N2(wn, Gn+1) have n vertices. Suppose that there exists an isomorphism 
/•-V2(w„, Gn+1) -»-V2(w„_3, Gn+1). By assumption, the only vertex of degree 1 in 
both N2(w„, Gn+1) and N2(wn,3, Gn+1) is wn+1. Hence the partial mapping f\V{Gn) 

is an isomorphism of N2(un, Gn) onto N2(w„_3, Gn), which is a contradiction. 
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Proof of Theorem 2.1. The non-existence of Gne ©2 for n = 6 can be easily 
verified by listing all such graphs (see e.g. [13]). For n = 7 let us construct a graph Gn 

using the following construction: 
— for n = 7 see Fig. 3; 

ux 

— having obtained G„, construct Gw+1 using Lemma 1 if n is odd and Lemma 2 
if n is even. 

Then Gw+1 is connected and Gn+i e ©2. 

Theorem 2.2. Lef n, fc be integers, fc = 1, n = fc2 + 5fc + 1. Then fhere exists 
a f̂raph G 6 ©2 w'fh n vertices and fc components. 

Proof. Let us define a graph G using the graphs Gn which are described in the 
proof of Theorem 2.1: 

— the first component of G is G7, 
— the i-th component of G is G2i+4, i = 2, . . . , fc. 

Then every component of G belongs to ©2 and since for every pair of vertices ui9 u2 

which belong to different components of G their N2-neighbourhoods have different 
k 

numbers of vertices, necessarily Ge ©2. Further, n = 7 + £ (2* + 4) = fc2 + 
i = 2 

+ 5fc + 1 and hence for n = fc2 + 5fc + 1 the theorem is proved. 
For n > fc2 + 5fc + 1 take the same graph G with the only difference in the fc-th 

component: if we denote a = n — (fc2 + 5fc + 1) then it is constructed as G2k+4+a 

if a is even and as a graph which can be obtained from G2k+3+a by adding a new 
vertex and joining it to the only universal vertex of G2k+3+a if a is odd. 

3. N2-LOCALLY CONNECTED GRAPHS 

Theorem 3.1. Let G be a connected N2-locally connected graph9 suppose that G 
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contains a path of length 4. Denote by G' the graph which is obtained from G by 
deleting all vertices of degree 1 together with their edges. Then every edge of G' 
is contained in some circuit of length m _̂  4 and G' is 2-connected. 

Proof. Let h be an edge of G\ Each of its vertices is adjacent to another edge — 
denote them by hl9 h2. If hl9 h2 have a common vertex then h is contained in a triangle 
h9 hl9 h2. Suppose that hl9 h2 have no common vertex and that in G there is no circuit 
of length m ^ 4 containing h. Then the existence of path of length 4 in G and the 
connectedness of G yield that in G there exists a path of length 4 such that if M0, ul9 

u2, M3, M4 are its vertices then h = MXM2. The neighbourhood N2(u29 G) then contains 
the edges M ^ and M3M4. Suppose that in G there is no circuit of length m :g 4 
containing h. Hence if a vertex v is adjacent to u1 and w is adjacent ot M2 then v 
cannot be adjacent to w and therefore the edges M ^ and M3M4 are in different com­
ponents of N2(u2, G). 

Let M be an articulation of G\ Then u is an articulation of G and such edges hl9 h2 

can be found that hl9h2 are in different blocks of G and none of them is adjacent 
to M (since otherwise u would hot be an articulation of G'). But then N2(u9 G) is 
disconnected, which is a contradiction. 

Obviously, every N1-locally connected graph G is N2-locally connected and hence 
the assertions which are proved in [9], [10] can be used to obtain sufficient conditions 
for G to be N2-locally connected. Nevertheless, some of them can be replaced by 
weaker ones. 

Theorem 3.2. Every graph which contains no path of length 4 is N2-locally 
connected. 

Proof is easy. 

Theorem 3.3. Let G be a graph such that every pair M, V of non-adjacent vertices 
satisfies the inequality 

dG(u) + dG(v)z\V(G)\. 

Then G is N2-locally connected. 

Proof. Let M0 G V(G) and suppose that N2(u09 G) is disconnected. Choose vertices 
ul9 u2 in different components of N2(u) so that they are adjacent to M0. Each of the 
vertices ul9 u2 is adjacent to dG(u^) — 1 vertices (excluding M0) and these vertices 
are necessarily different. Hence 

|V(G)| ^ (dG(Ul) - 1) + (dG(u2) - 1) + 3 

which implies 

<*>i) + dG(u2) <£ \V(G)\ - 1 , 

a contradiction. 
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Example. The graph G which can be obtained by taking two disjoint copies 
of Kn, n=-2, and joining their vertices with an additional universal vertex u, is not 
N2-locally connected and every pair x, y its of vertices such that x 4= u and y #= u 
satisfies dG(x) + dG(y) = 2n < 2n + 1 = |V(G)|. Hence Theorem 3.3 is the best 
possible. 

Corollary. If d(u) ^ i|V(G)| then G is N2-locally connected. 

Theorem 3.4. Let G be a graph without triangles and such that 

£ da(u) Z \V(G)\ + 2 
ueV(P) 

for every path P cz G of length 2. Then G is N2-locally connected. 

Proof. Let M0, ul9 u2 be the same as in the proof of Theorem 3.3. Then M0 is 
adjacent to dG(u0) vertices and each of the vertices ul,u2 is adjacent to another 
dG(u^) — 1 vertices. These vertices are different since N2(u0, G) is disconnected 
and G has no triangles. Hence 

|V(G)| = dG(u0) + dG(Ul) - 1 + dG(u2) - 1 + 1 

which yields 

idG(u^\V(G)\ + l, 
i = 0 

a contradiction. 

Corollary. Suppose that G is a graph without triangles for which one of the 
following conditions is fulfilled: 

a) for every pair of vertices u, v, 

da(u) + dG(v) }> f(|V(G)| + 2) ; 

b) 8(G) * i(|V(G)| + 2). 

Then G is N2-locally connected. 
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Souhrn 

O GRAFECH S ISOMORFNÍMI, NEISOMORFNÍMI A SOUVISLÝMI N2-OKOLÍMI 

ZDENĚK RYJÁČEK 

Podgraf N2(u, G) grafu G indukovaný množinou hran xy grafu G, pro něž min {Q(X, Ú), 
Q(y> ")} = -» se nazývá okolí 2. druhu uzlu u. V článku jsou vyšetřovány tři otázky: existence 
a vlastnosti grafů, v nichž N2-okolí každého uzlu je isomorfní z daným grafem, existence grafů 
s neisomorfními N2-okolími uzlů a existence a vlastnosti grafů, v nichž N2-okolí všech uzlů 
jsou souvislá. 

Резюме 

О ГРАФАХ С ИЗОМОРФНЫМИ, 
НЕИЗОМОРФНЫМИ И СВЯЗНЫМИ ^-ОКРУЖЕНИЯМИ 

2-Т>Е^К КЛМАСЕК 

Подграф М2(и, О), порожденный такими ребрами ху графа С, для которых пип ^(х, и), 
#0>, и)} = 1, называется окружением второго типа вершины и. В настоящей статье рассмо­
трены следующие три вопроса: существование и свойства графов, N2 — окружения вершин 
которых изоморфны заданному графу, существование графов, N2 — окружения вершин кото­
рых неизоморфны и существование и свойства графов, N2 — окружения вершин которых 
являются связными. 

АигНог'з аЛйгем: 306 14 Р12еп, ^^есНёпо 8аду 14 (Кагсска та !етапку У88Е). 
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