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ON GRAPHS WITH ISOMORPHIC, NON-ISOMORPHIC
AND CONNECTED N,-NEIGHBOURHOODS

ZDENEK RYJACEK, Plzeni

(Received April 18, 1984)

Summary. The subgraph N,(4, G) induced by the edges xy of G for which min {o(x, u),
e(y, u)} = 1 is called the neighbourhood of the second type of the vertex u. In the paper three
questions are studied: existence and properties of graphs with N,-neighbourhoods isomorphic
to a given graph, existence of graphs with non-isomorphic N,-neighbourhoods and existence
and properties of graphs with connected N,-neighbourhoods.

INTRODUCTION

Let G = (V(G), E(G)) be a finite undirected graph without loops and multiple
edges. The neighbourhood of an arbitrary vertex u € V(G) (i.e. the subgraph induced
on the set of vertices adjacent to u) will be denoted by N,(u) and called the neigh-
bourhood of the first type of u. Following [2] let us denote by N,(u, G) (or, briefly,
N,(u)), the neighbourhood of the second type of u, i.e. the subgraph of G with the
set of edges containing all the edges vw of G for which min {¢(v, u), o(w, )} = 1 and
with the corresponding set of vertices (¢(x, y) denotes the distance of vertices x, y).
Then the following questions can be formulated:

1. Given a graph G, does there exist G such that for every vertex u € V(G), N ,.(u) is
isomorphic to G? (For i = 1 this is the well-known Trahtenbrot-Zykov problem,

see e.g. [1], [3], [4], [5]. [6].)

2. Does there exist a graph G such that for every u,ve V(G) the neighbourhoods
N{u) and N(v) are non-isomorphic? (For i = 1 see [2], for 2-neighbourhoods
defined as subgraphs induced on the sets of vertices at distance 2 see [7], [8].)

3. What are sufficient conditions for G to be N-locally connected and what are
the properties of N-locally connected graphs? (G is said to be N;-locally connected
if for every v € ¥(G) the neighbourhood N(v) is a connected graph. For i = 1 see
[9], [10].)

Investigation of these questions for i = 2 is the main aim of the present paper.
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I. N,-REALIZABLE GRAPHS

We say that a graph G is N,-realizable if there exists a nonempty graph G (called
an Nj-realization of G) such that for every vertex u € V(G), N(u, G) is isomorphic
to G. We can assume without loss of generality that G is connected.

An N,-realizable graph obviously cannot contain isolated vertices. Let us observe
some other properties of N,-realizable graphs. Denote by 4(G) (6(G)) the maximum
(minimum) degree of G.

Theorem 1.1. If G is an N,-realization of G, then
4(G) £ A(G) < 4(G) + 1.
If moreover 5(G) = 2, then
5(G) = 8(G) + 1.

Proof. 1. Obviously 4(G) < 4(G). Suppose that there exists u € ¥(G) such that
dg(u) = 4(G) + 2 (d5(u) denotes the degree of u in G). Then N,(v, G) for arbitrary v
adjacent to u contains a vertex of degree at least 4(G) + 1 and therefore cannot
be isomorphic to G. ’

2. Suppose that there exists u € V(G) such that dg(u) < §(G) and consider again
N(v, G) for an arbitrary v e V(G) adjacent to u. Then the following two possibilities
can occur:

a) N 2(v) does not contain u. Then dg(u) = 1 and since §(N,(u)) = 2, necessarily
da(v) 2 3. Therefore v is adjacent to another vertex w # u and it is easily seen that w
has degree 1 in N,(u) which is a contradiction.

b) N,(v) contains u. Then
8.G) £ dy,(u) = da(u) — 1 = 6(G) — 1

which is again a contradiction.

Corollary. An N,-realization of a regular graph of degree d = 2 is a regular
graph of degree d + 1.

A set M <= V(G) is said to be a covering set, if every edge of G has at least one
vertex in M. The minimum number of vertices in a covering set will be denoted

by «(G).
Theorem 1.2. If G is N,-realizable then o(G) < A(G) + 1.

Proof. If G = N,(u) then every edge of G has at least one vertex adjacent to u
and hence the set of all vertices of G which are adjacent to u is a covering set. The
proof is completed by using Theorem 1.1.
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Corollaries. 1. If G is N,-realizable then
|E(G)| = 4(G) . (4(6) + 1)
(|M | denotes the number of elements of M).

Proof: One vertex can cover not more 4(G) edges, hence |E(G)| < «(G) . 4(G)
and we can use Theorem 1.2.

2. If G is an N,-realizable regular graph of degree d then |V(G)| < 2(d + 1).

Proof. Use Corollary 1 for 4(G) = d, |[E(G)| = }|V(G)| . 4.

3. a) For n 2 7 the circuit C, is not N,-realizable.
b) If G is a cubic (i.e. regular of degree 3) graph and |V(G)| 2 9 then G
is not N,-realizable.
c) For n 2 7 the path P, is not Nj-realizable.
Denote by g(G) the girth of G, i.e. the length of the shortest circuit in G (if G
contains no circuits, put g(G) = oo).

Theorem 1.3. Suppose G is an N,-realization of G + C; and 6((7) = 3. Then G
contains a path of length 3 if and only if g(G) < 4.

Proof. Let P = G be a path of length 3, P = N,(u). Then the vertices of P
adjacent to u together with u determine in G a circuit of length at most 4. The con-
verse is evident.

Theoreni 1.4. If G is an N,-realizable regular graph of degree d = 2 then G
is 2-connected.

Proof. 1. Suppose G is disconnected. For every regular graph G’ of degree d
we obviously have |V(G')| 2 d + 1 which together with Corollary 2 of Theorem 1.2
shows that G has 2 components (each of them on d + 1 vertices) and hence G =
= 2K,;,4. From «(K,) = n — 1 and from Theorem 1.2 it follows that G is not
N,-realizable.

2. Suppose G has an articulation (cutvertex) x. Since each of the blocks of G has
(including x) at least d + 1 vertices and |V(G)| < 2(d + 1), necessarily one of the
blocks of G has exactly d + 1 vertices. Hence the degree-sequence of this block is

d,d,....d, o
e ——
d-times
for some a < d, which can be easily proved to be impossible.
We shall further use the following simple assertion:

Theorem 1.5. Suppose |E(G)| 2 1 and let G, G be N,-realizations of G such
that G = G. Then G = G.
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Proof is easy.

One can easily observe that the unique N,-realization of the complete graph K,
for n > 2 is K,,; . (Here and in the sequel the term “unique” is meant up to iso-
morphism.) Let us consider N,-realizability of some other classes of graphs.

Theorem 1.6. The circuits Cz, Cs, C¢ have a unique N,-realization while C,
and C, for n = 7 are not N,-realizable.

Proof. n = 3: Let N,(u) ~ C; (=~ denotes isomorphism). We have (up to iso-
morphism) the following two possibilities: dg(u) = 2 or dg{u) = 3. In the first case
we obtain an N,-realization of Cj; isomorphic to K,, in the second case considering
N,(v) of any vertex v adjacent to u we are led again to an N,-realization isomorphic
to K,.

n = 4: Let Nz(u) =~ C,. Then some two non-adjacent vertices vy, v, of C4 must
be joined with u by an edge, which implies that v, has degree 3 in Nz(vl) — a contra-
diction.

n = 5: If N,(u) ~ Cs then there necessarily exist three vertices vy, v;,v; on Cs
such that (say) v, is not adjacent to v, and v, but v, is adjacent to v; and all of them
are adjacent to u. Considering N,(v,) and using Theorem 1.5 we obtain the only
possible N ,-realization to be C; x Py, i.e. the graph of the trigonal prism.

n = 6: Similarly as in the preceding case it can be proved that the only N,-
realization of Cg is the graph of the 3-dimensional cube.

For n = 7 see Corollary 3a of Theorem 1.2.

A vertex u e V(G) is said to be universal if it is adjacent to all other vertices of G.

Theorem 1.7. If G has exactly one universal vertex and IV(G)I = n = 4, then one
of the following possibilities occurs:
a) G ~ K, ,—; and G is uniquely N,-realizable;
b) nisodd, G ~ K, ,, . . 2, and G has the unique
(A

1
=(n—1) tim
2 (n—1) times

Nj-realization G ~ K, 5, .. ,;
()

%(n—{- 1) times
¢) G is not Ny-realizable.

Proof. Suppose that N,(uo) ~ G has n vertices uy,...,u,, u, is universal in
N,(u,) and G is an N,-realization of G.

Case 1. Suppose u,, u are adjacent in G. Then the neighbourhood N,(u,) must
have a universal vertex and without loss of generality we may assume that it is u,.
If there exists a vertex u; (k # 0, 1) which is adjacent to both u, and u, then an easy
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consideration shows that both u, and u, are universal in N,(u,) which is a contra-
diction. Hence no u, is adjacent to both u, and u, and by considering N,(u,) and
using Theorem 1.5 it is seen that the only possble G is the “double-star”, i.e. the
tree consisting of the edge uqu;, n — 1 edges u,u, for 2 £ k < n and n — 1 other
edges adjacent to u,; the resulting graph is an N,-realization of the star K, ,_;.

Case 2. If u,, u, are not adjacent in G then the universality of u, in N, (u,) implies
that u, is adjacent to all u; for i = 2,...,n. Now the neighbourhood N,(u;) for
every i =0, 1,...,n has exactly n vertices and hence G cannot have any other
vertices. We shall prove by induction the following assertion:

Lemma. Let | be an integer such that 1 < 1 < 4(n — 1). If each of the graphs
Ny(u;), i =0,...,2]1 — 1 contains exactly one universal vertex then all pairs of
vertices u;, u; for 0 < i <2l — 1 are adjacent in G except the pairs Uz, Uzyyy
for k=0,1,...,1 - 1.

Proof. For I = 1 the lemma holds evidently. Suppose that I < (n — 1) and the
assertion of our lemma is true for | — 1 — therefore the pairs of vertices uzy, Uy 41
are not adjacent for k = 0, 1, ..., ] — 2. This implies that none of the vertices u;
for i < 21 — 2 can be universal in N,(u,;-,); hence this universal vertex must be
one of u; for 21 — 1 £ i £ n and we may assume without loss of generality that it
is uy,_;. Hence u,,_, is adjacent in G to all u; for 21 < j < n and therefore the
vertices u,;_,, t5;_, cannot be adjacent in G (since in the other case u,;-; would
be another universal vertex in N,(uo). This implies that all the pairs uj,-,, u; for
2l £ j £ n are adjacent in G and the lemma is proved.

Case 2a. n is odd. Using our lemma for ! = }(n — 1) and observing that the
vertices u,_1, 4, cannot be adjacent in G (since otherwise both u,_; and u; would
be universal in N,(u,)) it is proved that the only possibility is G ~ K, 5, ..., 2 -

e !

1
5 (n+1) times

Case 2b. n is even. Then using the lemma for ! = }(n — 2) and considering
N,(u,_,) we conclude that one of u,_,, u, (say u,_,) must be universal in N,(u,_,).
Then u,_1, u, and one of the pairs of vertices u,_,, u,_, and u,_,, 4, must be adja-
cent. But in the first case u,_, and in the other case u, is another universal vertex
in N 2(uo). This contradiction proves the non-existence of an N,-realization.

Corollary. The wheels Wy and W, are uniquely N,-realizable while W, forn = 5
is not Nj-realizable (wheel W, is C, together with an aditional univesal vertex).

Proof. W3 ~ K, since Wy ~ K, W, ~ K3,2,2 since W, ~ K, 5,1, forn = 5 use
Theorem 1.7.
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Theorem 1.8. Let G be a disjoint union of stars, i.e.
n
G=UKk|,l’ kigz, i=1,...,n, n;Z.
i=1

Then G is N,-realizable if and only if ky = k, = ... = k, = n — 1 and in this
case G has infinitely many non-isomorphic N,-realizations.

Proof. Suppose G is N,-realizable. First observe that if G is an N,-realization
of G then an arbitrary vertex u € V(G) is adjacent in G to all centers of components
of G and to no other vertices: if some end-vertex v of G were adjacent to u in G then
its neighbourhood N,(v) should contain a path of length 3 which is a contradiction.
Hence G is a regular graph of degree n and therefore necessarily k, = k, = ...
o=k, =n—1.

Conversely, suppose k; = ky =... =k, =n — 1. Then G = nK,_,; and ac-
cording to Theorem 1.3, G is N,-realized by an arbitrary regular graph G of degree n
such that g(G) = 5. Existence of an infinite family of such graphs is proved in [12],
Chapter III, Theorem 1.4".

Denote by P,, k = 1, the path of length k, i.e. with k edges and k + 1 vertices.

Theorem 1.9. Let G be a disjoint union of paths, i.e. G=U P, k; 21, i =
i=1

= 1,...,n,n 2 1. Then G is N,-realizable only in the following cases:

n ki(i=1,..,n) number of non-isomorphic
(number of paths) (lengths of paths) N ,-realizations
1 1 2
2 2
3 1
6 00
2 1,1 0
2,3 00
2,4 oe)
3 2,2,2 0

Proof. If G N,-realizes G then according to Theorem 1.2 necessarily a(G) < 3.
Hence n < 3 and it remains to consider the following possibilities: for n = 1:
k=1,2,3,4,5,6;forn=2:k;=1,1;1,2; 1,3; 1,4; 2,2; 2,3; 2,4; for n = 3:
k;=1,1,1;1,1,2; 1,2,2; 2,2,2.
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Case n = 1. Non-realizability of P, and Ps is proved and examples of N,-
realizations of Py, P,, P; and Pg are given in [2]. It remains to prove the assertion
concerning the number of N,-realizations.

a) Let N,(u) ~ P,. Then u is adjacent either to one of the vertices of P, or to
both of them. In virtue of Theorem 1.5 the first case yields C, and the second case
yields P, as the only possible N,-realizations.

b) Let N,(u) = P,, let v,, v,, v3 be the three vertices of P,. We have (up to iso-
morphism) the following four possibilities: u is adjacent to v,; u is adjacent to v,
and v,; u is adjacent to v, and v,; u is adjacent to v,, v, and v;. In the first case
considering N,(v,) we obtain the first N,-realization of P, which is a tree on 6 vertices
with exactly 2 of them of degree 3 while in the third case we obtain C, as the second
possible N,-realization of P,. The second and fourth cases imply a contradiction.

¢) Let N,(u) ~ P,. In a similar manner as in the preceding case it can be proved
that the N,-realization which is shown in [2] (i.e. the circuit Cs with one diagonal
edge) is the only one.

d) In [2] it is shown that P4 is N,-realized by the graph of the m-gonal prism
C,, x P, for arbitrary m = 5.

Case n = 2. a) C,, N,-realizes 2P, for an arbitrary m 2 5.

b) Suppose N,(u) > P, U P,, V(Py) = {vy, 5}, V(P;) = {w,, w,, w3}. According
to Theorem 1.1 dg(u) < 3 and hence we obtain the following three possibilities:

— u is adjacent to w, and one of v;’s (say vl);

— u is adjacent to wy, w; and one of v;’s (say v,);

— u is adjacent to w,, v, and v,.

The last two cases immediately imply a contradiction while in the first case the con-
dition Nz(wz) =~ P, u P, implies that either one of the vertices w;, w; must have
degree 1 or they are joined by another path P,. In both of these cases considering
N,(w,) we obtain a contradiction.

c) Let Ny(u) =~ P, U P;. Then necessarily dg(u) = 3. Since N,(u) > P,, the
vertex u is adjacent to some vertex v of degree 2 in G and hence N,(v) cannot be
isomorphic to P, U P;.

d) Non-realizability of P, U P, can be proved similarly.

e) Non-realizability of 2P, ~ 2K, , follows from Theorem 1.8.

f) An N,-realization of the graph P, U P; can be constructed by using an arbitrary
connected regular graph of degree 3 and replacing each of its vertices by C;.

g) An N,-realization of the graph P, U P, can be constructed in a similar manner
as in the above case by using a connected regular graph of degree 4 and the circuit C,.

Case n = 3. a) If N,(u) is a graph with 3 components and one of them is P,
then u is adjacent to some vertex v such that dg(v) = 2 and hence N,(v) cannot
be a graph with 3 components. Hence the graphs 3P,, 2P, U P, and P, U 2P, are
not N,-realizable.
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b) 3P, ~ 3K, ; has infinitely many N,-realizations according to Theorem 1.8.

Theorem 1.10. The complete bipartite graph K,,, is N,-realizable if and only
if either min {m, n} = 1 or |m — n| = 1. The graphs K, and K, ; ~ K, | have
exactly two non-isomorphic N,-realizations while in the other cases the N,-re-
alization of K,, ,, is unique.

Proof. The assertion concerning K, ,; ~ P, and K, , ~ K, , ~ P, follows
from Theorem 1.9 while the assertion concerning K, , ~ K, , for n = 3 follows
from Theorem 1.7.

Let G be an N,-realization of G = K,,,, uo€ V(G), Ny(uo) ~ K., m 2 2,
n22LetAd={ay,...,ay}, B={by,..., b} be the two classes of vertices of K, ».
Then u, is adjacent either to all a,’s or to all b;’s since otherwise for a pair of vertices
a;,, b;, such that none of them is adjacent to u, the edge a;,b;, would not be in N,(uo).
Further, u, is adjacent either to all a;’s and no b;’s or to all b;’s and no a,’s since
in the first case for b;, adjacent to u, the neighbourhood N,(a,) would contain the
circuit of length 3 with vertices a,, b, to; the second case is similar. Consequently,
in the first case a € A = N3(a) =~ Kp—1,+1, b€ B= N,(b) ~ N,(uo) ~ K, and
hence m —n =1 and G ~ K,, ,,; in the second case a € A = N,(a) = N(uo) ~
~ Ky be€B=N,(b) ~K,4;,-1 and hence n —m =1and G ~ K, .

Theorem 1.11. The only N,-realizable cubic (i.e. regular of degree 3) graphs
are the tetrahedron K 4, the trigonal prism C5 x P, and the 3-dimensional cube Q3,
and each of them has a unique N,-realization.

Proof. The only cubic graph with four vertices is the uniquely N,-realizable
tetrahedron K,. For IV(G)I = 6 there exist 2 non-isomorphic cubic graphs, namely

Fig. 1

K 3 and the trigonal prism C; x P, .K 3,3 is not N ,-realizable according to Theorem
1.10. Suppose N,(u) >~ C; x Py, u;; (i =1,2,3, j=1,2) being its vertices.
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Necessarily dg(u) = 4 and hence the only (up to isomorphism) possibility is that
Uy 4, Uy, Uy, and U3 5 are adjacent to u (these vertices must form a covering set).
The condition Nz(um) =~ C; x P, then implies that the vertices u; ; and u, , are .
adjacent in G and hence we have obtained the unique N,-realization which is shown
in Fig. 1.

If |V(G)| = 8 then «(G) = 4 according to Theorem 1.2 and hence G is necessarily
bipartite. The only bipartite cubic graph with 8 vertices in the 3-dimensional cube
the N,-realization of which is shown in Fig. 2. The proof of uniqueness is similar
to the preceding case.

N\

Fig. 2

For |V(G)| > 8 see Corollary 3b of Theorem 1.2.
Corollaries.

1. The only N,-realizable cube Q, is the 3-dimensional one.

Proof. For Q, ~ C, and Q5 see Theorems 1.6 and 1.11. Q, is not N,-realizable
for n = 4 according to Corollary 2 of Theorem 1.2 since Q, is regular of degree n and

V()| = 2" > 2(n + 1).

2. The only N,-realizable graphs of Platonic bodies are the tetrahedron and
the cube, and their N,-realizations are unique.

Proof. N,-realizability of the tetrahedron and the cube and non-realizability of
the dodecahedron is established by the preceding theorem. The icosahedron is not
N ,-realizable since it has no covering with at most 6 vertices. Suppose G is the graph
of the octahedron, G its N,-realization, u € V(G), N,(#) =~ G. Necessarily dg(u) = 5;
hence we may denote by u, the vertex of G which is not adjacent to u, by ug the only
vertex of G which is not adjacent to u,, and by u,, us, u,, us the other vertices of G.
G is regular of degree 5 and hence u, is necessarily adjacent in G either to ug or to
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another vertex v, but it can be shown that both of these possibilities lead to a con-
tradiction.

2. GRAPHS WITH NON-ISOMORPHIC N,-NEIGHBOURHOODS

Following [2] let us denote by G, the class of graphs with the following property:
for every pair of vertices u, v of G the neighbourhoods N,(u) and N,(v) are not
isomorphic.

Theorem 2.1. Let n be an integer. Then there exists a connected graph G, on n
vertices belonging to ®, if and only if n = 7.

We shall first prove some auxiliary assertions.

Lemma 1. Let n = 7, G, € ®,, suppose that G, is connected, none of the vertices
Uy, ..o U, Of G, is universal and the only vertex which is adjacent to u, is u,_,.
Let us construct a graph G,.1 on n + 1 vertices from G, by adding a vertex u,
and making it universal in G,,,. Then G, € ®,, G,,, is connected and u, is

adjacent only to u,_, and t,. .

Proof. Suppose that f: Nz(ua, Gp+1) = Na(ug, G, 1) is an isomorphism. Without
loss of generality we may assume that o + n + 1 and hence u, 4 € V(Ny(u,, G, 1)).
If f(4,+1) = tns, then the partial mapping f|y,, is an isomorphism N,(u,, G,)
onto N,(us G,). Hence f(u,+1) = ,, y < n and u, is universal in N,(up, G,44)-
If B = n + 1 then N,(uy, G,+4) = G, and u, is universal in G,. Hence f < n and
therefore u,,, is the second universal vertex in N,(ug, G,+1)- Interchanging these
two universal vertices we obtain an isomorphism fy: Ny(uy, G,41) = N(up, G,y q)
such that f(u,4,) = u,4,, which is a contradiction.

Lemma 2. Let n = 7, G, € G,, V(G,) = {uy, ..., u,}, suppose that u, is universal
in G,, the only vertex of degree 1 in Ny(u,, G,) is u,—y and u,_, is adjacent only
to u,_z and u,. Let us construct a graph G, on n + 1 vertices from G, by adding
a vertex u, ., and joining it to u,_, by an edge. Then G, € ®,, G, is connected
and has no universal vertex.

Proof. The vertex u, is universal in G, and hence all vertices of G, have (by
assumption, non-isomorphic) N,-neighbourhoods on n — 1 vertices. The only
vertices u; of G,y for which N,(u;, G,+1) * N,(u;, G,) are evidently u,_; and u,
(and, of course, u,.;). Ny(u,.y, G,1y) has 3 vertices while both N,(u,-3, G,+;)
and Nz(u,,, G, 1) have n vertices. Suppose that there exists an isomorphism
S Ny(u,, G,vq1) No(u,-3, G,+4). By assumption, the only vertex of degree 1 in
both N,(u,, G,+1) and N,(4,~3, G,4,) is #,.,. Hence the partial mapping f lvcen
is an isomorphism of N,(u,, G,) onto N,(u,_3, G,), which is a contradiction.
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Proof of Theorem 2.1. The non-existence of G, e &, for n < 6 can be easily
verified by listing all such graphs (see e.g. [13]). For n 2 7 let us construct a graph G,
using the following construction:

—~ for n = 7 see Fig. 3;

A u,
Ul UJ' U;
Uy Ug
Fig. 3

— having obtained G,, construct G, using Lemma 1 if »n is odd and Lemma 2
if n is even.
Then G, 4, is connected and G, € ®,.

Theorem 2.2, Let n, k be integers, k = 1, n = k? + 5k + 1. Then there exists
a graph G € G, with n vertices and k components.

Proof. Let us define a graph G using the graphs G, which are described in the
proof of Theorem 2.1:

— the first component of G is G;,

— the i-th component of G is G3;44, 1 = 2, ..., k.
Then every component of G belongs to &, and since for every pair of vertices u, u,
which belong to different components of G their N,-neighbourhoods have different

k
numbers of vertices, necessarily Ge€ ®,. Further, n =7+ Y (2i + 4) = k® +
i=2

+ 5k + 1 and hence for n = k? + 5k + 1 the theorem is proved.

For n > k% + 5k + 1 take the same graph G with the only difference in the k-th
component: if we denote a = n — (k2 + S5k + 1) then it is constructed as Gyi4 444
if a is even and as a graph which can be obtained from G,;,3,, by adding a new
vertex and joining it to the only universal vertex of G,z 3+, if a is odd.

3. N,-LOCALLY CONNECTED GRAPHS

Theorem 3.1. Let G be a connected Nj-locally connected graph, suppose that G
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contains a path of length 4. Denote by G’ the graph which is obtained from G by
deleting all vertices of degree 1 together with their edges. Then every edge of G’
is contained in some circuit of length m < 4 and G’ is 2-connected.

Proof. Let h be an edge of G'. Each of its vertices is adjacent to another edge —
denote them by hy, h,. If h,, h, have a common vertex then  is contained in a triangle
h, hy, h,. Suppose that h,, h, have no common vertex and that in G there is no circuit
of length m < 4 containing h. Then the existence of path of length 4 in G and the
connectedness of G yield that in G there exists a path of length 4 such that if u,, u,,
u,, U3, uy are its vertices then h = u,u,. The neighbourhood N,(u,, G) then contains
the edges uyu, and usu,. Suppose that in G there is no circuit of length m < 4
containing h. Hence if a vertex v is adjacent to u, and w is adjacent ot u, then v
cannot be adjacent to w and therefore the edges uqu, and u,u, are in different com-
ponents of N,(u,, G).

Let u be an articulation of G'. Then u is an articulation of G and such edges h,, h,
can be found that h,, h, are in different blocks of G and none of them is adjacent
to u (since otherwise u would not be an articulation of G’). But then N,(u, G) is
disconnected, which is a contradiction.

Obviously, every Ny-locally connected graph G is N,-locally connected and hence
the assertions which are proved in [9], [10] can be used to obtain sufficient conditions
for G to be N,-locally connected. Nevertheless, some of them can be replaced by
weaker ones.

Theorem 3.2. Every graph which contains no path of length 4 is N,-locally
connected.

Proof is easy.

Theorem 3.3. Let G be a graph such that every pair u, v of non-adjacent vertices
satisfies the inequality

de(u) + dg(v) 2 |V(G)| .
Then G is N,-locally connected. '

Proof. Let u, € ¥(G) and suppose that N,(uo, G) is disconnected. Choose vertices,
u,, u, in different components of N,(u) so that they are adjacent to u,. Each of the
vertices uy, u, is adjacent to dg(u;) — 1 vertices (excluding u,) and these vertices
are necessarily different. Hence

[V(G)| = (do(us) — 1) + (de(uz) — 1) +3
which implies

dg(uy) + dguz) < |V(G)| - 1,
a contradiction.
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Example. The graph G which can be obtained by taking two disjoint copies
of K,, n 2 2, and joining their vertices with an additional universal vertex u, is not
N,-locally connected and every pair x, y its of vertices such that x = u and y + u ~

satisfies dg(x) + dg(y) = 2n < 2n + 1 = |V(G)|. Hence Theorem 3.3 is the best
possible.

Corollary. If 5(u) 2 3|V(G)| then G is Ny-locally connected.

Theorem 3.4. Let G be a graph without triangles and such that

Y do(u) 2 [V(G)] +2

ueV(P)

for every path P < G of length 2. Then G is N,-locally connected.

Proof. Let ug, uy, u, be the same as in the proof of Theorem 3.3. Then u, is
adjacent to dG(uo) vertices and each of the vertices u,, u, is adjacent to another
dg{u;) — 1 vertices. These vertices are different since N,(uo, G) is disconnected
and G has no triangles. Hence

‘V(G)I g d(;(uo) + dG(ul) - 1 + dG(uz) - 1 + 1
which yields

I

. de(u) S |V(G)| + 1,

a contradiction.

Corollary. Suppose that G is a graph without triangles for which one of the
following conditions is fulfilled:

a) for every pair of vertices u, v,
de(u) + dg(v) = ¥(|V(G)| + 2);
b) 5(G) z 4([V(G)] + 2).
Then G is N,-locally connected.

Acknowledgment. The author is indebted to J. Sedldcek, for his helpful sug-
gestions.
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Souhrn
O GRAFECH S ISOMORFNIMI, NEISOMORFNIMI A SOUVISLYMI N,-OKOL{MI

ZDENEK RYJACEK

Podgraf N,(u, G) grafu G indukovany mnoZinou hran xy grafu G, pro n&% min {o(x, u),
ey, u)} = 1, se nazyva okoli 2. druhu uzlu u. V ¢lanku jsou vySetfovany tfi otdzky: existence
a vlastnosti grafl, v nichZ N,-okoli kaZdého uzlu je isomorfni z danym grafem, existence grafu
s neisomorfnimi N,-okolimi uzld a existence a vlastnosti grafi, v nich? N,-okoli vSech uzla
jsou souvisla.

Pe3rome

O I'PA®AX C N3OMOP®HBIMU,
HEM30MOP®HBIMU U CBASHBIMU N,-OKPYXEHUAMU

ZDENEK RYJACEK

IToarpad N,(u, G), mopoxAeHHBIK TakuMu pebpamu xy rpada G, [is KOTOPBHIX min {g(x, u),
oGy, u)} = 1, Ha3LIBAETCsI OKPYXEHHEM BTOPOrO THMIA BEPIIMHBI 4. B HacTosIe#l CTaThe paccMo-
TPEeHBI CIIEAYIONIME TPH BOIPOCA: CyIIECTBOBaHME M CBOMCTBA rpadoB, N, — OKPYXKECHMS BEpPLIMH
KOTOPHIX H30MOPGHBL 3aJaHHOMY rpady, CymecTBoBaHue rpadoB, N, — OKPY>XEHHS BEPIIUH KOTO-
PBIX HEM30MOpPGHBI M CyIIECTBOBaHME M CBOMCTBA rpadoB, N, — OKPYXEHHA BEPIIMH KOTOPBIX
SIBJISIFOTCSL CBSA3HBIMH.
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