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A NOTE ON A-MULT1PL1ER CONVERGENT SERIES 

MIGUEL FLORENCIO, PEDRO J. PAUL, Sevilla 

(Received May 28, 1986) 

Summary. A (formal) series lLxn in a sequentially complete locally convex space (lew) E is said 
to be ^-multiplier convergent, for X a sequence space, if Z$nxn converges in E for all <x e X. In this 
paper we show that, if X(y(X, X^)) is a barrelled AK-space, then Hxn is A-multiplier convergent if 
and only if it is weakly A-multiplier Cauchy. This enables us to give a unified scheme for the 
previously known results due to Bessaga and Pe-czynski [4], Singer [13], Bennett [3] and Maddox 
[11]. Besides, we study the problem whether Xx- and A2-multiplier convergences are equivalent 
for all E for different sequence spaces Xx and X2, and we obtain a characterization in terms of 
a density-type relation between Xi and X2. This relation is defined through a topology on the dual 
pair (X, X^) which was introduced by Schaefer, namely, the finest topology under which X is an 
AK-space. 

Keywords: A-multiplier convergence, barrellednes, AK-space, 

AMS Subject Classification: 46A45. 

INTRODUCTION 

Bessaga and Pelczynski [4] proved that a series ExB in a Banach space E is weakly 
unconditionally Cauchy, i.e., S|f(x„)| < +co for every feE\ if and only if 2ccnxn 

converges for all a e c 0 . This result suggested the following definition to I. Singer 
[13]: "A series _Sxn is weakly p-unconditionally Cauchy if I<oinxn converges for all 
a G /p(l < p < oo)". For certain Banach spaces, Singer characterized such series 
as those for which Z|f(x„)|g < + co (q is the conjugate exponent of p) for allfe E'. 
More generally, Bennett [3] extended these results to an arbitrary sequentially 
complete les E. Recently, Gupta and Kantham [7] and Maddox [11] have studied 
similar problems for particular sequence spaces. In this paper we deal with general 
sequence spaces. 

In what follows E(TE) stands for a Hausdorff sequentially complete locally convex 
space and X for a sequence space containing the space $ of all sequences with finite 
support. W(E, X) denotes the space of all sequences (x„)n such that the series Sxn 

is A-multiplier convergent, i.e. 

W(E, X) : = {(xM)„ e EN: 2a/Jx„ converges in E for all a G X} . 

We are going to use several notions from the theories of a-duality (see [9, § 30] or 
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[14, Ch. 2]) and /?-duality (see [5, 6 or 12]). Let us recall some relevant terms: 
cs stands for the space of all convergent series endowed with its natural Banach norm 
|| • ||cs. The topological dual of cs is the space bv of all bounded variation sequences 
and B stands for the unit ball in bv under the dual norm.The /?-dual of a sequence 
space X is defined as 

W := {{Qn: (Zn*n)n e cs for all a e X) ; 

(X, Xp) is a dual pair. The topology on X given by the family of seminorms 
n 

pfa) := sup {| X«*&D = ||(anQ„||cs = 
n k = l 

-=sup{|Za,«1 1b, | :6eB}, £eA* 

is called the oy(X, A^-topology (see [12, Prop. 4] or [5, § 5]) and plays the same role 
in the /J-duality as the Kothe normal topology v(A, Xx) in the a-duality. Under this 
topology X is an .AK-space, i.e., the sequence of n-ih sections {P„(a)}"=1, where 
Pn(a) := (a l 5 . . . , a.,, 0, 0,. . .) , converges to a for all a e i 

A CHARACTERIZATION OF A-MULTIPLIER CONVERGENCE 

Our first result provides a characterization of A-multiplier convergent series 
for a certain X. Its proof follows the ideas of the proof given by Bennett [3] for the 
spaces c0 and lp. 

Theorem 1. If A endowed with Mackey topoiogy fi(X, A/j) is a barreiled AK-space^ 
then Ex., is X-mu\tip\ier convergent if and only if(f(xn))n G A^for allfe E'. 

Proof. Necessity is clear (cf. [13]): note that if Exn is A-multiplier convergent, 
a e A a n d f e F , then 

f(Sanxn) = Sanf(x„). 

Conversely, assume that (f(xn))neXp for a l l feF ' . Set T: (£ -> E, T(<x) := .Sa„xw. 
Then 

<T(*)JXE.E') = <*>{f(x*))nX9,x*) • 
Now, T* :F ->a> is such that T*(f) = (f(xn))n e Xp. Hence, using [8,8.6.1 and 
8.6.5], we obtain that T is n(<f>, Xp) — rE continuous. On the other hand, fi(X, Xp) 
induces ii((j),Xp) on 0: indeed, each absolutely convex o(Xp, 0)-compact set A is 
<r(Xp, A)-bounded since every point a in A lies in the c(X, A^-closure of a bounded 
set in (j), namely the sequence {P„(a): n = 1,2,. . .}. Now, since X(fi(X, Xp)) is barrelled, 
A is a(Xp, A)-relatively compact. Finally, if a e A, then {P„(a): n = 1,2,...} is a ii(cj), Xp)-
Cauchy sequence because X(p,(X, Xp)) is an _AK-space; therefore, by the continuity 

n 

of T, {TPn(a): n — 1,2,...} = { ^a^x*: n = 1,2,...} is a T£-Cauchy sequence. 
fc=i 

Q.E.D. 
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Remarks . (1) Observe that the condition (f(xn))neXp for a l l f e F ' means, in 
other words, that Ex„ is weakly A-multiplier Cauchy. 

(2) Bennett and Kalton [ l ] and Garling [5, Thm. 11] give some conditions 
under which X(fi(X, Xp)) is barrelled. 

(3) If X is normal then, according to [14, Ch. 2 § 6.(9)], we can state Theorem 1 
as follows: "If X(p(X, Xx)) is an AK-space, then W(E,X) = {(xn)n: (f(xn))ne Xx for 
all feE'}". In this form, Theorem 1 includes, if we set X = c0, the well-known 
characterization of weakly unconditionally convergent series given by Bessaga 
and Pelczynski [4] and Bennett [3]. Taking X = lp (1 _ p < oo) we obtain the 
characterization of weakly ^-unconditionally convergent series given by Singer [13] 
and Bennett [3] (both for p > l) and Maddox [11] (for p = l). 

Corollary 1.1. Let X(z) be an FK-, AK-space (not necessarily locally convex). 

Then 

W(E, X) = {(x„)„: (f(xn))n e X' for all fe E'} . 

Proof. We have to verify that X satisfies the hypotheses of Theorem 1. To start 
with, note that (X(z))' = Xp (the inclusions follow from the property AK and from 
the Banach-Steinhaus theorem, respectively). Next, if A is a o(Xp, A)-boimded set, 
then A is equicontinuous so that the topology fi(X, Xp) is coarser than T. Therefore 
X($(X, Xp)) is an AK-space and, in this case, (X(p(X, Xp)))' = Xp, hence P(X, Xp) = 
= fi(X,Xp). Q.E.D. 

Remark. This corollary generalizes a result given by Gupta and Kamthan [7] 
for the locally convex case, as well as the cases X = l(pn) and X = w0(p) given by 
Maddox [11]. These spaces are defined as follows (see [11] for further references). 
Let (pn)n be a sequence such that 0 < pn _̂  1 for all n, and p a number such that 
0 < p := 1; then 

l(Pn) :={(«.)-: % | f t , < co}, 

^ ( ^ ^ { ( a ^ . - s u p l a ^ ^ o o } , 
n 

MP) ••= {(««)»: I™- f k | p = 0}. 
n k=i 

They are FK-, AK-, and normal spaces and we have (l(pn))
x = ^(pn)

 a n d (w0(/?))* = 

= {W»: Z 2 r / F max {|a„|: 2' £ k < 2'+1} < co}. 
r=-0 

If X(z) is a K-space then Xf is defined in the following way [13, 7.2.3]: 

Xf:={(f{en))n:fek'}. 

Then we have the following inclusion-type result (compare [15, 8.2.1)]): 
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Corollary 1.2. Let Ax and X2 be FK-spaces, X2 in addition locally convex, Xx in 
addition an AK-space. Then Ax cz A2 if and only if Xf

2 cz X{. 

Proof. Ax cz A2 if and only if (en)n e W(X2, X^: note that if Xx cz A2 then this 
inclusion is continuous. By the preceding corollary we obtain that (en\ e W(X2, Ax) 
if and only if Xf

2 is included in X{. Q.E.D. 

Remark. Since ( f) lp)p = /°°, the above result readily yields the following 
0<p<l 

theorem due to Bennett [3]: " A locally convex FK-space contains f) lp (if and) 
only if it contains J1". 0<p<1 

Corollary 1.3. Let Xf^i(XhX{)) (i = 1,2) be AK-spaces such that A2(/i(A2, A2)) is 
sequentially complete, and A ^ ^ , X{j) is barreled. Then Xt cz A2 if and only if 
A2 cz / . j . 

Proof. Take E = X2 in Theorem 1. A2 is an AK-space, therefore Xt a X2 means 
that (en)n G W(X2, Xt), whence Xt cz X2 if and only if (f(en)\ e X{ for allfe (X2)

f. But 
(X^' = Xp

2, i.e., for each fe (X2)
f there is a sequence a e X^ such that f(en) = ccn and, 

conversely, each sequence aeA^ yields an element fe(A2)'. Hence the condition 
for / is equivalent to Xp

2 cz X{. Q.E D. 

Remark. If A2 is a perfect space, then A2 satisfies the hypotheses of the preceding 
corollary [9, § 30]. 

Corollary 1.4. Let X be a perfect space such that X(v(X, Xx)) is semi-reflexive 
(see [9, § 30.4]). Then 

W(E, Xx) = {(xn)n: (f(xH))H e A for all feE'}. 

Remark. Pietsch (see [9, §44.8]) defined, for a perfect space A, the space of E-
valued sequences 

X(E) := {(xn)n: Ia/lx„ converges unconditionally for all a G XX} . 

Bearing in mind that unconditional convergence and bounded multiplier convergence 
are equivalent in E, and that Xx is a normal space, we obtain that ^ocnxn is uncondi­
tionally convergent for all a G XX if and only if it converges in the usual sense for all 
a G Xx, i.e. W(E, Xx) = X(E). 

Analogously (see [8,19.4]) one defines 

X\E\ := {(xB)„: (/(*„))„ e A for all feE'}. 

Then 1.4 states that if A is a perfect, semi-reflexive (with its Kothe normal topology) 
space, then A(l?) = A[£] (compare [8, 16.5]). 
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CONDITIONS FOR THE EQUALITY W(E, kv) = W(E, X2) 

Observe that if both AA and A2 satisfy the hypotheses of Theorem 1, then 
W(£, Ax) = W(E, A2) holds for all E if and only if A? = l\. In particular, if we take 
Ax = I1 and A2 = l(pn), we obtain the following result due to Maddox [11] (recall 
that (l(Pn))x = (l(Pn)y = r(Pn)): "W(E, ll) = W(E, l(pn)) holds for all E if and 
only f/inf pn > 0". On the other hand, it is well-known that a series in E is bounded 

n 

multiplier convergent if and only if it is subseries summable, or, in our terminology, 
that W(E, J00) = W(E, m0) for all E (where, as usual, m0 stands for the linear span 
of all sequences of zeros and ones), although /°° does not satisfy the hypotheses of 
Theorem 1, and neither does m0. In this section we study the general case of two 
different sequence spaces Ax and A2. We need the notion of the topology T 5(A) 
that was introduced by H. H. Schaefer [12]. Namely, T 5(A) is the finest locally 
convex topology on A which is consistent with the dual pair (A, A**) and which has 
the property AK. This topology is given by the family of seminorms 

n 
a -* Pc(a) : = sup {| £a f c c k | : n e N, ce C} 

k=i 

where C runs through the family S(X) of all absolutely convex cr(A ,̂ A)-bounded 
subsets of Xp such that for all a e l Ia„cn converges uniformly with respect to c e C. 
Note that, by [5, Prop. 11], S(X) is the family of all absolutely convex oy(Xp, A)-
relatively compact subsets of A**. 

Theorem 2. Let At and A2 be sequence spaces. Then the following assertions are 
equivalent: 

(1) W(E, Ax) c W(E, A2) for every E, 
(2) A2 a l u where the closure is taken in A ^ T S^)). 

Proof. (1) => (2) Let us first check that the topology T S(XX) can be described by 
the family of polar seminorms 

a -* qc(a) : = sup {|la,.c,.|: ceC} 

as C runs through S(XX). Indeed, if aeAj and CeS(?n), then for every e > 0 we 
can find an index N such that 

s u p { | | ( / - P . - 0 ( a c ) | | c - : i i ^ . N , ceC} = 
m 

= sup {| Xafccfc|: m = n = N , ce C} < e . 
k = n 

Now, if b is in B (the unit ball in bv) then 

I _ .vAl = K(I - P.-I) («). *>(«..»-)! ^ IKI - Pn-i) («)!«• 
Ł=п 

425 



Thus B(C) := {(bncn)n: beB, ceC} is a set of uniform convergence in the sense 
of Schaefer, hence acx(B(C)) is in S(Xt) by [12, Prop. 3]. Therefore, we can write 

pc(ot) = sup {||(a.,cn)Jcs: ceC} = sup {[la^b , ,!: ceC, beB} = 

= sup{|Sand„|: deB(C)} = gB(c)(a) -S q«c*B(C)(a) • 

Next, if CeS(Xx) then by [12, Prop. 3] C is o(X[, Aj-relatively compact and, 
a fortiori, er(Ai, <£)-relatively compact. So we obtain, as we did in the proof of Theo­
rem 1, that C is o(X[, /l^j-bounded, and we can consider T S(XX) as a polar topology 
defined in X[p. Bearing in mind the form of the semi-norms pc and [12, Prop. 4], 
one can apply [9, § 18.4.4] to the topologies oy(X[p,X[) and T S ^ ) to deduce that 
X[P(T S(X1)) \S a complete space and, therefore, that IX(T S(^i)) is also complete. 

Now, take E = lx(z S(XX)). Then (en)n e W(lu Xt) since Xx(z S(XX)) is an AK-space. 
Hence, by virtue of (l), (en)ne W(lu X2), i.e. Sa„ew converges in lt for all aceX2. 
However, in that case we have that Zacnen = a since lx is a K-space, therefore a e lx 

for all a e X2. 

(2) => (1) Let £ be a les space and (xn)„ e W(E, Xj). If we take an absolutely convex 
zero-neighbourhood U in E, it is clear that the series I,<;nf(xn) converges uniformly 
with respect to fe U° for all £ e Xt. Thus, the set A := {(f(x„))n:fe U0} belongs 
to S(Xt). Now, if a e X2 then, by (2), we can find £ e XL such that P^(a - £) < 1/4, 
whence 

m 

s»P {| I («* - k)/(* . . ) | : m, n e ;V, m ^ n; f€ U0} < 1/2 . 

On the other hand, I^,,*,. converges in E, therefore we can find an index N such that 
m 

sup {| £ ikf(xk)\: m, neN,m^n^N;feU°}< 1/2 . 
k = n 

Then we can find an index N such that 

m 

sup {| ^ ockf(xk)\: m, ne N, m = n = N; feU0} < 1 , 
k = n 

m 

i.e., Y, Wk eU \f m = n=N, so that (*„)„ e W(E, X2). Q.E.D. 
k = n 

Corollary 2.1. Lei* Xx and X2 be sequence spaces. Then the equality W(E, Xt) = 
= W(E, X2) holds for every E is and only if Xj c: 1{ where the closure is taken in 
X[P(T S(Xi))fori,j = 1,2; i * J. 

Remark. If A is a normal space, then T S(X) is the Mackey topology p(X, Xx) 
(see [14, Ch. 2, §4 (16)]). 

Corollary 2.2. Let X x c X2 be sequence spaces. Consider the following conditions: 
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(1) W(E, kx) = W(E, k2) holds for every E; 
(2) k2 cz kt (the closure taken in k[\x S(kl)))', 
(3) k[ = k\ and kt is dense in k2(p(k2, k{))\ 
(4) A2 cz kt (the closure taken in A**(̂ (A1, A*))). 

Then (3) => (l) o (2). Moreover, if Ax is normal then (l) o (4). 

Example 1. In his important paper [10], Lorentz defined the space of almost 
convergent sequences by using the idea of Banach limits. A sequence (<xn)n is said 
to be almost convergent to s if 

s = lim - Y, afc uniformly in neN. 
77-+00 p k = n 

By ac and ac0 we denote, respectively, the closed subspaces of '^dl'Hoo) of almost 
convergent and almost convergent to zero sequences. If \e\ stands for the linear 
span of the sequence e := (V 1,...) then ac = [e] © ac0. If bs denotes the space 
of all sequences which have bounded partial sums, then bs is dense in GCodHU) 
according to Bennett and Kalton [2, Thm. 3], whence [e] ® c0 ® bs is dense in ac 
under the co-norm. Since ([e] ® c0 ® bs)p = ll = acp, by using the above corollary 
we obtain, for every £, that 

W(E, ac) = W(E, [e] ® c0 ® bs). 

Plainly, the latter space equals W(E, [e]) n W(E, c0) n W(E, bs). Now (xn)n e 
e W(E, bs) if and only if xn -> 0 and ^\f(xn) — f(xn+i)\ converges uniformly on 
each equicontinuous subset of E'. (This can be easily deduced from the result about 
W(E, /°°) given in [l l ] and the usual linear isomorphism between bs and /°°. Indeed, 
the proof is almost contained in [11, Thm. 2(<=)].) Finally, according to the remarks 
made about c0 after Theorem 1, we obtain: "(xn)n is in W(E, ac) if and only if(i) Sxn 

converges in E, (ii) Zx„ is weakly unconditionally Cauchy and (iii) 2-|f(x„ — xw+1)| 
converges uniformly on each equicontinuous subset ofE'." This result was established 
by Maddox in [11]. 
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ЗоиЬгп 

Р О ^ А М К А О А-МШЛ1РЕ1КАТОК^Ё КХЖУЕКСЕШШ'СН ЙАОАСН 

МIО^Е^ Р^окЕNСIО, РЕЭКО ^. Р А Г ^ 

Рогта1п! гайа Лхп \ зе^епст1пё йр1пёт 1ока1пё к о т / е х т т ргозг.оги Е ̂ е А-ти1̂ р̂1̂ ка1о̂ ОVё 
котгег§еп1п1 (А ]е зекуепсШт ргоз1ог), ]ез1Н2е %<Хпхп копуегвд'е V Е рго кагёё ссе А. V с1апки 
зе сюкагще, ге V зисюукёт _4#-ргозт.оги гас!а Лхп }е А-тиШрИкаЧогоуё копуег,§еп1т ргауё 
ксгуг ]е з1аЪё А-тиШрПка1огоуё саиспуоузка. Оа1е зе зШскл'е ргоЫёт ек^1уа1епсе копуегёепсе 
1опо!о 1ури рго гйгпё тиШрИка1огу Ах а А2. 

Резюме 

ЗАМЕЧАНИЕ О А-МУЛЬТИПЛИКАТОРНО СХОДЯЩИХСЯ РЯДАХ 

МIО^Е^ Р^окЕNСIО, РЕЭКО 5. РАЦХ 

Формальный ряд 1>хп в секвенциально полном локально выпуклом пространстве Е назы­
вается А-мультипликаторно сходящимся (А—некоторое пространство последовательностей), 
если Ъ<хпхп сходится в Е для каждого элемента а е А. В статье доказывается, что в бочечном 
ЛХ-пространстве ряд Ихп А-мультипликаторно сходится тогда и только тогда, когда он удо­
влетворяет слабому А-мультипликаторному условию Коши. Изучается также проблема экви­
валентности сходимостей этого типа, соответствующих разным мультипликатором Ах и А2. 

Ашкоп* аМгезз: Е. 5. 1п,§етего8 1пс1иг8На1ез, Аус1а. Кета Мегсес1ез з/п, 41012 - ЗеуШа, 
Брат. 
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