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A NOTE ON A-MULTIPLIER CONVERGENT SERIES

MiGueL FLoRENcIO, PEDRO J. PAUL, Sevilla

(Received May 28, 1986)

Summary. A (formal) series Zx, in a sequentially complete locally convex space (/cs) E is said
to be A-multiplier convergent, for 4 a sequence space, if Za,x, converges in E for all « € A. In this
paper we show that, if A(u(4, 2%)) is a barrelled AK-space, then Zx, is A-multiplier convergent if
and only if it is weakly A-multiplier Cauchy. This enables us to give a unified scheme for the
previously known results due to Bessaga and Pe-czynski [4], Singer [13], Bennett [3] and Maddox
[11]. Besides, we study the problem whether 4,- and A,-multiplier convergences are equivalent
for all E for different sequence spaces A; and 4,, and we obtain a characterization in terms of
a density-type relation between A, and 4,. This relation is defined through a topology on the dual
pair (4, AB) which was introduced by Schaefer, namely, the finest topology under which A is an
AK-space. -
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INTRODUCTION

Bessaga and Pelczynski [4] proved that a series x, in a Banach space E is weakly
unconditionally Cauchy, i.e., Z|f(x,)] < +co for every fe E', if and only if Za,x,
converges for all « € ¢,. This result suggested the following definition to I. Singer
[13]: “A series Zx, is weakly p-unconditionally Cauchy if Za,x, converges for all
ael’(l < p < w)”. For certain Banach spaces, Singer characterized such series
as those for which Z|f(x,)|? < + oo (q is the conjugate exponent of p) for all f€ E’.
More generally, Bennett [3] extended these results to an arbitrary sequentially
complete Ics E. Recently, Gupta and Kantham [7] and Maddox [11] have studied
similar problems for particular sequence spaces. In this paper we deal with general
sequence spaces.

In what follows E(‘L‘E) stands for a Hausdorff sequentially complete locally convex
space and A for a sequence space containing the space ¢ of all sequences with finite
support. W(E, A) denotes the space of all sequences (x,), such that the series Zx,
is A-multiplier convergent, i.e.

W(E, 2) := {(x,), € E": Za,x, converges in E for all x e 1} .

We are going to use several notions from the theories of a-duality (see [9, § 30] or
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[14, Ch.2]) and B-duality (see [5, 6 or 12]). Let us recall some relevant terms:

¢s stands for the space of all convergent series endowed with its natural Banach norm

[ [ «s- The topological dual of cs is the space bv of all bounded variation sequences -
and B stands for the unit ball in bv under the dual norm.The f-dual of a sequence

space A is defined as

A= {(&)n: (Euta)n € s for all e A} ;
(4, /1”) is a dual pair. The topology on A given by the family of seminorms

) 1= sup | T} = [l =

= sup {|Z«,&,b,|: be B}, feA’

is called the ay(4, A*)-topology (see [12, Prop. 4] or [5, § 5]) and plays the same role
in the B-duality as the Kéthe normal topology (4, A¥) in the a-duality. Under this
topology 4 is an AK-space, i.e., the sequence of n-th sections {P,(«)}s=q, Where
Py(a) := (ay, ..., @, 0,0, ...), converges to a for all x € A.

A CHARACTERIZATION OF A-MULTIPLIER CONVERGENCE

Our first result provides a characterization of A-multiplier convergent series
for a certain A. Its proof follows the ideas of the proof given by Bennett [3] for the
spaces ¢, and 7.

Theorem 1. If A endowed with Mackey topology u(/l, A’) is a barrelled AK-space.
then Ex, is A-multiplier convergent if and only if (f(x,)), € A* for all fe E'.

Proof. Necessity is clear (cf. [13]): note that if Zx, is A-multiplier convergent,

oxe€land fe E’, then
f(Zo,x,) = Za, f(x,) .

Conversely, assume that (f(x,)), € A* for all fe E". Set T: ¢ — E, T(a) := Za,x,.

Then
(T(@): ey = < ([(xa)d o19) -

Now, T*: E' > w is such that T*(f) = (f(x,)). € A*. Hence, using [8,8.6.1 and
8.6.5], we obtain that T is p(¢, A*) — 7z continuous. On the other hand, p(4, 2°)
induces (@, 2°) on ¢: indeed, each absolutely convex o(4%, ¢)-compact set A is
(4%, 2)-bounded since every point « in A lies in the o(4, A¥)-closure of a bounded
set in ¢, namely the sequence {P,(«): n = 1,2, ...}. Now, since 4(u(4, A%)) is barrelled,
Ais o(2®, A)-relatively compact. Finally, if x € A, then {P,(a):n = 1,2, ...} isa p(¢, 2°)-
Cauchy sequence because A(u(2, A)) is an AK-space; therefore, by the continuity

of T, {TP,(a): n=1,2,..} ={ Yax: n=1,2,...} is a tz-Cauchy sequence.
k=1
Q.ED.
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Remarks. (1) Observe that the condition (f(x,)), € A? for all fe E' means, in
other words, that Xx, is weakly A-multiplier Cauchy.

(2) Bennett and Kalton [1] and Garling [5, Thm. 11] give some conditions
under which A(u(2, %)) is barrelled.

(3) If 2 is normal then, according to [14, Ch. 2 § 6.(9)], we can state Theorem 1
as follows: “If A(B(A, 2¥)) is an AK-space, then W(E, ) = {(x,)u: (f(x,)), € A* for
all fe E'}”. In this form, Theorem 1 includes, if we set A = ¢y, the well-known
characterization of weakly unconditionally convergent series given by Bessaga
and Pelczynski [4] and Bennett [3]. Taking 4 = I? (1 £ p < o) we obtain the
characterization of weakly p-unconditionally convergent series given by Singer [13]
and Bennett [3] (both for p > 1) and Maddox [11] (for p = 1).

Corollary 1.1. Let /1(1:) be an FK-, AK-space (not necessarily locally convex).
Then

W(E, A) = {(x,).: (f(x,))n € A* for all fe E'}.

Proof. We have to verify that A satisfies the hypotheses of Theorem 1. To start
with, note that (A(z))’ = A? (the inclusions follow from the property AK and from
the Banach-Steinhaus theorem, respectively). Next, if 4 is a o(4%, 1)-bounded set,
then A is equicontinuous so that the topology B(A, l”) is coarser than 7. Therefore
MB(2, 2)) is an AK-space and, in this case, (A(B(, %)) = A%, hence B(A, Af) =
= u(A, 7). QED.

Remark. This corollary generalizes a result given by Gupta and Kamthan [7]
for the locally convex case, as well as the cases A = I(p,) and A = wy(p) given by
Maddox [11]. These spaces are defined as follows (see [11] for further references).
Let (p,,),, be a sequence such that 0 < p, < 1 for all n, and p a number such that
0 < p =1; then

I(p) = {(ta)n: Z|et, | < o0},
I(pa) = {(@)s: sup [ou™ < oo} ,

wo(p) := {(&,),: lim L Z":[aklp =0}.

n¥=1
They are FK-, AK-, and normal spaces and we have (I(p,))* = 1°(p,) and (wo(p))* =
= {(@)n iZ'/" max {|,|: 2" < k < 271} < oo}
If A(z) i;;oK-space then A/ is defined in the following way [13, 7.2.3]:
Mi={(fle)n: feX}.

Then we have the following inclusion-type result (compare [15, 8.2.1)]):
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Corollary 1.2, Let A, and A, be FK-spaces, A, in addition locally convex, 4, in
addition an AK-space. Then A, < A, if and only if 5 < 28

Proof. A; = 4, if and only if (e,), € W(4,, 4;): note that if 4, < A, then this
inclusion is continuous. By the preceding corollary we obtain that (e,), € W(4,, 4,)
if and only if 44 is included in 4. Q.E.D.

Remark. Since ( ) )/ = I®, the above result readily yields the following
0<p<1 :

theorem due to Bennett [3]: “A locally convex FK-space contains [\ I° (if and)
only if it contains I*”, 0<p<l

Corollary 1.3. Let Aiu(Ai 28)) (i = 1,2) be AK-spaces such that 2,(in(2,, 25)) is
sequentially complete, and A,(i(A;, %)) is barreled. Then A; < A, if and only if
A< 28

Proof. Take E = A, in Theorem 1. 2, is an AK-space, therefore 1; = A, means
that (e,), € W(A,, A), whence 4; < A, if and only if (f(e,)), € A{ for all f € (1,)'. But
(A;Y = 2, i.e., for each fe(4,) there is a sequence a € 45 such that f(e,) = «, and,
conversely, each sequence a € A3 yields an element fe€(4,)'. Hence the condition
for f is equivalent to A5 = A4, QED.

Remark. If 4, is a perfect space, then 2, satisfies the hypotheses of the preceding
corollary [9, § 30].

Corollary 1.4. Let A be a perfect space such that A(¥(A, X¥)) is semi-reflexive
(see [9, §30.4]). Then

W(E, 2*) = {(xu)u: (f(x.))n € A for all feE}.
Remark. Pietsch (see [9, §44.8]) deﬁﬁed, for a perfect space 4, the space of E-
valued sequences

ME) := {(x,)a* Zat,x,, converges unconditionally for all « e 2%} .

Bearing in mind that unconditional convergence and bounded multiplier convergence
are equivalent in E, and that A* is a normal space, we obtain that Za,x, is uncondi-
tionally convergent for all « € A* if and only if it converges in the usual sense for all
ae A%, ie. W(E, 2*) = AE).

Analogously (see [8, 19.4]) one defines

ALE] := {(xn)a: (f(xs))n€ A forall feE'}.

Then 1.4 states that if A is a perfect, semi-reflexive (with its Kdthe normal topology)
space, then A(E) = A[E] (compare [8,16.5]).
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CONDITIONS FOR THE EQUALITY W(E, A,) = W(E, 1,)

Observe that if both A, and A, satisfy the hypotheses of Theorem 1, then
W(E, A,) = W(E, 4,) holds for all E if and only if 2§ = 25. In particular, if we take
2y = 1" and 4, = I(p,), we obtain the following result due to Maddox [11] (recall
that (I(p,))* = (I(p))? = 1°(p,)): “W(E, 1') = W(E, I(p,)) holds for all E if and
only if inf p, > 0”. On the other hand, it is well-known that a series in E is bounded

multiplier convergent if and only if it is subseries summable, or, in our terminology,
that W(E, I°) = W(E, m,) for all E (where, as usual, m, stands for the linear span
of all sequences of zeros and ones), although I® does not satisfy the hypotheses of
Theorem 1, and neither does m,. In this section we study the general case of two
different sequence spaces i; and 4,. We need the notion of the topology 7 S(4)
that was introduced by H. H. Schaefer [12]. Namely, t S(4) is the finest locally
convex topology on A which is consistent with the dual pair (4, A’) and which has
the property AK. This topology is given by the family of seminorms

a = pe(a) := sup {|kzlakck|: neN, ceC}

where C runs through the family S(A) of all absolutely convex o(4?, A)-bounded
subsets of A such that for all a € 4, Za,c, converges uniformly with respect to ¢ € C.
Note that, by [5, Prop. 11], S(4) is the family of all absolutely convex oy(A?, 2)-
relatively compact subsets of A%,

Theorem 2. Let 1, and 1, be sequence spaces. Then the following assertions are
equivalent:

(1) W(E, A;) = W(E, A,) for every E,

(2) A, = A4, where the closure is taken in A5(t S(,)).

Proof. (1) = (2) Let us first check that the topology t S(4,) can be described by
the family of polar seminorms

& - gc() := sup {|Za,c,|: ce C}

as C runs through S(4,). Indeed, if « € A; and C€S(4,), then for every ¢ > 0 we
can find an index N such that

sup {||(I = P,—y) (a¢)|esim = N, ce C} =
=sup{|Yocl:m=n=N, ceC} <.
k=n
Now, if b is in B (the unit ball in bv) then

Ikznakckbkl = I<(I —I P,,—l) (“C)’ b>(cs,bv)l = "(I = P,- 1) (occ)"cs )
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Thus B(C) := {(byc,)a: be B, ce C} is a set of uniform convergence in the sense
of Schaefer, hence acx(B(C)) is in S(A,) by [12, Prop. 3]. Therefore, we can write

pc@) = sup {||(#ca)u]ls: c € C} = sup {|Za,c,b,|: ceC, be B} =
= sup {|Zo,d,[: d € B(C)} = quc%) < Guexnic)(®) -

Next, if Ce S(4,) then by [12, Prop. 3] C is o(Af, 4,)-relatively compact and.
a fortiori, o(A}, ¢)-relatively compact. So we obtain, as we did in the proof of Theo-
rem 1, that C is o(A{, 2{?)-bounded, and we can consider t S(1,) as a polar topology
defined in A8%. Bearing in mind the form of the semi-norms p¢ and [12, Prop. 4],
one can apply [9, § 18.4.4] to the topologies oy(14*, A%) and 7 S(4,) to deduce that
A(t S(4,)) is a complete space and, therefore, that 1,(t S(4,)) is also complete.

Now, take E = 1,(t S(1,)). Then (e,), € W(1,, 4,) since 4,(z S(4,)) is an AK-space.
Hence, by virtue of (1), (e,), € W(1y, 4,), i.e. Za,e, converges in 1, for all ae A,
However, in that case we have that Za,e, = o since 1, is a K-space, therefore « € 1,
foralla e 4,.

(2) = (1) Let E be a les space and (x,), € W(E, 4,). If we take an absolutely convex
zero-neighbourhood U in E, it is clear that the series X, f| (x,,) converges uniformly
with respect to fe U° for all ¢ € A;. Thus, the set 4 := {(f(x,)),: f€ U°} belongs
to S(A,). Now, if a € 2, then, by (2), we can find & e A, such that p,(« — &) < 1/4,
whence

sup {l,‘i (0 = &) f(xi)|: myneN, m = n; feU% < 1/2.

On the other hand, £&,x, converges in E, therefore we can find an index N such that
sup {[k'i GSf(x)]: myneN, mzZn2N; feU% < 1/2.

Then we can find an index N such that

sup{I Zakf(xk)l: mneN, m=n=N,; erO} <1,
k=n
ie, Y ogxeUif m 2 n 2 N, so that (x,), € W(E, 4,). QE.D.
k=n

Corollary 2.1, Let A; and iz be sequence spaces. Then the equality W(E, A,) =
= W(E, ,) holds for every E is and only if A; = 1; where the closure is taken in
Mt S(Ay) for i, j =1,2;i * j.

Remark. If A is a normal space, then 7 S(%) is the Mackey topology u(4, A¥)
(see [14, Ch. 2, § 4 (16)]).

Corollary 2.2. Let 1, = A, be seqﬁence spaces. Consider the following conditions:
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(1) W(E, 2,) = W(E, 2,) holds for every E;
(2) A, = 1, (the closure taken in 25(x S(4,)));
(3) 2§ = A5 and 2, is dense in 2,(B(A,, 25));
(4) A, = A, (the closure taken in AT (u(Ay, 27))).
Then (3) = (1) <> (2). Moreover, if 4, is normal then (1) <> (4).

Example 1. In his important paper [10], Lorentz defined the space of almost
convergent sequences by using the idea of Banach limits. A sequence (oz,,),, is said
to be almost convergent to s if

nt+p—1
s=1lim = Y « uniformlyin neN.
p2>o D k=n
By ac and ac, we denote, respectively, the closed subspaces of l°°(|]- “m) of almost
convergent and almost convergent to zero sequences. If [e] stands for the linear
span of the sequence e := (I, 1,...) then ac = [e] @ ac,. If bs denotes the space
of all sequences which have bounded partial sums, then bs is dense in aco(||*|[ )
according to Bennett and Kalton [2, Thm. 3], whence [e] @ ¢, @ bs is dense in ac
under the co-norm. Since ([e] ® ¢, ® bs)? = I' = ac’, by using the above corollary
we obtain, for every E, that

W(E, ac) = W(E, [e] ® co @ bs).

Plainly, the latter space equals W(E, [e]) n W(E, ¢;) n W(E, bs). Now (x,),€
e W(E, bs) if and only if x, > 0 and E|f(x,) — f(X,4+)| converges uniformly on
each equicontinuous subset of E’. (This can be easily deduced from the result about
W(E, 1*) given in [11] and the usual linear isomorphism between bs and I1®. Indeed,
the proof is almost contained in [11, Thm. 2(<=)].) Finally, according to the remarks
made about ¢, after Theorem 1, we obtain: “(x,), is in W(E, ac) if and only if (i) Zx,
converges in E, (i) Ix, is weakly unconditionally Cauchy and (iii) Z|f(x, — X,+1)|
converges uniformly on each equicontinuous subset of E'.” This result was established
by Maddox in [11].

.
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Souhrn

POZNAMKA O A-MULTIPLIKATOROVE KONVERGENTNICH RADACH

MiGueL FLORENCIO, PEDRO J. PAUL

Formélni fada Zx,, v sekvencialng (iplném lokalné€ konvexnim prostoru E je A-multiplikdtorové
konvergentni (4 je sekvencidlni prostor), jestlize Za, x, konverguje v E pro kazdé « € A. V ¢ldnku
se dokazuje, Ze v sudovitém AK-prostoru fada Zx, je A-multiplikitorové konvergentni pravé
kdyZ je slab& A-multiplikatorové cauchyovskd. Déle se studuje problém ekvivalence konvergence
tohoto typu pro riizné multiplikatory 4; a 4,.

Pesrome

3AMEYAHHE O A-MVJIBTUINIMKATOPHO CXOIAWMXCS PAOAX

MiGueL FLoreNcIO, PEDRO J. PAUL

dopmaneRbIi pAA Zx, B CEKBEHIHANBHO IOJIHOM JOKAIBHO BBIIYKJIOM NPOCTPAHCTBe E Ha3bl-
BAeTCA A-MYILTHIUIHKATODHO CXOsIEMCS (A— HEKOTOpOe NMPOCTPAHCTBO IIOC/IEAOBATEILHOCTEI),
ecna Zo,x, CXONHTCS B E [71a KaXA0ro dMeMeHTa o € A. B craThe HOKa3bIBAaeTCs, 4TO B GOYEYHOM
AK-npoctpancTBe pspg XX, A-MyJIbTHIUIRKATOPHO CXOAHMICS TOrAa M TONBKO TOIAA, KOraa OH yno-
BJIETBOPSAET CIAGOMy A-MyNLTHILIHKATOPHOMY ycnoBuo Komm. Usyyaertcs Taxke npoGiemMa SkBu-
BaJICHTHOCTH CXOJEMOCTEH 3TOTO THIA, COOTBETCTBYIOIMMX Pa3HBIM MYJIBTHILIHKATOPOM Ay M A,.
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