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Summary. The subject of this paper are the third order differential equations which have the
solution space with bases consisting of 0, 1, 2 or 3 oscillatory solutions. To study such equations
we use [3] and seek the possibility of perturbing the self-adjoint differential equation in such
a way that both equations be asymptotically equivalent.
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1. INTRODUCTION

It will be assumed that the coefficients of the differential equations considered are
real continuous functions on [t , c0). We shall call a function f(¢) oscillatory when
the set of its zero-points is infinite and unbounded from above. Otherwise, we shall
call it non-oscillatory.

The third-order linear differential euqation L3y = 0 can be

I. non-oscillatory, when all its solutions are non-oscillatory;
II. strictly oscillatory, when all its solutions are oscillatory;

III. oscillatory: Illa. there is only one non-oscillatory solution (up to a constant
multiplication factor);

IIIb. there is a two-parameter set of oscillatory solutions;

IIlc. there is only one oscillatory solution.

The equations of types I, II, IIla and Illc were studied by several authors (e.g.
[2], [7]. [8])- The subject of our paper will be the equations of type IlIb.

Let us consider the differential equation

(1) Y +24(t)y +(d(t) + (1) y =0

and its adjoint

(2) Y +24(0)y +(q(0) - 1)y = 0.
If r(t) = 0 we have the self-adjoint equation

(3) X" +24q@)x + g ()x =0
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and all its solutions are given by

X = clzf + ¢cyzy2z, + c,zi
where z,, z, are linearly independent solutions of
4) 2"+ 34q(t)z=0, geC'[t,, o).

In [3, 4] Jones described the types of bases possible for the solution space of (1)
with respect to the number of oscillatory solutions possible in a given basis. It is
well-known [e.g. 2, Theorem 2.52] that if (4) is oscillatory then (3) has bases con-
sisting of i oscillatory solutions, i = 0, 1, 2, 3.

We seek the possibility of perturbing (3) to (1) in such a way that this property
be preserved, i.e. the solution space of (1) has bases consisting of exactly i oscillatory
solutions, i = 0,1,2,3 (Theorem 2). First we shall find sufficient conditions under
which (1), (3) are asymptotically equivalent (Theorem 1) and in particular, (1) has
a solution such that liminf y(f) > 0 (Corollary 1). Our results include the case
when r(t) is oscillatory.

We shall consider equations which are of Class I or Class II as defined by Hanan
in [1]. We say that (1) is of Class I or Class I if every solution of (1) satisfying y(«) =
= y'(«) =0, y"(a) > 0, « > O satisfies also y(f) > 0 for t € (o, @) or ¢t > «, res-
pectively. In [8] M. Svec studied the effects of these properties on the existence of a
solution without zeros. '

2. ASYMPTOTIC EQUIVALENCE

Denote by X = X(t,) and Y = Y(t,) the sets of all solutions of (3) and (1) on
[0, ), respectively. The continuity of coefficients of equations (1), (3) ensures
X %+ 0,Y + 0 and thus X, Y are linear spaces of the dimenion 3.

Theorem 1. Let every solution of (4) be bounded on [to, ) and let
(%) = |r(r)| dt < oo

Then (1) and (3) are asymptotically equivalent, i.e. there exists a one-to-one
mapping T: X — Y such that

lim |x(t) — Tx(t)) =0 forevery x(f)eX.
t— o0
Proof. Our assumptions imply that every solution y e Y is bounded (see e.g.

[2, Theorem 3.16]).
From (1), (3) we get

=x"+2y—x) +q(y—x)=—ry
and putting u = y — x,

(6) w” 4 2qu’ + q'u = —ry.
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Using the variation-of-constants formula we can write each solution u(f) of (6) in
the form

u(t) = ¢, zi(t) + ¢z z4(t) z5(t) + c3 23(t) — fi, K(1, 5) r(s) (s) ds ,

where the kernel
2

24(1) 2(1)
24(s) z3(s)
and z,,z, are arbitrary solutions of (4) subject to the Wronskian condition

z,(1) z5(t) — z3(t) zo(1) = 1.

Thus ]
u(t) = z3(t) [ey — %[5 23(s) (5) ¥(s) ds] +
+ 24(t) 2o(t) [e2 — [& 24(5) z2(5) 7(s) v(s) ds] +
+ 23(t) [es — 4 J% 21(s) 7(s) ¥(s) ds] +
+ [ K(t, s) r(s) y(s) ds .
Let ye Y and let

K(t,s) =%

¢, =3[R z2iryds, ¢ = [pzyzryds, ¢y =1%[pziryds.
Then
) u(t) = [P K(t, s) r(s) y(s) ds
with the property lim u(t) = 0.

t— o0

We define a mapping V: Y — X by the relation
(®) () (1) = »(1) — u(t) = y(1) = 7 K(t, 5) (s) (s) ds

and prove that Vis an injection. Note that by virtue of the linearity of the mapping V'
the function (Vy) (1) is really a solution of (3), i.e. if y € Y then Vy € X. Suppose on
the contrary that there exist y,, y, € Y, y, # y, on [to, 00) such that for x; = Vy,,
x; = Vy, we have x, = x, on [t, ©). Then according to (8)

$1(0) = 52 K(t,9) 1) ya(5) ds = ya(t) — 7 K(t,)r(s) yals) ds
thus

©) yi(t) = ya2(8) = [ K(t, 9) 1(s) (7:(5) = y2(s)) ds, te[to, ).
Next we prove that the integral equation
f(8) = [7 K(t,5) r(s) f(s) ds,  te[to, o)

has only the trivial solution on [to, ®).
As IK(t, s)| < A for some real A and for allt > t,, s = t,, we have

lf®)] = 42 [£6)||r(s)| as -
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Put x = R(f) = 7 |r(s)| ds. Then we have

FRTC] = 45 | AR (s))] ds
and the Gronwall inequality yields |f(R™!(x))| = 0, i.e. | f())]| =o.
We conclude that V is a linear injection of the vector spaces X, Y of the same
dimension 3, i.e. V is a one-to-one mapping. Thus the mapping T: X — Y defined
by the relation T = V™! has the property required in Theorem 1. Indeed,

fim [+(9) = Tx(9)] = tim |V () = V™X(V 5] = lim [V 3() = 5(0)] =

=limu(t)=0. O

t— 0

Corollary 1. Let q(t) > 0 be such that q, q~' are bounded and there exists a y + 0
such that q” is either convex or concave. Let (5) hold.

Then (1) has a nonoscillatory solution y(t) such that llm inf y(t) > 0. Further-
more, every solution of (1) is bounded.

Proof. Under the assumptions on g (4) is oscillatory and we can use the asymptotic
formulas for the solutions z,(t), z,(¢) of (4) derived in [6]

zi(t) ~ g7V sin(f1, ' + 0)
()~ q*(t) cos ([t 472 + o) ,
(1) ~ a7t cos (Ji, ¢' + o),
z(f) ~ =" ¥ sin ([l 4"/ + o).
This implies that every solution of (4) and its derivative are bounded, and a solution
x(t) of (3) satisfies
lim inf x(f) = lim inf (z3(t) + z3(¢)) = lim inf ¢~ */(¢) = [lim sup q(£)]"*/*> > 0.

t—> o

Theorem 1 yields the existence of a solution y(t) of (1) such that liminf y(f) =
> lim inf x(¢) + lim u(f) > 0.

Corollary 2. Let lim g(t) = ¢ > 0 and let there exist a y % 0 such that q” is either

t— 0
convex or concave. Let (5) hold. Then (1) has a nonoscillatory solution y(t) such
that

lim y(1) = 1/J/c

Proof. It is similar to that of Corollary 1.
3. OSCILLATORY SOLUTIONS

Theorem 2. Let (1) be of Class I or Class 11, oscillatory and let the assumptions
of Corollary 1 be fulfilled.
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Then the solution space of (1) has bases consisting of exactly i oscillatory solu-
tions, i =0,1,2,3. .
For the proof of Theorem 2 we need the following

Proposition 1 [3, Theorem 1]. If (1) is of Class I and if some of its solutions
oscillates then the solution space of (l) has a basis with three oscillatory solutions
and a basis with exactly two oscillatory solutions.

Proposition 2 [3, Theorem 2). If (1) is of Class II and if some of its solutions
oscillates then the solution space of (1) has a basis consisting of exactly i oscillatory
solutions, for i =0,1,2.

Proposition 3 [3, Theorem 4].If (1) is of Class I, if some of its solutions oscillates
and if it has a basis with two or three nonoscillatory elements then (2) has a basis
with three oscillatory elements.

Proofof Theorem 2. We will need the fact thatif y,, y,, y; are linearly independent
solutions of (1) then so are yy, Yy + V2, Y2 + Y3 OT Yy + V2, ¥y + V3, ¥y + V2 +
+ y;. This easily follows from the fact that they have the same wronskian.

Suppose (1) is of Class I. Since (1) has an oscillatory solution according to Proposi-
tion 1 the equation (1) has bases with i oscillatory solutions, i = 3,2. Thus it remains
to prove the existence of bases with i oscillatory solutions, i = 0, 1.

By Corollary 1 the equation (1) has a nontrivial nonoscillatory solution w(r)
such that lim inf w(t) = ¢ > 0. On the other hand, by Proposition 1 we have two
linearly independent oscillatory solutions u(t), v(f) which together with w(f) form
a basis for the solutions of (1). According to Corollary 1 the solutions u(t), v(t)
are bounded by N > 0. If we take the nonoscillatory solution w*(t) := 2N/c w(t)
then the solution u + w*, v + w* both are nonoscillatory and together with u(t)
form a basis for (1). Indeed,

liminf (u + w*) 2 liminfu + lim inf w* =

= liminfu +2ivcg —N+2N =N >0.
c
Analogously, if we put w** := 3N/cw(t) then the solutions u + w*, v + w¥
u + v + w** are nonoscillatory and form a basis for (1).

Now let (1) be of Class II. By Proposition 2 we get that (1) has a basis consisting
of exactly i oscillatory solutions, i = 0, 1, 2. Let us prove the existence of a basis
with three oscillatory solutions. It was shown in [1] that (1) is of Class II if and
only if (2) is of Class I. Considering the equation (2) which also has an oscillatory
solution (see [1]) we have from the first part of the proof that (2) has a basis with two
and three nonoscillatory elements. Now, Proposition 3 gives the existence of a basis
with three oscillatory elements which was to prove.
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Corollary 3. Let q(t) satisfy the assumptions of Corollary 1 and let r(t) be such
that either 1(t) 2 0 or r(t) < O on [to, ), r(t) = 0 does not hold on any subinterval,
and [® r(t) dt converges.

Then the conclusion of Theorem 2 holds.

Proof. If r(t) = 0 then (1) is of Class I and (1), (2) are oscillatory. Indeed, this
follows e.g. from [2, Theorem 2.61] because g, ¢~* are bounded.

If (f) < Othen(2)is of Class I and (1) of Class II. Thus all assumptions of Theorem
2 are fulfilled.

Concluding remark. The problem of structure of the solution space of (1) with
respect to the number of oscillatory solutions remains open in the following cases:

1) r(t) satisfies (5) and
i) g(0) = oo, or
ii) g(c0) = 0;

2) [* r(r) dt diverges.

Suppose that 1i) holds. Let y € (0, 1/2) exist such that g7 is either convex or con-
cave. Then by the same asymptotic formulas as in the proof of Corollary 1 we get
that every solution of (4) tends to zero and thus every solution x(¢) of (3) tends to
zero. In this case the problem of existence of two and three nonoscillatory solutions
is open.

Suppose that 2ii) holds. Let [® g~%/2¢'? < oo and let there exista y > 0 such that g”
is convex. Then every solution x(t) of (3) satisfies lim sup x(f) = co. The validity

t— o

of Theorem 1 for this case would entail the validity of Theorem 2.

As concerns the case 2, we mention that the following theorem (see [2, Theorem
3.6] or [5]) holds. If g(t) 2 0, q'(t) + r(t) = d > 0, r(t) — ¢'(t) = O then every
solution of (1) is oscillatory on (fo, ) except one solution y(t) with the property
y—0,y > 0ast— oo,ie.(1)is of type Illa.
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Souhrn

O OSCILATORICKYCH RESENICH LINEARN{CH DIFERENCIALN{CH
ROVNIC 3. RADU

ZuUzANA DoSLA

Pfedm&tem &lanku jsou linedrni diferencidlni rovnice 3. ¥adu, jejichZ prostor feSeni ma baze
obsahujici prav& i oscilatorickych feSeni, pro viechna i = 0, 1, 2, 3. Nejprve hledame asympto-
ticky ekvivalentni perturbaci samoadjungované rovnice, odkud dostaneme existenci jistého
neoscilatorického feSeni, a pak pouZijeme vysledku [3].

Pe3rome

O KOJIEBJIFOIUXCSA PEMEHUSX JIMHEMHBIX JU®OEPEHLMAJIBHBIX
VPABHEHUM 3-TO TTOPSOKA

ZuzANA DoSLA

Ilpeamer cratem — JmHeHHble MuddepeHunanbubie ypaBHEHHS 3-TO NOPSAKa, NMPOCTPAHCTBO
peLIeHnt KOTOphIX obmagaeT 6a3mcoM, ColepalyM POBHO i KOJIEONIOMMXCA peIeHn, Ui BCeX
i=0,1,2,3. CHayana MIIeTcs aCAMIITOTHYECKH 3KBHBAJICHTHOE BO3MYIIEHHE CAaMOCONPSIKEHHOIO
YDPaBHEHHS, OTKyZa CIeAyeT CYIeCTBOBAaHHE HEKOTOPOIO HEOCUM/LIATOPHYECKOTO PEIIEHNS, M 3aTEM
npuMensercs paborta [3].

Author’s address: Katedra matematiky Prirodovédecké fakulty University J. E. Purkyné,
JanaCkovo nam. 2a, 662 95 Brno.

34



		webmaster@dml.cz
	2012-05-12T16:41:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




