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ON LOCAL PROPERTIES OF GRAPHS AGAIN

Jikf SEDLACEK, Praha
(Received June 11, 1987)

Abstract. In our earlier papers we considered two types of vertex neighborhoods but in this
paper we deal mostly with the first one. Let v be a vertex of a graph G. By N, (v), the neighborhood
of the first type, we mean the subgraph of G induced on the set of all vertices adjacent to v.

Let ¥, be the class of all graphs G of order at least two with the property that for any two
vertices of G, say u and v, we have N, (4) 4 N, (v). First we show that for a given positive integer m
there exists a positive integer ¢(m) such that for every graph G™ of order m there is a graph G
of order ¢(m) with G € €, and a vertex w of G with N;(w) = G,

Further one can easily verify that for every integer n = 7 there exists a locally connected
graph of order n belonging to €. It is known that the number of planar graphs belonging to %
is finite. In the present paper we prove that there are exactly four outerplanar graphs in the class
€, (see Fig. 3). In [10] we defined a generalized outerplanar graph as a planar graph which can
be embedded in the plane in such a way that at least one endvertex of each edge lies on the
boundary of the same face. Next result of this paper states that if G is an outerplanar graph of
order at least seven then G is not a generalized outerplanar graph. This statement strenghtens
Theorem 11.12 in [4]. The generalized outerplanarity also allows us to interpose the following
statement between Theorem 11.11 and Theorem 11.12 in [4]: Every generalized outerplanar
graph with at least eight vertices has a nonplanar complement, and eight is the smallest such
number. The final section of this paper shows how to use the so-called Ford circles to construct
an infinite graph with the property that all vertex neighborhoods are isomorphic with a two-way
infinite path.

Keywords: Graphs with nonisomorphic vertex neighborhoods, planarity, outerplanarity,
generalized outerplanar graphs, Ford circles.

AMS classification: 05C 10.

I. AUXILIARY CONCEPTS

In this paper we consider undirected graphs without loops and multiple edges.
All graphs except in Section IV are finite. If a graph G is given then the number
of vertices of G is referred to as the order of G. If G; and G, are isomorphic then we
write G; = G,. Let G denote the complement of G. As usual, K, stands for the
complete graph and K,, , for the complete bipartite graph. By a path P,, (m = 2)
we mean a tree on m vertices with exactly two vertices of degree one.

A block B of G is said to be cyclic if the order of B is at least three. Otherwise B
is called acyclic. If B contains exactly one cut vertex of G then B is an endblock of G.
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If X is a nonempty subset of the vertex set V(G) then the subgraph <X} induced
by X is the maximal subgraph of G with the vertex set X. If Yis a nonempty subset
of the edge set B(G) then the subgraph {Y) induced by Y is the graph whose vertex
set consists of those vertices of G incident with at least one edge of Yand whose edge
set is Y (Y is also called the reduction of G to Y, see [ 14]).

If G is a graph with at most n vertices then by K,, — G we mean the subgraph of K,
obtained by deleting all edges of G, where G, is a subgraph of K, isomorphic with G.
If the order of G is n then obviously K, — G = G. In what follows it is convenient
to use the union G, U G, for the graph having two components G,, G,.

Behzad and Chartrand [1] called a graph quasiperfect if it has exactly two vertices
u, v of the same degree. The vertices u and v are referred to as exceptional vertices.
Some properties of quasiperfect graphs were described by Nebesky [6]. It is known
that for every integer n, n = 2, there exist two quasiperfect graphs of order n, one
of them being connected, the other disconnected. If we denote the connected one
by D, then the disconnected one is D,. In D, the exceptional vertices have degree
[4n] where [x] means the integer part of x. _

A subset Q of V(G) is independent if no two vertices of Q are adjacent in G. The
maximum value of lQl is called the independence number of G and is denoted by
B(G). The corresponding set, say Q. is called the maximum independent set.
In [11] we showed that :

(D) = [3(n + 1)].

If n is even then Q,,,, of D, consists of all vertices of degree less than [1n] and of
one of the exceptional vertices. If n is odd then Q,,,, consists of all vertices of degree
less than [n] and of both exceptional vertices. In what follows we denote the set of
all vertices of D, not belonging to Q... by R.

The aim of this paper is to continue the study of local properties of graphs. In [9]
we considered two types of vertex neighborhoods. The first was taken from Zykov
[16]. Let G be a (finite or infinite) graph. If v is a vertex of degree at least 1 in G
then N,(v), the neighborhood of the first type, is the subgraph induced by the set of
all vertices adjacent to v. If v is isolated then N,(v) is the empty graph. If u and v are
two vertices of G with N,(u) = Ny(v) then u and v are said to be of the same kind.
The neighborhoods of the second type will be considered later.

Lemma 1 which follows describes all neighborhoods N,(v) of D,. It is clear that
Ny(v) is uniquely determined by the degree of v so that in Lemma 1 we can write
N,(i) instead of N,(v) where i stands for the degree of v. The statement of Lemma 1
actually completes a result of Nebesky [6] where among other things the author
describes the complete subgraphs of D,

Lemma 1. If i is the degree of a vertex of D,, n = 2, then the following implica-
tions hold:
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() 1gi< [g:l:N,(i) ~ K,
(ii) [g] <ign—1=Ni)=2Ki = Dypis.

Proof. We employ induction on n. .

First let us prove (i). For n = 2 and n = 3 the statement (i) is obvious. Suppose
that (i) holds for an integer n = 2 and prove it for n + 2. For the vertex of degree 1
in D, ,, we obviously have Nl(l) =~ K;. If we choose a vertex of degree j with

2<j< n+2
2

then Ny(j) in D, , can be obtained from N,(j — 1) in D, (i.e. from K;_,) by adding
a new vertex and joining it with every vertex in Ny(j — 1). Thus in D,,, we have
Ny(j) = K;.

To prove (ii) we proceed as follows. For n = 3 and n = 4 the implication (ii) is
clear. Assume that the statement holds for an integer n = 3 and prove it for n + 2.
It is obvious that in D, , the neighborhood of the vertex of degree n + 1is D, U K,
which yields K,y — D,+;. This expression can be viewed as K; — D,;_,+1 Where
we replace i by n + 1 and n by n + 2. If we choose in D, , , a vertex of degree j with

n+2
<jZn

then its neighborhood N,(j) in D, , arises from N,(j — 1) in D, (by hypothesis,
this is the graph K;_; — Dj(j—1y-n+1) by adding a new vertex and joining it with
every vertex of Ny(j — 1). In D, , we have

Ny(j) 2 K; = Dyj-ty—ns1 = Kj = Dij_(nizysr . O

II. GRAPHS WITH NON-ISOMORPHIC NEIGHBORHOODS

In [9] we considered connected graphs G of order at least 2 with the property that
if x and y are two vertices of G then N,(x) and N4(y) are not isomorphic. Let &,
be the class of these graphs. It was shown that for a given integer n there exists a graph
G of order n belonging to €, if and only if n = 6.

Let G, be a given graph and let G be a graph belonging to ¢, and containing
a vertex x whose neighborhood N,(x) is isomorphic with G,. The graph G is said to
be the €-realisation of G,. It is natural to ask whether every graph G, has a €,-
realisation. In what follows it is shown that the answer is affirmative.

Theorem 1. For every positive integer m there exists a positive integer Q(m) such
that every graph G'™ of order m has a €y-realisation G of order ¢(m).
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Proof. The cases m = 1 and m = 2 are trivial so that we can assume that m = 3.
Let u®® (i = 1,2, ..., m) be the vertices of G™.
(a) First let us assume that

(1) G™ & K,_; UK,

and construct a graph G of order g(m) = 3m? + 1 as follows: Take the graph
D,,(3m-1)» construct its maximum independent set Q. and put

m
Qmax =.U1Qi’ |Qi‘=’n+ i—1.
i=

Further, add both the graph G disjoint with D,3,-1) and the vertex x not
belonging t0 Dyy(3m-1) Y G™. Finally, join x with every u and similarly every u(®
with every vertex from Q; by an edge (i = 1,2, ..., m). This completes the construc-
tion of G.

To find that G belongs to ¥, we compare its vertex neighborhoods with each other.
Every u'” has degree at least m + 1, thus N(x) & N(u”). The degree of every u(”
is at most 3m — 1. If we go through the vertices of Q... U R having degrees m + 1
to 3m — 1 inclusively we can see that each neighborhood has exactly one isolated
vertex while in each N,;(u®™) we find at least m such vertices. Thus no N,(u'?) is
isomorphic with the neighborhood of a vertex from Q,., v R. There is a unique
vertex in Q.. Y R having degree m. This vertex is of type K,,—, U K; but the
construction is invented in such a way that x is not of this type. Finally, it is obvious
that N,(u?) & N,(u?) for i + j and by Lemma 1 we can conclude that no two
vertices of Q... U R have the same type.

(b) If (1) does not hold we take any graph of order m different from G™ for which
we construct the @;-realisation of order o(m) = 3m? + 1 as described above. Clearly
this graph is also a ¥,-realisation of K,,_, U K;. O

If we slightly modify the above proof we can show that for a given m there exist
infinitely many values g(m) with the property mentioned in Theorem 1. Thus we could
seek the minimum value g,;,(m) if need be but the maximum value g,,,,(m) does not
exist. For small m we have

Qmin(l) =17 4 Qmin(z)“: 6 ’ Qmin(3) =T7.

If for every vertex v of a given graph G the neighborhood N (v) is connected then G
is called locally connected (see [2] and [15]). Now we will be concerned with the
following problem: Characterize all positive integers n for which there exists a graph
of order n belonging to €;. It is already known that in €, there is only one graph of
order six but it is not locally connected.

Theorem 2. For every integer n 2 7 there exists a locally connected graph G,
of order n belonging to ¥,.
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Sketch of proof. The cases n = 7 and n = 8 are depictured in Fig. 1 and Fig. 2.
The complete proof by induction can be left to the reader. [

Fig. 1 Fig. 2

If for every vertex v of G the neighborhood N,(v) is disconnected then G is said
to be locally disconnected. The problem of locally disconnected graphs in %, is
left open here.

III. THE OUTERPLANARITY OF GRAPHS

In what follows we need the well-known concept of an outerplanar graph. A graph
G is outerplanar if G can be embedded in the plane so that there exists a region Q,
determined by the embedding of G whose boundary contains every vertex of G.
In [10] the class of all outerplanar graphs was denoted by ;. '

In an earlier paper [8] we showed that the number of all planar graphs belonging
to €, is finite. The exact number of such graphs is not known but in [8] we proved
that for every integer n € [6, 26] there exists at least one planar graph of order n
belonging to ¥,. Since an outerplanar graph is a very special case of a planar graph
‘we can expect that the cardinality of &/, N €, is much smaller than the cardinality
of the class of all planar graphs belonging to €. This will be shown in the next
theorem. Let us observe the structure of outerplanar graphs in detail before we
proceed to Theorem 3.

An outerplanar cyclic block B can be drawn in the plane as a convex n-gon together
‘with some diagonals without crossings. In this interpretation the vertices of B are
the vertices of the n-gon and the edges are its sides or diagonals. The next terminology
.can be also borrowed from this model. A diagonal d is said to be isolated if there
exists no diagonal d’ of B so that d and d’ have no vertex in common. Let d, separate
B into two polygons M, and M,. If there is no diagonal of B inside of M, (i = 1, 2)
‘then d, is called outer. The brink of B is understood to be the set of all vertices of M.
If B has no diagonals then the brink of B consists of all vertices of B.
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Theorem 3. There exist exactly four outerplanar graphs G belonging to €,
(see Fig. 3).

Proof. Let Ge &, n ¥,. It is clear that G is not a tree. Further, it is obvious
that the brink of every cyclic block B belonging to &/, contains either two vertices
of type K, (case «) or one vertex of type K, and two vertices of type K, (case f) or
four vertices of type K, (case 7). Thus the graph G must have a cut vertex. For B
the case y cannot occur if B is a cyclic endblock of G. By considering the cases « and f
we conclude that G may contain only one cyclic endblock B. Thus the second endblock
of G is acyclic.

The graph B can have at most one pair of vertices of the same type. Thus this pair
of isomorphic neighborhoods are either K,, K, or K,, K, and the corresponding
vertices are contained in a brink of B. If we go through all blocks of order at most
eight belonging to &, we find that in this area exactly four cyclic blocks B; (1 =<
< i £ 4) have one pair of vertices of the same type each. The block B, of order six
and the block B, of order seven are pictured as cyclic blocks of four graphs in Fig. 3
while B; of order seven and B, of order eight are shown in Fig. 4.

Fig. 3

Fig. 4

If B had at least nine vertices then it would contain at most two outer diagonals.
Let d(B) be the subgraph of B induced on the set of all diagonals of B. Clearly the
components of d(B) are trees with at least two edges each.

Let v; (i = 1,2, ...) be the vertices of degree 1 in d(B). In B the neighborhood
N4(v;) cannot be isomorphic with K, thus N,(v;) is of type either K3 or K, , or K 5.
Obviously d(B) must be connected, thus d(B) is a tree with two or three vertices v;.
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Let us show that the following does not hold:
(2) Ny(v;) = K;.

If v,u were an outer diagonal of B and if (2) held then there would exist at least
three vertices of type K,. If v,u were not outer then we would obtain two vertices
of type K, not belonging to any brink and also a pair of vertices on a brink having
isomorphic vertices.

The two remaining types of neighborhoods N,(v;) are K, , and K, ,. Thus d(B)
must be a path P,, with vertices v; and v, of degree one. Let us put

Ny(v;) = Ky3, Ny(vy)) =K, ,.

Since B has at least nine vertices it must have at least four vertices of degree 4.
The neighborhoods of these vertices are either P; or K, U K, or K; , U K, thus at
least two of them are of the same type. For this reason an endblock with at least
nine vertices cannot exist.

If B* were not an endblock of G then it would contain exactly two cut vertices
of G, say x and y. Let B* be cyclic. Since both K, and K, occur as vertex neigh-
borhoods of each potential cyclic endblock B; of G, the block B* must have exactly
two vertices of degree 2. These vertices are x and y. Let us choose an outer diagonal d
in B*, Clearly d cannot be isolated. The neighborhood of one endvertex of d would
be of type K, , but K , also occurs in B;. Hence B* cannot be cyclic.

The assumption that B* is acyclic also leads to a contradiction.

Thus G has exactly two blocks. To obtain G we add an acyclic block to B; or B,
as shown in Fig. 3. Neither B; nor B, (Fig. 4) lead to a graph G belonging to &/; N €,
as can be verified by the reader. [

Let v be a vertex of G. In [9] we also defined N,(v), the neighborhood of the
second type, as the subgraph of G induced by the set of all edges at distance 1 from v.
The neighborhoods of the second type were already discussed in [7] and [12].

In [10] the study of the neighborhoods N,(v) motivates the following generalization
of outerplanar graphs: A generalized outerplanar graph G is a planar graph which
can be embedded in the plane in such a way that at least one endvertex of each edge
lies on the boundary of the same face (2,. The class of all generalized outerplanar
graphs was denoted by /,.') A necessary and sufficient condition for a graph to
belong to &/, was also found in [10]. Let &5 stand again for the class of all planar
graphs.

In connection with Theorem 3 the following question occurs: how large is the
intersection &/, N %7 This is the second question we leave here open.

One of known results on planar graphs says that every planar graph with at least
nine vertices has a nonplanar complement and nine is the smallest such number (see

1y A survey of some generalizations of outerplanar graphs can be found in Systo [13].
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[4], Theorem 11.11). In [4] we find a similar result on graphs of the class &/, which
reads as follows: Every outerplanar graph with at least seven vertices has a non-
outerplanar complement and seven is the smallest such number ([4], Theorem 11.12).
The class &, enables us to formulate a statement which is stronger than the above
one. For proving this statement we need an auxiliary concept. A graph Ge &/,
(i = 1,2,3) is said to be saturated if the following holds: By adding an edge e,
e ¢ E(G), we obtain a graph not belonging to «/;.

Now we present the above mentioned improvement of Theorem 11.12 from [4].

Theorem 4. Let G be an outerplanar graph with at least seven vertices. Then G
does not belong to o ,.

Proof. Tt is sufficient to modify the proof of Theorem 11.12 from [4] and realize
that each of four saturated outerplanar graphs on seven vertices has a complement
not belonging to &/,. Here one can use the characterization of graphs in &/,
mentioned above. [

A natural analogue is the following

Theorem 5. Let G be a generalized outerplanar graph with at least eight vertices.
Then G does not belong to /4. There exists a graph G, of order seven so that
G7Ed2, G7Eﬂ2.

Proof. There exist exactly 19 saturated graphs on eight vertices belonging to &,
and one can easily verify that each of them has a nonplanar complement. This
yields the first part of our statement. If we choose the graph from Fig. 5 for graph
G, then we see that both G, and G, liein &/,. [0

Fig. 5

IV. A REMARK ON FORD CIRCLES

Our final remark concerns the following known result: There exists an infinite
graph G, in which each N,(v) is isomorphic with the two-way infinite path. This
statement is presented without proof in [5], and in [9] we described a construction
of G,. Now we show a connection between this problem and the so called Ford
circles.
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In 1938 L. R. Ford proposed the following ingenious and elementary representa-
tion of fractions (see [3]). Let h/k be a reduced fraction, i.e. (h, k) = 1 with k > 0.
Let us plot h/k on a line, say the x-axis as in analytic geometry, and let us draw
a circle with radius 1/(2k?) centred at the point (h/k, 1/(2k?)). Such a circle tangent
to the x-axis at h/k is called the Ford circle corresponding to the fraction h/k. Let F
stand for the set of all Ford circles in the plane. It is known that the Ford circles
representing any two different (reduced) fractions cannot intersect. In the extreme
case they may be tangent. For a given Ford circle representing a fraction H/K there
exists an infinite number of circles from F which are tangent to it. These adjacent
circles can be arranged in two infinite sequences ¢, ¢,, ¢c3, ... and ¢_,,¢c_,,¢c_3, ...
in such a way that ¢; and c, are tangent if and only if |i — j| = 1. If K > 1 then ¢,
and c¢_, are tangent, too.

If in addition we put

T={(x,1)| xeR},

then V(G,,) can be defined by
V(G,) = F u{T}

and two vertices are joint by an edge if and only if the corresponding two elements
from F U {T}, i.e. two Ford circles or one Ford circle and the line T, have an unempty
intersection. It is easy to see that each neighborhood N,(v) in G, is isomorphic with
a two-way infinite path. ' '
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Souhrn

JESTE O LOKALNICH VLASTNOSTECH GRAFU

Jikf SEDLACEK

V predchéazejicich pracich jsme se zabyvali dvéma typy uzlovych okoli, ale v tomto &ldnku
se jedna hiavn& o prvnim z nich. Je-1i v uzel grafu G, pak N, (v), okoli prvniho typu, je podgraf
grafu G indukovany na mnoZin& vSech uzlt sousedicich s uzlem v. Necht €4 je tfida viech grafu G
fadu aspoii 2 takovych, Ze Zadné dva uzly z G, fekndme u a v, nemaji N;(4) a N,(v) izomorfni.
Nejprve dokazujeme, Ze libovolny graf lze pokladdat za uzlové okoli vhodného grafu ze ttidy €.
Dalsi véta tika, Ze pro kaZdé celé n = 7 existuje lokaln€ souvisly graf fadu » pattici do €. Je
znamo, Ze polet rovinnych grafu patticich do ¢, je kone¢ny. Zde ukazujeme, Ze v €, existuji
pravé &tyfi vn&€jSkové rovinné grafy. Studium uzlovych okoli druhého typu nas v [10] vedlo ke zo-
becnéni vn&j¥kové rovinnych grafi. Nyni dokazujeme, Ze kaZdy zobecnény vn&jSkov& rovinny
graf ¥adu aspoii osm ma nerovinny komplement, pfifemZ osm je nejmensi takové €islo. Tento
vysledek zapada mezi v&ty 11.11 a 11.12 z knihy [4], pfi€emZ samo tvrzeni v&ty 11.12 se da zesilit
uZitim zobecn&né vn&j§kové rovinnosti. V zavéru &lanku ukazujeme vztah mezi tzv. Fordovymi
kruZnicemi a lokalnimi vlastnostmi grafi.

Pe3srome

EIIE PA3 O JIOKAJIbHEIX CBOMICTBAX I'PA®OB

Jiki SEDLACEK

B craThe pacCMaTpMBAIOTCS [JIABHBIM OOpa3’oM OKPECTHOCTHM BepLUMH B rpadax, OpuHayexa-
Iue K NEPBOMY M3 IOBYX THIOB OKPECTHOCTEl BBEJEHHBIX B NPeAbIAymuX paboTax aBropa. Ecmu
v—BepmnHa rpada G, 1o N, (v), OKPECTHOCTE IIEPBOTO THIIA, ONPEAEIACTCA KaK IHoArpad, HHAyIHpO-
BaHHBIX HA MHOXECTBE BCEX BEPIIMH CMEXHBIX C BepinuHOHR v. ITycts ¥ —Kknacc Bcex rpados G
nopsAaKa =2 Takux, 4to N, (¥) 1 N;(v) He ©30MOPdHEI /1A HUKAKHX JBYX BepmuH 4 + v rpada G.
B craThe cHayanma NOKa3pIBAETCS, YTO MPOH3BONILHLLL rpad m3omopden oxpectuoctn Ny (4) Heko-
TOPOM BEPIIHHEI HEKOTOPOTO rpada u3 kiacca €, . Cnenyrolmii pe3ynbTaT YTBEPKIAET, YTO KIace
€, CONEepXHT JIOKAILHO CBA3HBIE rpadel mo6oro nopsanka # = 7. M3BeCTHO, YTO K1acc €'y COACPNKUT
JIMIL KOHEYHOE YMCJIO NONAapHO HEM30MOpODHEIX IUTOCKUX rpados. B craThe 10KA3aHO, YTO C TOY-
HOCTBIO {0 M30MOpdH3Ma €y COTEPKHUT TOYHO YETHIPE BHEIIHEIUTAHADHbIE TPadbl. B cBA3M C M3y-
YEHHEM OKPECTHOCTeH BTOpOro Tuna s pa6ote [10] 6b1in BBeieHE! 0600MEHHbIE BHEIIHEIUTAHAPHEIE
rpadbl. B Hacrosmiell cratbe MOKa3aHO, YTO KaxAbli 0OOOIIeHHBIA BHEMIHEIUIAaHapHBIX rpad
nopaaka =8 o0aZaeT HEIUIOCKHM [OMOJIHEHHEM, IpHYeM 8 —HalMeHbIIEe TaKoe YHCIIO. DTOT
pe3yabTaTt monoiHseT TeopeMs! 11.11 u 11.12 xuuru [4], npuyem yTBepxaeHue Teopemsl 11.12
MOXHO YCHJIATh IIPH NOMOIM 0G00meHHOH BHEMHEIUTAaHAPHOCTH. B 3aK/IFOYEHMH CTaThH paccMa-
TPHBAETCA CBA3b MEXAY T.H. OKPYXHOCTssMu Popa U JIOKaNbHEIME CBOMCcTBamu rpados.
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