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A CLASS OF WEIGHTED COMPOSITION OPERATORS ON H2 

MIROSLAV ENGLIS, Praha 

(Received January 11, 1989) 

Summary. A fractional linear transformation, mapping the unit disc into itself, gives rise to 
a weighted composition operator on the Hardy space H2. Such operators have been recently 
used in [11] in connection with an extremal problem from operator theory. In this paper, we 
investigate the basic properties of these operators and determine their spectra. The results can 
be compared to those for unweighted composition operators on various spaces [1], [3], [5]. 
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In the present paper we investigate the relation between a fractional linear trans­
formation 

, , az + b 
<p(A): z\-> -

cz + d 

given by a matrix A = I , J, and the corresponding composition operator m(A) 

defined on H2 by the formula 

(m(A)f)(z) = -±-f(<p(A)(z)). 
cz + d 

Operators of this form have been recently used by V. Ptak [11] to obtain an 
explicit expression for the operator realizing the maximum of | |T"| | as T ranges over 
the set of all contractions on w-dimensional Hilbert spaces such that the spectral 
radius of T does not exceed a given bound r < 1. It turns out that the maximum is 
attained for the operator 

S* | Ker (S* - a)" , 

where S is the shift operator on H2 and a is a number of modulus r. The mapping 
A i-> m(A) was used to express this extremal operator as a matrix with respect to an 
orthonormal basis in if2. Besides, some basic properties of the operators m(A) 
(inverses, adjoints, etc.) were established. 

The present paper is devoted to a deeper study of the operators m(A). For their 
definition to be meaningful it is, of course, necessary that <p(A) map the open unit 
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disc O into itself. It is not difficult to give a description of the corresponding matrices 
A; this is done in Section 1. The result is that cp(A) (O) cz O if and only if 

A*QA ^ |detA | Q, 

Q being the matrix I ] . In Section 2, the operators m(A) are defined and shown 

to be bounded on H2. In Section 3, a criterion for compactness is established. The 
operator m(A) is compact if, and only if, (p(A) (O) is bounded away from the bound­
ary of O. Sections 4—10 are concerned with the spectra and the spectral radii of the 
operators m(A). It turns out that these depend on the position of (p(A) (O) as a subset 
of O, as well as on the number and location of the fixed points of the mapping (p(A). 
When f(A) is a Mobius transformation of O onto O, the spectrum of m(A) is either 
a finite set (when cp(A) is periodic) or a circle; the latter fact follows from a result 
of Kitover [10]. In other cases, the spectrum may assume various forms: it can 
be a sequence of numbers tending to zero, or a disc, or even a spiral approaching 
the origin. These sections are mostly technical in character and the final results are 
stated in full detail at the end of this article as Theorems 10 and 11. 

The operators m(A) are examples of weighted composition operators on H2, 
i.e. composition operators followed by a multiplication. Operators of this type, 
acting on the disc algebra A(O) rather than H2, were first studied by Kamowitz 
[6], [7], who gave conditions for compactness and, in some cases, determined their 
spectra. Kitover [10] studied such operators on general spaces of analytic functions 
in the case when the composition operator is invertible (weighted automorphisms). 
In the context of the present paper, his results apply to the case when <p(A) maps O 
onto O. Unweighted composition operators on H2 (or, more generally, Hp) as well 
as A(O) have been investigated by many authors, and conditions for compactness, 
nuclearity, etc., as well as descriptions of their spectra in many cases, are known; 
see, for instance, [3], [5] and [1], where also more of the rich bibliography on this 
subject can be found. The work of Kitover [9] deals with composition operators on 
spaces of continuous functions. Many papers are devoted to the study of composition 
operators (both weighted and unweighted) on Banach algebras, of which we mention 
[6] and [8] as examples. 

1. FRACTIONAL LINEAR TRANSFORMATIONS 

(cd) 
tion 

<p(A): Z h-> 

Let -4 = 1 AJ be a regular 2 x 2 complex matrix. Then the fractional linear 

transformation 

az + b 

cz + d 

406 



is a 1-to-l mapping of the Gaussian sphere G = C u {00} onto itself. A short com­
putation reveals that, for A, B regular 2 x 2 matrices, 

<p(A)<p(B) = <p(AB), 

<p(B-1) = <p(B)-1, 

<p(A) = <p(B) oA = tB for some t e C \ {0} . 
Let 

* = {(_£ " I ) I H = *> H <-.* = (--NT1'2}• 
We see that for M e Jt, <p(M) is a Mobius transformation of O, the unit disc, onto 
itself; clearly every Mobius transformation can be expressed in this way. Also, a short 
computation gives 

M*QM = Q for all M e Jt, 
where 

«-(!-?)• 
Our next task is to determine when <p(A)(B) c O. 

Theorem 1. Let A be a regular 2 x 2 complex matrix. Then the following as­
sertions are equivalent: 

(1) <p(A) (O) c O 

(2) A*QA = | d e t A | . Q 

(3) 3t > 0: A*QA = tQ . 

Proof. (1) => (2). Suppose <p(A)(E>) c O. Because <p(A)(D) is a disc, there are 
three possibilities: either it lies inside O, or it touches the boundary 30 at exactly 
one point, or it is the whole of O. 

If <p(A) (O) lies inside O, then there exists a Mobius transformation <p(M), M e Jt, 
such that <p(M) cp(A) (O) is a disc centered at the origin. Further, there exists a Mobius 
transformation <p(N), NeJt, such that <p(M) <p(A) <p(N) (0) = 0. Denote B = MAN; 
then <p(B) (O) is a disc centered at the origin, and <p(B) (0) = 0. If r is the radius 
of <p(B)(B), then the Schwarz lemma applies to the function <p(B)jr and gives 
<p(B) (Z) = kz for some X, \X\ = r < 1, and so 

Now 

B = (Xt ° ) for some / є C \ {0} . 

-мfГV.)--. 
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i.e. B*QB ^ Q|det B\. Using the relations |det A\ = |det B\, B = MAN and 
N*QN = Q, we see that this is the same as 

N*A*M*QMAN = |det A\ N*QN . 

Because N is invertible (N_1 = QN*Q), this is equivalent to 

A*M*QMA = |det A\.Q. 

Finally, M*QM = Q, so 

yl*QA ^ |deti4| .Q. 

If <p(A) (O) is all of D, then we can proceed in the same manner as above, taking 
M = I (the identity matrix). In this case we even get A*QA = |det A\ . Q. 

In the remaining case, one can again choose M e Ji such that <p(M) <p(A) (O) = 
= {z G C | \z - l/2f < 1/2}, and then N e ^ such that <p(M) <p(A) <p(N) (0) = 1/2. 
Denoting B = MAN, the Schwarz lemma applies to the function 2 <p(B) — 1 and 
gives 

9{B){z) = E ^ 

for some £ e 30, so 

B = Co2f) forsome ^ C ^ ( ° } ' 
and, again 

B*QB-\dttB\Q = \t\2(~l _ i ) = ^ 0 , 

which implies A*QA ^ G|det A| just in the same way as in the preceding cases. 
(2) => (3). Trivial. 

(3) => (1). For z G C, let xz = I J. By assumption, we have 

(A*QAxz, x2y =- KQx2, xzy Vz G C . 

If z G O, then 

KQxz,x2> = t(\z\2-l)<0, 
and so 

0 > iA*QAxz, xzy = (QAxz, Axz} = \az + b\2 - \cz + d\2 . 

This implies cz + d 4= 0 and 

laz + 6|; 
0 > 

cz + d 
- 1 = |«»(_4) (z)|2 - 1, i.e. <p{A) (z) e D . 
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This completes the proof of Theorem 1. 
By slight variations in the proof above, it is possible to prove the first four as­

sertions of the following theorem. The fifth is a consequence of the first four. 

Theorem 2. Let A be a regular 2 x 2 complex matrix. Then 

<p(A) ( D ) c O o A*QA = g|det A\ ; 

<p(A)(D) 3 DoA*QA = Q|detA| ; 

<p(A) (D) cz G \ D <=> A*QA =- - Q|det A\ ; 

<p(A) (D) ZD G \ D o A*QA ^ - Q|det A| ; 

[the set G \ (<p(dB) u (30) has four connected components] <=> both A*QA ± 
± Q|det^l| ore indefinite. 

Remark. For A singular, A =# 0, the mapping <p(-4) can be defined, too. It will 
be a constant function (the constant infinity is also allowed). One can then prove the 
following modification of Theorem 2: 

Theorem 2'. Let A + 0 be a singular 2 x 2 complex matrix. Then 

<p(A)(0) c O <*A*QA = 0 ; 

<p(A) (O) czdDo A*QA = 0 ; 

<p(A) (O) c G \ O o A*QA = 0 . 

We omit the easy proof of this theorem, as it will not be used in the sequel. 

2. COMPOSITION OPERATORS 

Let -4 = 1 , ) again be a regular 2 x 2 matrix and suppose that <p(A) (O) c O. 

For a function f on O, define 

HA)/)(z) = -4-/(f l-i±i). 
cz + d \cz + dj 

This is also a function on O, which is analytic on O if f is. In fact, a little more is 

true: 

Theorem 3. Let A be a regular 2 x 2 matrix such that <p(A)(B) cz O. Then 
m(A) is a bounded linear operator on H2. 

Proof. For any function f on O, 

±jym(A)f)(rJ>)\*dt = 
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- i f2" 
- 2 т r J 0 

\creu + d\: 
. I/(<p(Л) (re1 '))!2 dř 

1 

where Fr is the closed curve {(p(rQu)\te(0,2ny] and ds(y) is the line element 
on r r , 

Id 
MУ) = dí 

ę(rtu) dí = |p'(re") rie"| dí = J^Í-4LL- d ř . 
| V v ' ' |cre" + J | 2 

Now iffe H2, then | f | 2 has a harmonic majorant u on O, and so 

. <f |/(>>)|2 ds(y) £ (f u(y)ds(y). 

By the mean value theorem for harmonic functions, the last integral equals 

(length of rr)u(yr)9 

where yr is the center of Fr(Fr is a circle). Combining the above results and letting r 
tend to 1, we get 

II (A\f\\2 ^ (lengthof Fj) . v 
| n W / | ^ - ^ l " w -

Because u is harmonic on O, Harnack's inequality gives 

«(y.) ^ r ^ • »(o); 1 - W 
finally, it can be chosen so that u(0) = ||/||//2. Summing up, we see that 

(\\ \\™(A\fV ^(-engthofy)(.4)(3D)) 1 + |center of <p(A) (gD)| ,, „2 

(i) U»W||„2 ^ ^ ^ . ^ | c e n t e r o t > G 4 ) ( a D ) | • - I - - ' 

which completes the proof of Theorem 3. 
Before going on, we list some properties of the operators m(A). In everything what 

follows, these operators are considered as operators on H2. 

Proposition 4. Let A, B be regular 2 x 2 complex matrices. 
(i) If<p(A)(B) c O and <p(B)(B) c O, then also cp(AB)(B) c O and m(AB) = 

= m(B) m(A). 
(ii) If<p(A)(B) c D and<p(A~x)(B) c O, then m(A~x) = m(A)~K 

(iii) If M e M, then m(M) is unitary. 

Proof, (i) <p(AB)(B) c O because <p(AB) = <p(A)<p(B); the formula m(AB) = 
= m(B) m(A) follows after a short computation, 

(ii) Take B = A"1 in (i). 
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(iii) If ME JL then |det Af| = 1, <p(M)(B) = O and <p(M)(SB) = 3D, so the 
formula (1) gives ||m(M)[| ^ 1. Because M e Jt implies M~leJ/9 we have also 
]|m(M_1)|| ^ 1. Finally, m(M~l) = rn(M)"1, so m(M) is an invertible isometry 
and hence it is unitary. 

3. COMPACTNESS 

Now we are ready to establish a criterion for compactness of the operators m(A). 
Suppose <p(A)(B) c O. Looking at the beginning of the proof of Theorem 1, 

we see that there always exist M,NeJf such that MAN =df* B =df* tB0, where 
/ e C \ {0} and B0 is 

*!«(;!). w-i, °'(f f) . w-'. 
depending on whether f/)(A)(0) lies inside O (\X\ < 1) or is all of O (|/l| = 1), or 
touches GO at one point. According to Proposition 4, m(B) = (1/t) m(B0) = 
= m(N) m(A) m(M) with m(N) and m(M) unitary. It follows that m(A) is compact 
if and only if m(B0) is. 

Let us first dispose of the second case. We have B0 = B'0Be, where 

1/2 1/2' 
B' = (o I ) ' ^ ~ v ° i 

It follows that m(B0) = m(BE) m(B0), with m(BE) unitary (because BE e J/); hence, it 
suffices to consider the case e = 1. Then 

( m ( B 0 ) f ) ( z ) = / Z + 1 

2 

Ror Re z < 0, let arg z be the branch of the argument which takes its values in 
(TU/2, 3TT/2). Denote 

g(z) = In \z - 1| + i arg (z - 1) , 

and 

fa(z) = exp (a g(z)) , cceC. 

If a e <0, + oo), we have 

|fa(z)| = exp Re (a a(z)) = \z - l|a g 2a for all z e O , 

so fa6H°° c H2; furthermore, 

(m(B0)/-)(-) = / . ( - " j - ^ ) = e x p ^ a a ( ^ i ) J = 

= e x p a [ a ( z ) - l n 2 ] = e-° l l n 2L(2). 
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This means exp ( - a l n 2 ) e <Tp(m(B0)). As a runs through <0, +00), e x p ( - a l n 2 ) 
runs through (0, 1>. So <0, 1> c= a(m(B0)) and m(B0) cannot be compact. (We 
remark that what we have just done was exhibiting some quite elementary solutions 
to SchroederYequation 

/ ( £ ~ 2 ~ 1 ) = A / ( Z ) ' Z e D ; 

for an exhaustive treatise on this matter, see [2], especially Proposition 4.4.) 

Now let B0 = f J. If \X\ = 1, then B0eJi and, in view of Proposition 4, m(B0) 

is unitary, i.e. not compact. We are going to show that for | / | < 1, m(B0) is compact. 
Assume fn e H2, fn -> 0 weakly. Any weakly convergent sequence is bounded, 

so ||f.[|, ^ c for all n, for some c > 0. For x e 0 , denote by gx(z) = (1 — xz)~l the 
reproducing kernel at x. Thenf, ->w 0 implies f,(x) = <fn, av> -+ 0 for every x e O . 
If |x| = |A|, then 

I/.MI = \<f.,0x>\ ^ ||/.|| M ±- 4gx\\ = j* . 

Thus one can use the Lebesgue dominated convergence theorem to conclude that 

1 C2n 

i(Bo)/.||2 =-^- f "|/.(Ac«0|2 dř -» 0 . 
2r* Jo 

Thus the operator m(B0) maps weakly convergent sequences into norm convergent 
ones, and so must be compact. 

Summing up, we have proved 

Theorem 5. Let A be a regular 2 x 2 matrix, cp(A) (O) c O. Then m(A) is a com­
pact operator if and only if c\(<p(A) (O)) cz O. 

Remark . This theorem may be compared with Theorem 1 of Kamowitz [6] 
which yields a similar criterion for compactness of operators m(A) acting on A(O), 
the disc algebra. 

4. SPECTRAL PROPERTIES 

The rest of this paper is devoted to spectral properties of the operators m(A). The 
results somewhat resemble those for common (unweighted) composition operators 
on H2, cf. [3] or [5], for example. 

Let A = I J be a regular 2 x 2 complex matrix such that <p(A)(B) c O. 

There are four cases to distinguish: 
First case: cl(<p(4) (O)) c O; 
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Second case: <p(A)(B) touches dB at exactly one point, which is not a fixed point 
of <p(A); 

Third case: <p(A) (O) touches dB at exactly one point, which is a fixed point of <p(A)\ 
Fourth case: <p(A)(B) = O. 
We are going to determine the spectra in all four cases; that is the contents of 

Sections 5 — 8, respectively. The fourth case is made easier by a theorem of Kitover 
[10], combined with the known results about composition operators on H°°. 

The following fact will be frequently used in the sequel: if <p is a nonconstant 
fractional linear transformation, different from the identity, then it has exactly one 
or two fixed points in G. 

5. FIRST CASE 

c\(<p(A)(B)) C O. In this case, <p(A) has a fixed point z0 in O; namely, {z0} = 
oo 

= H cl <p(A)n (O). We assert that it has one more fixed point in G; it is a consequence 
I 

of the following lemma. 

Lemma 6. If <p is a nonconstant fractional linear transformation having only 
one fixed point and <p(K) a Kfor some open disc K in G, then the fixed point lies in 
dK. (By an open disc in G, we mean an open disc in the complex plane, or its exte­
rior in G, or an open half-plane.) 

Proof. We can suppose the fixed point to be oo. Because it is to be the only fixed 
point, cp(z) = z + b Vr e C, for some b e C, b =t= 0. Now <p(K) c K clearly implies 
that K must be a half-plane, and so oo e dK. 

Because z0 e O and (p(A) (B) a O, we see that <p(A) (which is not the identity) has 
OQ 

exactly one more fixed point, zl9 in G; clearly z t $ O. Denote Q = \J <p(A)~n (O); 
this is an open subset of G. " = 1 

Lemma 7. Q = G \ {zj}. 

Proof. Choose a fractional linear transformation \\f sending 0 into z0 and oo 
into zl9 and let <p = xp'1 <p(A) xp. Then <p has 0 and oo as fixed points, so it has the 
form <p(z) = az, a e C, a 4= 0. Also cl <p(K) a K, where K = il/"l(B) is some open 

00 

disc containing 0; this forces |a | < 1. Now it is already clear that (J <p~n(K) = 
G \ {oo}, which establishes the lemma. n = 1 

Now we are ready to determine er(m(A)). By Theorem 5, m(A) is compact, so 
a(m(A)) = zero plus all nonzero eigenvalues. So, let us pick I =j= 0 and try to find 
an f 6 H2 such that 

(2) f(<z)= u \ *f(fi(A)(z)) V z e D -
)\cz + d) 
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Suppose first c + 0, so zt 4= oo. We assert, via the relation (2), that f admits a holo-
morphic continuation to Q, which is G \ { Z J by the preceding lemma. The only 
problems could arise when cz + d = oo or cZ + d = 0. Because cp(A) ( — djc) = oo, 
the former occurs first. So suppose f is already defined in a neighbourhood of 
<p(A) (oo) = a\c\ then 

lim l^..fШ(z)) = fШ = o, 
z-+oo X(cz + d) oo 

and by the Riemann removable singularities theorem we can define f(oo) = 0 andf 
will be analytic in a neighbourhood of oo. Furthermore, asf(co) = 0, a finite limit 

lit" TT^r^fivWiz)) 
z->-dlc X\CZ + a) 

exists andf( — djc) can be defined to be this limit. 
Thus we arrive at a functionf, holomorphic on Q = G \ {ZJ, satisfying (2) there, 

and withf(oo) equal to zero. Define 

ғ(y)=fÍ^Æi 
\ i - У . 

Then F is holomorphic in G \ {oo} = C (i.e. F is an entire function), F(l) = f(oo) = 
= 0 and (2) can be transcribed into the form 

X F(y) (cz0 + d) }—£Z == F(Qy) for all yeC9 
1 - y 

where Q = (czx + d)\(cz0 + d). Because F(l) = 0, G(y) = F(y)j(i — y) is also an 
entire function and satisfies 

X(cz0 + d) G(y) = G(Qy) . 

Comparing the Taylor coefficients on both sides, we see that G(y) = yn and X = 
= Qn](cz0 + d) = (cZ! + d)nj(cz0 + d)n+1. Going back, we get 

fh\ - l*o ~ Zi)(Z ~ Zo)" 
/ ( ) ~ (z-^r1 • 

which belongs to H2 (even to H00), because zx $ O. So the nonzero eigenvalues of 
m(A) are precisely the numbers (czx + d)nj(cz0 + d)n+1, n = 0, 1, 2 , . . . . 

It remains to treat the case c = 0. This time zt = oo; proceeding in the same way 
as before, one can show thatf possesses an analytic continuation to all of C and the 
function F(y) = f(z0 -- v) satisfies 

XF(y)=l-F^-dy\, for all y e C . 

Comparing the Taylor coefficients gives f(Z) = (Z0 — Z)", which belongs to H2 and 
the corresponding eigenvalue is X = anjdn+x. 

This completes the discussion of the first case. 
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6. SECOND CASE 

<p(A) (O) touches dB at one point — say, x — and <p(A) (T) 4= T. Then cl <p(A)2 (O) c 
c O, and what we know about the ,,first case" applies to <p(A)2: the operator m(A)2 

is compact, and so its spectrum, and, consequently, the spectrum of m(A), consists 
of zero plus the eigenvalues. If Xf = m(A)f, X + 0, then m(A)2 f = X2f, and so / 
must be 

( Z Q - Z . H Z - Z Q ) " ( z _ Z o y . , 

( - - - i r + 1 

where z0, zx or z0, oo, respectively, are the fixed points of <p(A)2, and z0 e O. Putting 
these expressions into m(A)f = A/yields 

x^Ash+JL or A = _fl. 
(cz0 + rf)"+1 

oo 00 

Finally, {z0} = (°| cl <p(A)2" (D) = f| cl <p(A)" (D), so z0 is a fixed point of <p(A) as 
I I 

well; by Lemma 7, <p(A) has exactly one more fixed point. Because this will be also 
a fixed point for <p(A)2, it must be zx (or oo). Thus, we conclude that z0 and zx (or oo) 
are the fixed points of <p(A) and we see that the result is the same as for the ,,first 
case". 

7. THIRD CASE 

<p(A)(B) touches dB at exactly one point T, and cp(A) (T) = T. 
Without loss of generality, we may assume T = 1. Indeed, if M e , / / is such that 

<p(M)(z) = 1, then cp(MAM~l) falls into the ,,third case" with T = 1, and the 
operators m(A) and m(MAM~l) are unitarily equivalent by Proposition 4. 

Further treatment differs, depending on whether <p(A) has one or two fixed points. 

I. Suppose <p(A) has two fixed points, 1 and zt 4= 1; clearly z, £ O. Let a e B and 

feq s(xq\ , , ,2\-i/2 1 + a 
м = íeasщ\ g = ( 1 _ | a , Г i , 2 f e = 

\aq .) 1 + a 

Then M G J(, and so m(A) and m(MAM~x) are unitarily equivalent. Also ip(M) (1) = 
= 1. If we show that <p(M) (zx) = oo for some a e O, then we can assume, without 
loss of generality, that zx = oo. That is the contents of the following lemma. 

Lemma 8. If zx £ O, then there exists a e O such that <p(M) maps zx into oo. 

Proof. It suffices to prove that, while a runs through O, <p(M) (co) runs through 
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all of G \ 0 ; a moment's thought reveals that this is equivalent to showing that 
<p(M) (0) runs through all of D as a does. Denote 

1 + a 

Let Cr be the circle \z\ = r; we shall show that ij/(Cr) covers all of Cr, for every 
re <0, 1). r = 0 is trivial; so let r > 0. Because \j/(Cr) c Cr, it suffices to show that 
Ind^ ( C r ) 0 + 0. But this index equals 

j _ r _ _ _ _ _ r _ _ _ _ _ _ _ _ _ < _ . _ 
2*1 J ./,,cr) * 27iiJ C i (r + z) (1 + rz) 

1 - r 2 

= Res z__ r = 1 . 
z " r ( r + z ) ( l + rz) 

We have made use of the fact that \f/(y) = (1 + (r2/)>))/(l + y). y if |y| = r, and 
performed the substitution x = \l/(rz) = (r 2 + rz)/(l + rz). This proves the lemma. 

So we may suppose zt = oo. This implies that A = ( J, <p(A) (z) = 

= (az + b)/(a + b) = 1 + (a/(a + b)) (z - 1), and <p(A) (O) c D forces Q e (0, 1), 
where Q = a/(a + b). Define the functions fa(z), univalent branches of (z — l) a 

on O, in the same way as at the beginning of Section 3. Just as before, one can show 
that m(A)fa = kj* w -th 

X% = exp (a In Q) . 
a + b 

A routine argument shows that fa e H2 whenever Re a < —1/2. If a runs through 
this half-plane, X% runs through the disc with center at the origin and radius 

•1/21 
{? 

Ű + b 
L - — = |detA|-1/2. 

-(- + *)|,/a 

Iterating </>(A) gives (p(A)n (z) = 1 + o"(z — l), so <p(A)" (D) is the disc centered 
at 1 — Qn with radius Qn. Using the estimate (l) for the norm, we have 

iimu.-ii- < _______ L _ _ _ _ < _ _ _ 
11 W " ~ 27c|det _4|"" 1 — (1 — e") ~ |det A\n 

and the formula for the spectral radius gives 

spectral radius of m(A) ^ |det A|-1/2 . 

Summing up, we see that in this case 

a(m(A))= | d e t A | - 1 / 2 D , 

i.e. the spectrum is a disc centered at the origin. 

416 



II. It remains to consider the case when <p(A) has only one fixed point (namely, 1). 
Let \j/(z) = 1/(1 — z); then ^ <p(A) i//'1 has oo as the only fixed point, and so it is 
the translation by a nonzero vector &eC. Thus 

<p(A) (z) - 1 z - 1 
and 

The requirement <p(A) (O) cz O forces Re b < 0. 
For the determination of the spectrum, we will employ the argument adopted 

from Cowen [1, page 102]. First note that (3) implies 

/, \ * fí + b ~b\ 
(3a> Á = t{ b í-b) 
for some t e C, t 4= 0. Because m(AJt) = t m(A)9 it suffices to consider the case 
t = 1. Then the matrices 

(ҶYЛ)-4-'A, Reb<o, 
satisfy Abl + b2 = Afcl . Ab2, i.e. they form a multiplicative semigroup, isomorphic, 
under the correspondence b «-> Ab, to the additive semigroup of all complex numbers 
with negative real parts. It follows that the operators mb = d e f m(Ab), Re b < 0, 
also form a commutative semigroup: mbi + b2 = m6, . mbz. 

Lemma 9. The semigroup mb is norm-holomorphic (i.e. b\-* mb is a norm-
holomorphic operator-valued function). 

Proof. By [4, page 93], Theorem 3.10.1, it suffices to show that for any fe H2 

and x e O the function 

b H> <jnj, gxy 

is analytic in the left half-plane. Here, as before, gx(z) = (1 — xz)"1 is the repro­
ducing kernel. Now observe that 

<mbf, gx> « (mbf) (x) = * / ^ + ^ " >) , 
bx + (1 - b) \bx + (1 - &)/ 

which is certainly analytic in b for any xeB. Q.E.D. 

Consider the norm-closed subalgebra # of $(H2) generated by the mbs, Re b < 0, 
and the identity. This is a commutative Banach algebra, and so, according to the 
Gelfand theory, 

(4) cr(mfe) = {A(mb): A is a multiplicative lin. functional on #} . 
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Fix such a A and consider the function X(b) =d e f A(mb). By Lemma 9, this function 
is analytic in the half-plane 

#e<= { z e C : Re.z < 0} , 

and satisfies the semigroup condition 

X(bl + b2) = X(bl)X(b2). 

It follows that either X vanishes everywhere, or X(x) = epx for some P e C Denote 
by & the set of all beta's that arise in this way, and add the symbol + oo to & in case 
the possibility X = 0 also occurs. Then we have 

(5) c(mb) = {e^: p e &} , for all b e tf , 

where , for a while, we set cpb = 0 for fc e #? and /? = + oo. 
For Re b < 0, the disc <p(Ab)(B) is contained in D and touches 3D at 1, so it 

must have center 1 — rb and radius rb for some rbe(0, 1). The norm estimate (1) 
gives 

II m IP < *EDL 1 + ft ~ r>) - 2 - r < 2 

implying |A(6)| _ fl/lfl . \mb\ _ J2 for all b e Jf. This forces p = + oo or p > 0, so 

^ cz <0, +oo>. 

We are going to show that this inclusion is, in fact, an equality. Let us first prove 
the following lemma. 

Lemma 10. For any t > 0 and b e Jff, the operators mb and mtb are unitarily 
equivalent. 

Proof. Just as before Lemma 8, consider the matrices 

1 + a 
M 

1 + a 

where a e D . Because MeJi, the operators mb = m(Ab) and m(MAbM *) are 
unitarily equivalent (Proposition 4). A few minutes' calculation reveals that 

MA.M-1 = Abl, 
with 

bt-t.-t£. i - H-
Now observe that as a runs through D (or, even, only through (—1, +1)), the value 

1 - |«|-

418 



runs through all of (0, + oo), which proves our assertion. 
Suppose there exists p0 e (0, + oo) such that fi0 $ 38. Owing to (5), exp (P0b) £ 

£ <r(mb) for all b e 34?. According to Lemma 10, <r(mb) = <r(mtb) whenever t > 0; 
so exp (p0b) $ <r(mtb), and using (5) once again we conclude that pojt £ M. Because 
this holds for every t > 0, ^ can contain only 0 and -f oo. It follows that every 
multiplicative linear functional on # is either 0 on all mbs, or 1 on all of them. But 
the mbs plus the identity generate # ; so ^ has at most two multiplicative linear 
functionals. Consequently, it has dimension at most 2, which clearly is not the case. 

This contradiction shows that (0, + oo) cz <%. Looking at (5) and recalling that 
a spectrum is always a closed set, we see that 2ft = <0, 4- oo>. 

Summing up, we have shown that, for all b e Jf7, 

t<m6) = {e'*:j8e<0- + o o ) } u { 0 } . 

8. FOURTH CASE 

<p(A)(D) = O. Since no new techniques are used in this section, we will proceed 
a little more briefly. Because <p(A) is a Mobius transformation, A = tA0 for some 
f e C \ { 0 } , A0eJt, and m(A) = (Ijt) m(A0). It suffices to consider t= 1, i.e. 
A e Jt. This implies m(A) is unitary and <r(m(A)) c 50 . 

The easiest case to handle occurs when <p(A) has one fixed point in O and the 
other outside O. Conjugating by an appropriate Mobius transformation, one can 
suppose the former to be 0. Then <p(A) (z) = sz for some s e 3D and <r(m(A)) is 
readily seen to be the closure of {sn: n = 0, 1, 2 , . . . } . This is either the set of all N-th 
roots of unity, for some N, or the whole of 30 . 

The parabolic case (i.e. <p(A) has only one fixed point in G, lying on dB) is more 
difficult; it can be treated in a similar way as in Section 7 - II. We may suppose A 
to be 

(l + b ~b\ 
{ b l-b)> 

ЬФO, 

this time with Re b = 0 (Theorem 2), i.e. b = s\, s e U, s + 0. The operators 
Ts = d e f m(A i 5), s G LR, form a commutative group of unitary operators (T5 + r = 
TsTt, Ts* = T_s for s, t e U). By a classical theorem of M. H. Stone (cf. [12], Theorem 
13.37), Ts = QISH, where iH is the infinitesimal generator of the group {7^}^, 
H* = H. Also, <T(TS) is the closure of e i s<7(H) (cf. [12], Theorem 13.27c). Looking 
at the proof of Lemma 10, we see that it carries over verbatim to the present situation 
and, moreover, the operator which establishes the unitary equivalence between Ts 

and Tst depends only on t, not on s: 

U?TsUt=Tst for all t>0, seR. 

It follows that U?HUt = tH, and so <T(H) = t <T(H) for each t > 0. Thus, <r(H) can 
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be only {0}, <0, -f co), ( - c o , 0) or R. Reasoning as at the end of Section 7 rules out 
the first possibility; consequently, 

<7(7>) = dD for s e R , 5 * 0 . 

The case that remains is that q>(A) has two fixed points, both of which lie on 50 . 
This case seems to be the most difficult. The fixed points may be supposed to be + 1 
and — 1 (this can be shown by proving an analogue of Lemma 8 — with zt e dD \ {1} 
and — 1 instead of co) and A may be assumed to be 

^ - " ( l - r V ^ J j ) , r e ( - l , l ) , r * 0 . 

Now we are going to use a result of A. K. Kitover [10], which is reproduced below 
for the special case X = H2, A = H00, a = 1 (consult [10] for this notation). 

Theorem. Suppose that 
1. the operator ^l = m(Ar) is bounded on H2 and its spectrum lies on dD; 
2. H00 3 B\, the space of all functions analytic on O and such that their second 

derivative is square-integrable over O; 
3. when f, g are functions analytic on O, B is a Blaschke product and f = Bg, 

then feH2ogeH2. (it would even suffice to consider Blaschke products 
whose zeros are subject to some special condition, but, for our purposes, this 
formulation will do.) 
Then the spectrum of °U is the same as the spectrum of the operator V, defined 

on H00 by the formula 

(Vg)(z)=™g(<p(Ar)(z)). 

The only assumption which is not fulfilled at first sight is, perhaps, the second; 
but note that a function 

/=-£«--* 
0 

belongs to B\ if and only if 

f | a „ + 2 | 2 ( „ + 2)2(n + l ) < + o o , 
0 

and that 

|f(z) - alZ - a0| = | £ a M z " | = f | a w + 2 | ^ 
2 0 

^ ( I K+2|2 (» + 2)2 (n + I))"2 (£ („ + 2)~2 („ + l)-»)i/2 
0 0 

whenever z e O. So indeed, B[ c H00. 
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Applying the theorem and recalling that a(V) = 3D (see, for example, [8, the 
second Corollary on page 269]), we conclude that, again, <j(m(-4r)) = 5D, the same 
result as when cp(A) was parabolic. 

9. THE SPECTRUM 

Summing up the results from all the cases under discussion, we obtain the following 
theorem. 

Theorem 11. Let A = ( A be a regular 2 x 2 complex matrix such that 
\c d) 

cp(A)(B) cz D. 
(a) If cl cp(A)(B) c D, then (p(A) has two fixed points z0 and zu z0 £ 0 , z ^ D, 

and 

or, if c = 0 (and zx = oo), 

a(m(A)) = {0} u j ^ : n = 0 , l , . . j . 

(b) If <p(A) (B) touches dB at exactly one point x and <p(A) (T) * T, everything 
is the same as in (a). 

(c) If<p(A)(B) touches dB at exactly one point T, cp(A) (T) = T and (p(A) (z) = z 
for some z 4= T, then 

a(m(A))= | d e t ^ | - 1 / 2 0 . 

(d) If <p(A) (B) touches dB at exactly one point T, <p(A) (T) = T and (p(A) has 
no other fixed points, then 

1 1 
= 1- q 

<p(A) (z) — T z — T 

for some q e C, Re q < 0, and 
cr(m(^)) = {0} u {tePq: p e <0, + oo)} 

/or some complex number t of modulus fdet y4|_1/2. 
(e) If <p(A)(B) = D and N is the smallest positive integer such that <P\A) = -d> 

then 
a(m(A)) = t{en: n = 0 ,1 , . . . ,N - 1} , 

where e = exp (iniJN) and t is a complex number of modulus fdet zl|~ 
(f) / / <p(A) (B) = D and <p(A)N * id for all N = 1 , 2 , . . . , then 

G(m(A^= | d e t A | - 1 / 2 d D . 
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Proof. Everything is just a restatement of what has been said before, except for 
the factor |det A|"1/2 in (d) —(f). To clear up this point, note that for any M e Jl 

det-vi = det MAM~l , 

and so the modulus of t in (3a) must be |det^l|1/2; it remains to use the fact that 
m(tA) = (\jt)m(A). This settles (d). As for (e) and (f), we have <p(A)n(D) = O 
for all n = 0, ± 1 , ±2 , Consequently, the norm estimate (1) gives 

[\m(AY\\2
 = ,2TC , . J - t ° = | d e t A | -

11 v ' " 27c|det.A"| 1 — 0 ' ' 

for all integers n. Hence, the spectral radius of m(A) equals |detA |~1 / 2 . This con­
cludes the proof. 

10. THE SPECTRAL RADIUS 

Since we know what the spectrum of m(A) is, we can determine its spectral radius. 

Theorem 12. Let - 4 = 1 , J be a regular 2 x 2 complex matrix such that 

<p(A)(B) c O. Then 
(a) If cl <p(A) (O) C O, then <p(A) has a unique fixed point z0 in 0 and 

\cz0 + d\ 

(b) If <p(A)(D) touches dB at exactly one point x and cp(A)(x) 4= T? the same 
conclusion as in (a) holds. 

(c) If<p(A)(B) touches 8D at exactly one point x and <p(A) (x) =* T, then 

||m(A)||sp = | d e t A | - 1 / 2 . 

(d) If <p(A)(D) = O, the the same conclusion as in (c) holds. 

Proof, (a) and (b): by Theorem 11, (a) and (b), 

*(m(A))\{0} = 1 -—- . C": n = 0 ,1 , . . . 1 , 
[cz0 + d J 

where 

czt + d a ( v 
Q = — or Q = - (if c = 0 ) . 

cz0 + d d 
Because m(A) or m(A)2 is compact by Theorem 5, we have |#| <: 1. This implies 
sup {\Q"\: n = 0, l , . . .} = 1 and the result follows, 

(c): Follows from Theorem 11, part (c) and (d). 
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(d): Has been proved in the course of the proof of Theorem 11, parts (e)—(f). 
The proof is complete. 
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Souhrn 

O JEDNÉ TŘÍDĚ VÁŽENÝCH KOMPOZIČNÍCH OPERÁTORŮ NA H2 

MIROSLAV ENGLIŠ 

Každé lineární lomené transformaci, která zobrazuje jednotkový kruh do sebe, lze přiřadit 
vážený kompoziční operátor na Hardyho prostoru H2. Tyto operátory byly nedávno zavedeny 
v práci [11] v souvislosti s jistým extremálním problémem z teorie operátorů. V této práci se 
zabýváme jejich základními vlastnostmi až po určení jejich spekter. Analogické výsledky pro jiné 
třídy kompozičních operátorů lze nalézt v pracích [1], [3], [5]. 
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