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On some translation invariant balayage spaces

Walter Hoh, Niels Jacob

Abstract. It is well known that strong Feller semigroups generate balayage spaces provided
the set of their excessive functions contains sufficiently many elements. In this note, we give
explicit examples of strong Feller semigroups which do generate balayage spaces. Further
we want to point out the role of the generator of the semigroup in the related potential
theory.
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Introduction.

Since the pioneering work of Marcel Riesz [9] it is clear that a lot of results which
hold for the classical Newton potential do also hold for more general potentials which
are related to non-local operators. M. Riesz did not work with such operators but
the kernels of these potentials are in modern terminology nothing but fundamental
solutions of certain pseudo differential operators. In his monograph [8] N.S. Landkof
considered in detail the non-local part of potential theory, in particular he handled
these aspects of the theory which are related to the balayage theory.
In order to have an axiomatic approach to the theory of balayage and to incor-

porate probabilistic ideas into the theory, J. Bliedtner and W. Hansen introduced
the concept of a balayage space. Their results are presented in [2]. They had been
able to prove that a lot of known objects in potential theory can be treated within
their considerations.
The purpose of this note is to give some examples of translation invariant bal-

ayage spaces. It turns out that as in the theory of translation invariant Dirichlet
spaces and in the theory of translation invariant harmonic spaces, see [4] and [5],
continuous negative definite functions play a fundamental part in our considerations.

The plan of the paper is following: In the first section we just recall some basic
definitions and results from [2], while Section 2 is devoted to continuous negative
definite functions and Feller semigroups. In this section we also present some ideas
how one could look at non-local potential theory from another point of view. These
ideas will be handled more precisely in a forthcoming paper. Finally, in Section 3
we prove our main result, i.e. we do the calculations in order to get new examples
of balayage spaces.
M. Brzezina pointed out that it is possible to construct further examples of

balayage spaces by using our examples. His results are given in [3].
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1. The notion of a balayage space.

We will recall some basic definitions and results from the theory of balayage
spaces as they are given in [2].

Let X be a locally compact topological space with countable base and denote by
B(X) the numerical Borel functions, i.e. the Borel functions f : X → R. The space
of continuous functions on X is denoted by C(X). By definition a convex cone
S ⊂ C(X) is called a function cone if S contains a strictly positive function, the
set of non-negative functions in S is linearly separating, i.e. for any x, y ∈ X, x 6= y,
and any λ ≥ 0 there exists f ∈ S, f ≥ 0, such that f(x) 6= λf(y), and for any f ∈ S

there exists a non-negative function g ∈ S such that for any ε > 0 there exists
a compact set C ⊂ X such that |f(x)| ≤ εg(x) for x ∈ X − C. Let F ⊂ B(X) and
define

S(F ) = {sup fn, (fn)n∈N is an increasing sequence in F}.

We say that F is σσσ-stable if S(F ) = F . Further if f : X → R ∪ {∞} is
a numerical function we denote by f∗ the lower semi-continuous regularization of f ,

i.e. f(x) = lim inf
y→x

f(y), x ∈ X . (In [2] the function f∗ is denoted by f̂ , but ˆ is

reserved for the Fourier transform!) With any convex coneW of non-negative lower
semi-continuous numerical functions on X one can associate theW-fine topology.
This is the coarsest topology on X which is finer than the initial topology and for
which all functions of W are continuous.

Now we can state the fundamental

Definition 1.1 ([2, p. 57]).

LetX be a locally compact topological space with countable base andW a convex
cone of non-negative lower semi-continuous functions. The pair (X, W ) is called
a balayage space if the following conditions hold:

1. The cone W is σ-stable.
2. For every subset V ⊂ W we have (inf V )∗f ∈ W , where ∗f denotes the
lower semi-continuous regularization with respect to the W -fine topology.

3. For u, v1, v2 ∈ W such that u ≤ v1 + v2 there exist u1, u2 ∈ W such that
u = u1 + u2, u1 ≤ v1 and u2 ≤ v2.

4. There exists a function cone P of non-negative continuous functions such
that W = S(P ).

In [2] the theory of balayage spaces is developed and some known structures of
potential theory are identified as balayage spaces. Further it is shown that one
can obtain further examples of balayage spaces by using certain Feller semigroups.
These are the results we will recall next.

A kernel K on X is a mapping K : X ×B(X)→ R
+ ∪ {∞}, B(X) denotes the

Borel sets of X , such that x 7→ K(x, B) is a Borel measurable function for every
B ∈ B(X) and B 7→ K(x, B) is a measure for every x ∈ X . A kernel K is called
sub-Markovian if K(x, X) ≤ 1. We call K proper if for every compact C ⊂ X

the function x 7→ K(x, C) is bounded.
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Definition 1.2. A family (Pt)t>0 of sub-Markovian kernels onX is called a Feller-
semigroup if

(1.1) Ps+t(x, B) =

∫
X

Ps(y, B)Pt(x, dy)

holds for all x ∈ X and B ∈ B(X), s, t > 0, if the operators Pt defined on the
bounded Borel functions by

(1.2) (Ptf)(x) =

∫
X

f(y)Pt(x, dy)

map C∞(X), the space of continuous functions on X vanishing at infinity, into
itself, and if it is strongly continuous, i.e.

(1.3) lim
t→0

Ptf = f uniformly on X for all f ∈ C∞(X).

A Feller semigroup (Pt)t>0 is called a strong Feller semigroup if each of the
operators Pt maps the bounded Borel functions into the set of bounded continuous
functions. Given a Feller semigroup, we define the set of excessive functions of
(Pt)t>0 as

EP = {u ∈ B(X), u ≥ 0 and sup
t>0

Ptu = u}.

The following result holds:

Theorem 1.1 ([2, p. 177]). Let (Pt)t>0 be a strong Feller semigroup onX . Suppose

further that there exist strictly positive functions u, v ∈ EP ∩ C(X) such that u
v ∈

C∞(X) and that the kernel V0 defined on X ×B(X) by V0(x, B) =
∫
∞

0 Pt(x, B) dt

is proper. Then (X, EP ) is a balayage space.

Later we have to use the resolvent of a Feller semigroup. If (Pt)t>0 is a Feller
semigroup, we define its resolvent by

(1.4) Vλ(x, B) =

∫
∞

0
e−λtPt(x, B) dt, λ > 0,

and the corresponding operator

(1.5) Vλf(x) =

∫
∞

0
e−λt(Ptf)(x) dt

for f ∈ B(X), f ≥ 0. Note that whenever we will use the resolvent later on we have

(1.6) V0f = sup
λ>0

Vλf = lim
λ→0

Vλf

for all Borel functions f ≥ 0, where V0 also denotes the operator associated with
the kernel V0. This kernel is called the potential kernel of (Pt)t>0. Let us denote
by

(1.7) EV = {u ∈ B(X), u ≥ 0 and sup
λ>0

λVλu = u}

the set of excessive functions of (Vλ)λ>0. From Corollary II.3.13 in [2] we find
in the case of a strong Feller semigroup

EP = EV ,

and therefore we can speak of excessive functions without further distinction.
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2. Translation invariant Feller semigroups, related pseudo differential

operators and some formal considerations.

We need

Definition 2.1. A function a : Rn → C is said to be negative definite if for all
m ∈ N and (x1, . . . , xm), xj ∈ Rn and 1 ≤ j ≤ m, the matrix

(a(xi) + a(xj) − a(xi − xj))i,j=1,...,m is positive Hermitian, i.e. for all m-tuple
(c1, . . . , cm) ∈ Cm it follows that

(2.1)

m∑
i,j=1

(a(xi) + a(xj)− a(xi − xj))cicj ≥ 0.

A good reference for negative definite functions is the book [1]. In this paper we are
mainly concerned with continuous negative definite functions which are real-valued.
The following results are taken from [1].

Lemma 2.1 ([1, §7]). Let a : Rn → R be a continuous negative definite function.

Then we have a(ξ) = a(−ξ) and

(2.2) 0 ≤ a(0) ≤ a(ξ) for all ξ ∈ R
n,

and

(2.3) a(ξ) ≤ ca(1 + |ξ|2) for all ξ ∈ R
n.

Furthermore, we have

Lemma 2.2 ([1, p. 89]). Every translation invariant Feller semigroup on Rn is

a convolution semigroup, i.e.

(2.4) Ptf = µt ∗ f, f ∈ C∞(R
n) and t > 0,

where (µt)t>0 is a family of bounded measures on Rn such that µt(R
n) ≤ 1,

µt ∗ µs = µs+t, s, t > 0, and limt→0 µt = δ0 vaguely, where δ0 denotes Dirac’s

delta-function. Conversely, given a convolution semigroup (µt)t>0 with the proper-
ties stated above then (2.4) defines a translation invariant Feller semigroup on R

n.

The connection between the notion of negative definite functions and Lemma 2.2
is given by

Theorem 2.1 ([1, p. 49]). There is a one-to-one correspondence between convolu-
tion semigroups on Rn and continuous negative definite functions on Rn. If (µt)t>0
is a convolution semigroup on Rn, then there exists a unique continuous negative

definite function a : Rn → C such that

(2.5) µ̂t(ξ) = e−ta(ξ), t > 0 and ξ ∈ R
n.
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Conversely, given a continuous negative definite function a : Rn → C, then (2.5)
determines a convolution semigroup on Rn.

Combining (2.4) with (2.5) and assuming that the formal calculation could be
justified we get

(2.6)

(Ptf)(x) = (µt ∗ f)(x)

= (2π)−n

∫
Rn

eix·ξ(µt ∗ f)ˆ(ξ) dξ

= (2π)−n

∫
Rn

eix·ξe−ta(ξ)f̂(ξ) dξ.

Moreover, for the resolvent of (Pt)t>0 we find again formally

(2.7)

Vλf(x) =

∫
∞

0
e−λt(Ptf)(x) dt

= (2π)−n

∫
∞

0

∫
Rn

eix·ξe−(λ+a(ξ))tf̂(ξ) dξ dt

= (2π)−n

∫
Rn

eix·ξ 1

λ+ a(ξ)
f̂(ξ) dξ.

The goal of the next section is to make these formal calculations correct for
a certain class of continuous negative definite functions and then to use (2.6), (2.7)
and the following theorem due to J. Hawkes in order to apply Theorem 1.1.

Theorem 2.2 ([6, Lemma 2.1]). Let (Pt)t>0 be a translation invariant Feller semi-
group. This semigroup is a strong Feller semigroup if and only if each of the mea-

sures Pt(x, .), t > 0, has a density with respect to the Lebesgue measure.

Let us have a further look at (2.7). Formally the operator Vλ is inverse to the
operator

(2.8) (a(D) + λ)u(x) = (2π)−n

∫
Rn

eix·ξ(a(ξ) + λ)û(ξ) dξ,

which is a pseudo differential operator. Moreover, (2.8) with λ = 0 should be
regarded as an operator densely defined on C∞(R

n) which is closable and a certain
closed extension of it should be the generator of the semigroup under consideration,

i.e. Pt = e−a(D)t.
Finally suppose that

(2.9) E(x) = (2π)−n

∫
Rn

eix·ξ 1

a(ξ)
dξ

exists. Then we find again by a formal calculation

a(D)E(x) = (2π)−n

∫
Rn

eix·ξa(ξ)Ê(ξ) dξ = δ0,
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i.e. E is a fundamental solution of a(D). For a(0) > 0 it follows that E exists at
least in the sense of tempered distributions. For any Borel measure µ on Rn we can
define the potential

(2.10) Eµ(x) = (E ∗ µ)(x) =

∫
Rn

E(x − y) dµ(y)

and we find
a(D)Eµ(x) = µ.

In particular, we have

a(D)Eµ(x) = 0 in R
n − suppµ.

Defining a function (or distribution) u : Rn → R to be “harmonic” with respect
to a(D) in an open set Ω if and only if a(D)u = 0 in Ω, we find that the potential
Eµ is harmonic with respect to a(D) in the open set R

n − suppµ. As pointed out
in [7], Theorem 1, for a(ξ) = |ξ|2r, 0 < r < 1, this is a natural way to look at
2r-harmonic functions in the sense of N.S. Landkof, see [8]. In a forthcoming paper
we will develop this idea more systematically and rigorously. The purpose of the
next section is to establish the fact that for a large class of continuous negative
definite functions the corresponding Feller semigroup gives a balayage space.

3. Some balayage spaces generated by pseudo differential operators.

In this section a : Rn → R denotes a continuous negative definite function and
further it is always assumed that

(3.1) a(0) > 0

and that for some s ∈ (0, 2]

(3.2) a(ξ) ≥ cs|ξ|
s, |ξ| ≥ ̺,

holds with some ̺ ≥ 0. Let (Pt)t>0 be the Feller semigroup associated with a by

Theorem 2.1 and Lemma 2.2. Now (3.2) and the fact that e−ta(ξ) is a positive
definite function, see [1, Theorem 7.8], imply that

(3.3) gt(x) = (2π)
−n

∫
Rn

eix·ξe−ta(ξ) dξ

exists, is non-negative and further gt(.−x) is a density of the measure Pt(x, .) with
respect to the Lebesgue measure. The last statement follows from the uniqueness
of the Fourier transform. By Theorem 2.2 the semigroup (Pt)t>0 is a strong Feller
semigroup. By Corollary 1.26 in [10] we find that gt ∈ L1(Rn) and

∫
Rn gt(x) dx =

e−ta(0) for t > 0. Thus we have

(3.4) Pt(x, B) =

∫
B

gt(x − y) dy



On some translation invariant balayage spaces 477

and for f ∈ L1(Rn) we get using (3.1) and Young’s inequality∫
∞

0
(Ptf)(x) dt =

∫
∞

0

∫
Rn

gt(x − y)f(y) dy dt ≤
1

a(0)
‖f‖L1 .

From this it follows that

(3.5) (V0f)(x) =

∫
∞

0
(Ptf)(x) dt

is proper, where we call an operator generated by a kernel proper if and only if the
kernel is proper. Further it follows that Gλ defined by

(3.6) Gλ(x) =

∫
∞

0
e−λtgt(x) dt, λ > 0,

belongs to L1(Rn) and

‖Gλ‖L1 =

∫
Rn

∫
∞

0
e−λtgt(x) dt dx =

∫
∞

0
e−λt

∫
Rn

gt(x) dx dt

=

∫
∞

0
e−(λ+a(0))t dt =

1

λ+ a(0)
.

We find that

Vλf(x) =

∫
∞

0
e−λt(Ptf)(x) dt

=

∫
∞

0

∫
Rn

e−λtgt(x − y)f(y) dy dt = (Gλ ∗ f)(x)

and again by Young’s inequality Vλ is defined for f ∈ Lp(Rn), 1 ≤ p ≤ ∞. Now we
prove that the function x 7→ 1 belongs to EP = EV . Indeed we have

sup
λ>0

λ

∫
∞

0

∫
Rn

e−λtgt(x − y) dy dt = sup
λ>0

λ

∫
∞

0
e−(λ+a(0))t dt = sup

λ>0

λ

λ+ a(0)
= 1.

Further it is known by Proposition II.3.8 in [2] that

V0({f ∈ B(X), f ≥ 0}) ⊂ EV .

But for f ∈ S(Rn) we find

V0f(x) =

∫
∞

0

∫
Rn

gt(x − y)f(y) dy dt

= (2π)−n

∫
∞

0

∫
Rn

∫
Rn

ei(x−y)·ξe−ta(ξ)f(y) dξ dy dt

= (2π)−n

∫
∞

0

∫
Rn

eix·ξe−ta(ξ)f̂(ξ) dξ dt

= (2π)−n

∫
Rn

eix·ξ 1

a(ξ)
f̂(ξ) dξ,

where the calculation is now rigorous since a(ξ) ≥ a(0) > 0 and S(Rn) denotes
the Schwartz space of tempered functions, see [10, p. 19]. Thus for any f ∈ S(Rn),
f ≥ 0, it follows that V0f belongs to EV ∩ C∞(R

n). By Theorem 1.1 we finally
have taking v = 1 and u = V0f for some f > 0, f ∈ S(Rn),
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Theorem 3.1. Let a : Rn → R be a continuous negative definite function satisfy-

ing (3.1) and (3.2) and denote by (Pt)t>0 the semigroup corresponding to a. Then

(Rn, EP ) is a balayage space.
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