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A note on simple medial quasigroups

K.K. Ščukin

Abstract. A solvable primitive group with finitely generated abelian stabilizers is finite.
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In [1], J. Ježek and T. Kepka described simple medial quasigroups. Among
others, these quasigroups turned out to be finite of prime power order. Now, using
multiplication groups of the quasigroups (see [2]), this result can be translated into
the language of permutation groups. In the present short note we give a direct proof
of the permutation group analogue. In fact, we are going to prove the following more
general result:

Theorem. Let G be a solvable primitive permutation group on a non-empty set

Q such that the stabilizers are finitely generated abelian groups. Then G is finite,

Q is finite of a prime power order and the stabilizers are cyclic groups.

Proof: By [3, Theorem 7, p. 37], G is the semidirect product G =M ⋋ N , where
M =M(Q,+) is the regular representation of an abelian group (Q,+) defined on Q

and N is the stabilizer of the zero element 0. Moreover, since N is maximal in G, no
non-trivial proper subgroup ofM is normal in G. Further, the subring R generated
by N in the endomorphism ring of (Q,+) is a finitely generated commutative ring.
Now, if q ∈ Q and f ∈ R are non-zero, then Ker (f) is a proper subgroup of (Q,+)
and Ker (f) is invariant under N , which means that M(Ker (f)) is normal in G

and consequently Ker (f) = 0 and f(q) 6= 0. This implies that R(q) is a non-zero
subgroup of (Q,+) and, since it is also invariant under N , we have R(q) = Q. If
0 6= p ∈ Q, then p = g(q) and q = hf(q) for suitable g, h ∈ R and hf(p) = hfg(q) =
ghf(q) = g(q) = p. Thus hf = 1 and we have shown that R is a field. However,
it is a well known fact that every field, finitely generated as a ring, is finite. In
particular, R is a finite field and card (R) = card (Q) is a power of a prime number.
Finally, N is a subgroup of the cyclic group R∗, and therefore N is also cyclic. �
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