
Commentationes Mathematicae Universitatis Carolinae

Patrick Dehornoy
Multiple left distributive systems

Commentationes Mathematicae Universitatis Carolinae, Vol. 38 (1997), No. 4, 615--625

Persistent URL: http://dml.cz/dmlcz/118960

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1997

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118960
http://project.dml.cz


Comment.Math.Univ.Carolin. 38,4 (1997)615–625 615

Multiple left distributive systems

Patrick Dehornoy

Abstract. We describe the free objects in the variety of algebras involving several mu-
tually distributive binary operations. Also, we show how an associative operation can
be constructed on such systems in good cases, thus obtaining a two way correspondence
between LD-monoids (sets with a left self-distributive and a compatible associative op-
eration) and multi-LD-systems (sets with a family of mutually distributive operations).

Keywords: binary system, self-distributivity

Classification: 20N02

A number of algebraic systems involving a self-distributive operation actually
involve several such operations, which in addition are mutually distributive. Such
systems will be called here multi-LD-systems: so, a multi-LD-system has the form
(S, {∗i ; i ∈ Ω}) where each ∗i is a binary operation and the identity

x ∗i (y ∗j z) = (x ∗i y) ∗j (x ∗i z)

holds for every i, j in Ω, including the case i = j. An LD-system, i.e., a set
equipped with a single left self-distributive operation, corresponds to the case
when Ω is a singleton. To give some examples, consider any groupG equipped with
the conjugacy operations ∗k defined by x ∗k y = xkyx−k for k an integer, or any
vector space V equipped with the operations ∗λ defined by x∗λ y = (1−λ)x+λy
for λ a scalar. Observe also that any lattice is a 2-multi-LD-system (we shall speak
of a p-multi-LD-system for a multi-LD-system that involves p binary operations),
and that the operations ∗ and ∗̄ defined on Artin’s braid group B∞ by

x ∗ y = xs(y)σ1s(x
−1), x∗̄y = xs(y)σ−1

1 s(x−1)

give to B∞ the structure of a 2-multi-LD-system ([4]).

The aim of this note is to establish two results about multi-LD-systems, both
of which connect a multi-LD-system, i.e., a set with a whole family of operations,
and an LD-system, i.e., a set with only one operation (and, in the second case,
an additional associative operation). In both cases, the underlying idea is that
multi-LD-systems are not really more general than mere LD-systems.

The first result is the description of the free multi-LD-systems in terms of
free LD-systems: essentially, a free p-multi-LD-system on n generators is the



616 P.Dehornoy

same as a free LD-system on pn generators. The second result deals with the
structure of an LD-monoid, which is an LD-system equipped with an additional
associative operation. It had been noted that, starting with an arbitrary LD-
monoid, one can always define a family of new mutually distributive operations,
thus obtaining a multi-LD-system that we shall call the companion of the initial
LD-monoid. Here we describe a converse construction: we show how to construct
on convenient multi-LD-systems two new operations so that we obtain an LD-
monoid of which the initial multi-LD-system is the companion. The construction
applies in particular to the case of free systems, where it extends partial results
of [1], [12] and [3].

In the non-associative context of this paper, we shall adopt the convention
that missing brackets are to be added on the right: x ∗ y ∗ z will always stand for
x ∗ (y ∗ z).

1. Free multi-LD-systems

As was noted by Larue in [10] (cf. also [11]), there exists a uniform way how to
gather the various operations of a multi-LD-system into a single operation at the
expense of enlarging the domain:

Definition 1.1. The hull of the multi-LD-system (S, {∗i ; i ∈ Ω}) is the system
(S × Ω, ∗), where ∗ is given by

(x, i) ∗ (y, j) = (x ∗i y, j).

The hull of a multi-LD-system is always an LD-system, and the initial oper-
ations can clearly be retrieved from the operation of its hull. We shall see here
that the hull of a free multi-LD-system is a free LD-system.

Definition 1.2. Assume that (F, ∗) is a free LD-system based on the set X ×Ω.
For j in Ω, Ij is the left ideal of F generated by those elements of the form (x, j)

with x in X , and, for i in Ω, f
j
i is the function defined on Ij that maps every

element of the form a1 ∗ . . . ∗ ap ∗ (x, j) to the corresponding element a1 ∗ . . . ∗

ap ∗ (x, i). Finally ∗j
i is the binary operation defined on Ij by

x ∗j
i y = f j

i (x) ∗ y.

Proposition 1.3. (i) Assume that (F, {∗i ; i ∈ Ω}) is a free multi-LD-system
based on X ; then its hull is a free LD-system based on X × Ω.

(ii) Conversely, assume that (F, ∗) is a free LD-system based on a set X × Ω.

Then, for every j in Ω, (Ij , {∗j
i ; i ∈ Ω}) is a free multi-LD-system based on X ×

{j}.

In order to prove the result, we represent free systems as quotients of absolutely
free systems under convenient congruences. For an arbitrary (nonempty) set X ,



Multiple left distributive systems 617

we denote by TX the absolutely free binary system generated by X , i.e., the set
of all well-formed terms constructed using variables from X and a single binary
operator ∗. We denote by =LD the congruence on TX generated by the pairs
(t1 ∗ (t2 ∗ t3), (t1 ∗ t2) ∗ (t1 ∗ t3)), so that TX/=LD is a free LD-system generated

by X . Similarly, we denote by TΩX the set of those terms that are constructed
using variables in X and binary operators in Ω, and we use again =LD for the
congruence on TΩX generated by the pairs (t1 ∗i (t2 ∗j t3), (t1 ∗i t2)∗j (t1 ∗i t3)) when

i, j range over Ω. Again TΩX/=LD is a free multi-LD-system generated by X .

The point is that the correspondence involved in the construction of the hull can
be translated at the level of terms. For t in TΩX and k in Ω, we define inductively
a term f(t, k) in TX×Ω by the clauses

f(t, k) =

{

(t, k) if t is a variable, i.e., for t ∈ X,

f(t1, i) ∗ f(t2, k) if t is t1 ∗i t2.

Conversely, for t a term in TX×Ω, we define h(t) to be the second component of
the last variable occurring in t (by hypothesis, the variables occurring in t are

pairs in X ×Ω), and we define the term g(t) in TΩX to be the first component of t
if t is a variable, and to be g(t1) ∗h(t1) g(t2) if t is t1 ∗ t2. In other words, the pair

(g, h) maps TX×Ω into TΩX × Ω, and it obeys the inductive clause

(g(t), h(t)) =

{

t if t is a variable, i.e., for t ∈ X × Ω,

(g(t1) ∗h(t1) g(t2), h(t2)) if t is t1 ∗ t2.

Lemma 1.4. (i) The mappings f and (g, h) are inverse one to each other, and,
therefore, they are bijective.

(ii) The equivalence f(t, k) =LD f(t′, k′) holds in TX×Ω if and only if the

indices k and k′ are equal and the equivalence t =LD t′ holds in TΩX .

Proof: For (i), one verifies inductively that f◦(g, h) and (g, h)◦f are the identity
mappings of their domains. For (ii), we observe first that the last variable of
any term of the form f(t, k) has the form (x, k) for some x in X . An obvious
induction shows that the last variable is invariant under LD-equivalence, i.e.,
that any two terms that are LD-equivalent must have the same last variable.
So the only point to show is that f(t, k) =LD f(t′, k) holds in TX×Ω if and

only if t =LD t′ holds in TΩX . Because the congruence =LD is generated as an

equivalence relation by those pairs (t, t′) such that t′ is a 1-expansion of t, i.e.,
such that t′ is obtained from t by replacing exactly one subterm s of the form
s1 ∗i (s2 ∗j s3) by the corresponding term s′ = (s1 ∗i s2) ∗j (s1 ∗i s3), it is enough
to make the proof for such pairs. Now we use induction on the size of the term t.
Assume that t is t1 ∗ℓ t2. If the subterm s involved in the expansion is a subterm
of t1, then, by induction hypothesis, the left subterm t′1 of t′ is a 1-expansion
of t1, f(t

′

1, m) =LD f(t1, m) holds for every m (actually f(t′1, m) is a 1-expansion



618 P.Dehornoy

of f(t1, m)), and this implies f(t′, k) =LD f(t, k). The argument is similar if s is
a subterm of the right subterm t2 of t. The only remaining case is when s is t
itself, i.e., when t1 is s1, t2 is s2 ∗j s3 and ℓ is i. Then we have

f(t, k) = f(s1, i) ∗ (f(s2, j) ∗ f(s3, k)),

f(t′, k) = (f(s1, i) ∗ f(s2, j)) ∗ (f(s1, i) ∗ f(s3, k)),

which shows that f(t′, k) is a 1-expansion of f(t, k), and, in particular, that
f(t, k) =LD f(t′, k) holds. The argument is similar for the converse implication.

�

Remark 1.5. Labeled trees can be associated with terms so that the tree as-
sociated with the product t1 ∗i t2 has a root labeled ∗i (or i) and two subtrees,
the left one being the tree associated with t1 and the right one being the one
associated with t2. In such trees, the leaves correspond to the variables while
the inner nodes correspond to the operators. The geometrical meaning of the
previous lemma is that, as far as LD-equivalence is concerned, the information
contained in the inner nodes can be translated to the leaves without loss. More
precisely, the translation shifts the information given at a certain inner node to
the rightmost leaf under the left child of that node, as displayed below for the
terms x ∗1 ((y ∗3 z) ∗2 x) and its counterpart (x, 1) ∗ (((y, 3) ∗ (z, 2)) ∗ x):

Ax
∗1

∗2

∗3
x

y z

vs.
(x, 1)

x

(y, 3) (z, 2)

It is now easy to deduce Proposition 1.3. For Point (i), let us consider the

function of TΩX × Ω onto the free LD-system generated by X × Ω that maps
(t, k) to the LD-class of f(t, k). By Lemma 1.4, this function is compatible with

the congruence =LD × = on TΩX × Ω, and, therefore, it induces a well defined

mapping f of F × Ω onto TX×Ω/ =LD. Moreover, f is a homomorphism with

respect to the operation induced on F × Ω by the operation defined on TΩX × Ω
by

(t1, i1) ∗ (t2, i2) = (t1 ∗i1 t2, i2),

i.e., with respect to the operation of the hull of F . Conversely, a similar ar-
gument shows that the function of TX×Ω onto F × Ω that maps t to the pair
(LD-class of g(t), h(t)) factorizes through =LD, and the induced mapping is an

inverse of f . Hence the latter is an isomorphism.

For Point (ii), observe first that the invariance of the last variable under LD-
equivalence guarantees that the functions fi are well-defined. Then, it is clear from



Multiple left distributive systems 619

the definition of the operations ∗j
i that (I

j , {∗j
i ; i ∈ Ω}) is a multi-LD-system

generated by X × {j}. That this multi-LD-system is freely based on X × {j}
follows again from Lemma 2 for, by construction, the evaluation in Ij of a term t
of TΩX is equal to the LD-class of f(t, j). So, two such terms t, t′ have the same

evaluation if and only if f(t, j) and f(t′, j) are LD-equivalent, which takes place
if and only if t and t′ themselves are LD-equivalent. �

2. The companion multi-LD-system of an LD-monoid

Again, a number of usual examples of LD-systems involve a second, associative
operation that is compatible with the left distributive operation, the basic example
being a group equipped both with its product and the left distributive operation
given by conjugacy. For other examples, and general results, see [1], [2], [12], [7],
[9] and [5].

Definition 2.1. An LD-monoid is a monoid (M, ·, 1) equipped with a second
binary operation ˆ such that the mixed identities

(x̂ y) · x = x · y, x̂ (y ẑ) = (x · y)̂ z, x̂ (y · z) = (x̂ y) · (x̂ z), x̂ 1 = 1

are satisfied.

In the sequel, we shall refer to the monoid operation of an LD-monoid as its
product, and to the second operation as its exponentiation (the above axioms take
the rather pleasant form xy ·x = x ·y, x(yz) = x·yz, x(y ·z) = xy ·xz, x1 = 1 when the
second operation is denoted xy — however, we shall not use this notation here, as
it makes reading of long expressions tedious). One immediately verifies that the
exponentiation of an LD-monoid is a left distributive operation, and that 1ˆx = x
holds for every x: x ˆ (y ˆ z) = (x · y) ˆ z = ((x ˆ y) · x) ˆ z = (x ˆ y) ˆ (x ˆ z), and
1ˆx = (1ˆx) · 1 = 1 · x = x.

Our specific interest comes presently from the following easy observation.

Proposition 2.2. Assume that M is an LD-monoid, and define, for e in M , a
new binary operation ∗e by

x ∗e y = (xˆ e) · y.

Then (M, {∗e ; e ∈ M}) is a multi-LD-system.

The verification is straightforward. It is also easy to see that, in all usual cases,
none of the self-distributive operations ∗e coincides with the operation ˆ (which
is self-distributive as well), and this is why we used here completely different
notations for these operations.

Definition 2,3. In the above situation, the multi-LD-system (M, {∗e ; e ∈ M})
is the companion of the LD-monoidM ; more generally, if E is a subset ofM , the
multi-LD-system (M, {∗e ; e ∈ E}) is the E-companion of M .



620 P.Dehornoy

The question we address here is as to whether the initial operations of an LD-
monoid can be retrieved from the operations of the companion multi-LD-system.
More generally, we start with a multi-LD-system (possibly an LD-system), and we
try to construct on that system (or on one of its subsets) two binary operations,
the one associative and the other left distributive, so that the new operations
form an LD-monoid and the initial multi-LD-system is the companion of this
LD-monoid.

It is not hard to see that some conditions are necessary. As usual, we shall
denote by La the left translation associated with an element a of a given binary
system. Similarly, in the case of a multiple system involving a family of opera-
tions {∗i ; i ∈ Ω}, we shall use Li

a for the left translation corresponding to the
operation ∗i, i.e., for the mapping x 7→ a ∗i x.

Definition 2.4. (i) The multi-LD-system (S, {∗i ; i ∈ Ω}) is strongly tame if any

equality of the form Li1
a1◦. . . ◦L

ip
ap = L

i′
1

a′

1

◦. . . ◦L
i′
p′

a′

p′
implies the equalities

Li1
c∗ka1 ◦. . . ◦L

ip
c∗kap

= L
i′
1

c∗ka′

1

◦. . . ◦L
i′
p′

c∗ka′

p′

for every c in S and every k in Ω.

(ii) The element g of S is generic in (S, {∗i ; i ∈ Ω}) if any equality of the form

a1 ∗i1 . . . ap ∗ip g = a′1 ∗i′
1

. . . a′p′ ∗i′
p′

g implies the equality Li1
a1◦. . . ◦L

ip
ap =

L
i′
1

a′

1

◦. . . ◦L
i′
p′

a′

p′
.

The present notion of a strongly tame multi-LD-system is a natural strength-
ening of the notion of a tame multi-LD-system, defined as the property that

Li
a = Li′

a′ implies Li
c∗ka = Li′

c∗ka′ for every c, k — a condition that was used in

[3] and [9] for instance.

We can refine Proposition 2.2 as

Proposition 2.5. Assume that M is an LD-monoid. Then the companion of M
is a strongly tame multi-LD-system, and the unit of M is generic for this multi-

LD-system.

Proof: Assume that the equality

Le1
a1◦. . . ◦L

ep
ap = L

e′
1

a′

1

◦. . . ◦L
e′
p′

a′

p′

holds in the multi-LD-system (M, {∗e ; e ∈ M}). By construction this means that

(a1 ˆe1) · . . . · (ap ˆep) · x = (a
′

1 ˆe
′

1) · . . . · (a
′

p′ ˆe
′

p′) · x



Multiple left distributive systems 621

holds for every x, and, in particular, for x = 1. So (a1 ˆ e1) · . . . · (ap ˆ ep) and
(a′1ˆe

′

1) · . . . · (a
′

p′ˆe
′

p′) are equal. Applying exponentiation by cˆe and developing,

we obtain

(ĉ e)̂ (a1 ê1) · . . . · (ĉ e)̂ (ap êp) = (ĉ e)̂ (a′1 ê′1) · . . . · (ĉ e)̂ (a′p′ ê′p′),

and, therefore,

(((ĉ e) · a1)̂ e1) · . . . · (((ĉ e) · ap)̂ ep) = (((ĉ e) · a′1)̂ e′1) · . . . · (((ĉ e) · a′p′ )̂ e′p′),

which is

((c ∗e a1)̂ e1) · . . . · ((c ∗e ap)̂ ep) = ((c ∗e a′1)̂ e′1) · . . . · ((c ∗e a′p′ )̂ e′p′).

By multiplying both sides by x on the right, we conclude that Le1
c∗ea1◦. . . ◦L

ep
c∗eap

and L
e′
1

c∗ea′

1

◦. . . ◦L
e′
p′

c∗ea′

p′
are equal, and so M is strongly tame.

The genericity of 1 is obvious, for

(a1 ˆe1) · . . . · (ap ˆep) · 1 = (a
′

1 ˆe
′

1) · . . . · (a
′

p′ ˆe
′

p′) · 1

immediately implies

(a1 ˆe1) · . . . · (ap ˆep) · x = (a
′

1 ˆe
′

1) · . . . · (a
′

p′ ˆe
′

p′) · x

for every x. �

The previous conditions turn out to be sufficient for our purpose, and we obtain
an exact characterization.

Proposition 2.6. (i) Assume that (S, {∗i ; i ∈ Ω}) is a strongly tame multi-LD-
system, and that g is generic in this system. Define on the left ideal Ig of S
generated by g two new binary operations · and ˆ by the formulas

(a1 ∗i1 . . . ap ∗ip g) · (b1 ∗j1 . . . bq ∗jq
g) = a1 ∗i1 . . . ap ∗ip b1 ∗j1 . . . bq ∗jq

g,

(a1 ∗i1 . . . ap ∗ip g) ˆ (b1 ∗j1 . . . bq ∗jq
g) = c1 ∗j1 . . . cq ∗jq

g,

where ck is a1 ∗i1 . . . ap ∗ip bk. Then (Ig , ·, g, )̂ is an LD-monoid, and the multi-

LD-system (Ig , {∗i�Ig ; i ∈ Ω}) is a companion of this LD-monoid, according to
the formula

x ∗i y = (xˆ (g ∗i g)) · y.

(ii) Conversely, if M is an LD-monoid and the above construction is applied

to the companion multi-LD-system of M , the operations obtained in this way are
the initial operations of M .

Proof: (i) First, we must verify that the operations are well defined. For the
product, this follows from the genericity of g: if a1 ∗i1 . . . ap ∗ip g and a′1 ∗i′

1



622 P.Dehornoy

. . . a′p′ ∗i′
p′

g are two decompositions of an element a of Ig , then the translations

Li1
a1◦. . . ◦L

ip
ap and L

i′
1

a′

1

◦. . . ◦L
i′
p′

a′

p′
are equal, and, therefore, a1 ∗i1 . . . ap ∗ip b1 ∗j1

. . . bq ∗jq
g and a′1 ∗i′

1

. . . a′p′ ∗i′
p′

b1 ∗j1 . . . bq ∗jq
g coincide. So, for every b,

the product a · b does not depend on the decomposition of a, and it is clear from
the definition that it does not depend either on the decomposition of b. For
exponentiation, the same argument as above shows that the factors ck involved
in the definition of â b do not depend on the choice of the decomposition of a, so
â b itself does not either. For the second factor, assume that b1 ∗j1 . . . bq ∗jq

g

and b′1 ∗j′
1

. . . b′q′ ∗j′
q′

g are two decompositions of b. By genericity of g, the

mappings Lj1
b1

◦. . . ◦L
jq

bq
and L

j′
1

b′
1

◦. . . ◦L
j′
q′

b′
q′
are equal. Then the hypothesis that S

is strongly tame successively implies the equality of Lj1
ap∗ipb1

◦. . . ◦L
jq

ap∗ipbq
and

L
j′
1

ap∗ipb′
1

◦. . . ◦L
j′
q′

ap∗ipb′
q′
, then the equality of

L
j1
ap−1∗ip−1

ap∗ipb1
◦. . . ◦L

jq

ap−1∗ip−1
ap∗ipbq

and

L
j′
1

ap−1∗ip−1
ap∗ipb′

1

◦. . . ◦L
j′
q′

ap−1∗ip−1
ap∗ipb′

q′
,

and so on. Finally L
j1
c1◦. . . ◦L

jq
cq and L

j′
1

c′
1

◦. . . ◦L
j′
q′

c′
q′
are equal, where ck is a1 ∗i1

. . . ap ∗ip bk and c′k is a1 ∗i1 . . . ap ∗ip b′k. So exponentiation is well defined.

It is immediate to verify that the product · is associative, and that the identities
x · g = g · x = g ˆ x, x ˆ g = g hold in Ig (by extending in the natural way the
defining formulas for the cases p = 0 or q = 0). For the remaining identities,
assume a = a1 ∗i1 . . . ap ∗ip g and b = b1 ∗j1 . . . bq ∗jq

g. We have successively

(â b) · a = ((a1 ∗i1 . . . ap ∗ip g)̂ (b1 ∗j1 . . . bq ∗jq
g)) · (a1 ∗i1 . . . ap ∗ip g)

= (c1 ∗j1 . . . cq ∗jq
g) · (a1 ∗i1 . . . ap ∗ip g)

= c1 ∗j1 . . . cq ∗jq
a1 ∗i1 . . . ap ∗ip g

where ck is a1 ∗i1 . . . ap ∗ip bk, while we find by applying p times left distributivity

a · b = a1 ∗i1 . . . ap ∗ip b1 ∗j1 . . . bq ∗jq
g

= a1 ∗i1 . . . ap−1 ∗ip−1 (ap ∗ip b1) ∗j1 . . . (ap ∗ip bq) ∗jq
ap ∗ip g

. . .

= c1 ∗j1 . . . cq ∗jq
a1 ∗i1 . . . ap ∗ip g = (â b) · a,



Multiple left distributive systems 623

so the identity (x̂ y) · x = x · y holds in Ig . The verification of the identities
(x · y)̂ z = x̂ (y ẑ) and x̂ (y · z) = (x̂ y) · (x̂ z) is similar. Hence (Ig , ·, g, )̂ is an
LD-monoid.

Finally, with the same notations, we have

(â (g ∗i g)) · b = ((a1 ∗i1 . . . ap ∗ip g)̂ (g ∗i g)) · (b1 ∗j1 . . . bq ∗jq
g)

= ((a1 ∗i1 . . . ap ∗ip g) ∗i g) · (b1 ∗j1 . . . bq ∗jq
g)

= (a ∗i g) · (b1 ∗j1 . . . bq ∗jq
g)

= a ∗i b1 ∗j1 . . . bq ∗jq
g = a ∗i b,

and, on Ig , the operation ∗i is the one derived from the LD-monoid operations as
in Definition 2.1 with e = g ∗i g.

(ii) Assume now that (M, ·, 1, )̂ is an LD-monoid and that (M, {∗e ; e ∈ M}) is the

companion multi-LD-system. Let ·, ˆ denote the associative and the distributive
operations associated as in (i) with the latter (strongly tame) multi-LD-system
and the generic element 1. For every element a of M , we have

1 ∗a 1 = (1ˆa) · 1 = a.

This proves first that the left ideal of (M, {∗e ; e ∈ M}) generated by 1 is the
whole of M . Then we obtain, for arbitrary elements a, b,

a · b = (1 ∗a 1) · (1 ∗b 1) = 1 ∗a 1 ∗b 1 = (1ˆa) · (1 ˆ b) = a · b

aˆ b = (1 ∗a 1)ˆ (1 ∗b 1) = (1 ∗a 1) ∗b 1 = aˆb,

which shows that the new product and exponentiation coincide with the initial
ones. �

Remarks. (i) In the situation of Proposition 3.(i), the mixed identities

x ∗i (y · z) = (x ∗i y) · z and xˆ (y ∗i g) = (x · y) ∗i g

hold in Ig. By taking y = 1 in the first, we deduce in particular the formula
x ∗i z = (x ∗i g) · z.

(ii) In the situation of Proposition 3.(ii), it is not necessary to consider the max-
imal companion multi-LD-system (M, {∗e ; e ∈ M}) in order to make sure that
the construction of (i) gives the initial operations: it suffices to consider any X-
companion where X is a subset of M that generates it as an LD-monoid. Indeed,
the left ideal of (M, {∗e; e ∈ X}) generated by 1 is the whole of M .

(iii) Let us denote by L(S) the left multiplication monoid of the multi-LD-
system S, i.e., the submonoid of the monoid End(S) generated by the left trans-
lations Li

a. If S is a strongly tame (multi-)LD-system, the mapping L can be used



624 P.Dehornoy

to define on the left multiplication monoid L(S) the structure of an LD-monoid,
the associative operation being composition, and the distributive operation being

obtained by carrying those of S according to the formula Li
a ∗ L

j
b = L

j
a∗ib
: the

LD-monoid thus obtained is the “adjoint” of S considered in [3] — in the case of
LD-systems. If g is a generic element of S, the mapping ϕ 7→ ϕ(g) gives an isomor-
phism of the adjoint LD-monoid L(S) onto the LD-monoid of Proposition 3.(i).

(iv) If (S, {∗i ; i ∈ Ω}) is a multi-LD-system, the mapping Li
a 7→ L(a,i) establishes

an isomorphism between the left multiplication monoid of S and that of its hull.
It is easy to verify that (S, {∗i ; i ∈ Ω}) is strongly tame if and only if its hull is
strongly tame, and that an element g of S is generic in (S, {∗i ; i ∈ Ω}) if and
only if the elements (g, i) are generic in its hull. Then the LD-monoids given by
Proposition 2.6(i) from (S, {∗i ; i ∈ Ω}) and from its hull are isomorphic.

The previous construction applies to various examples, and, in particular, to
the case of free LD-systems. Assume that (F, {∗i ; i ∈ Ω})) is a free multi-LD-
system based on the set X . Verifying that F is strongly tame amounts to showing
that a term equivalence of the form

t1 ∗i1 . . . tp ∗ip x =LD t′1 ∗i′
1

. . . t′p′ ∗i′
p′

x′

with x, x′ in X implies the equivalence

(t ∗i t1) ∗i1 . . . (t ∗i tp) ∗ip x =LD (t ∗i t′1) ∗i′
1

. . . (t ∗i t′p′) ∗i′
p′

x′

for every term t and every i in Ω. This is easy, for the hypothesis first implies
p′ = p and x′ = x, and, then, it suffices to consider the case of 1-expansions
as in the proof of Lemma 1.2. The same argument shows that every element
of X is generic, and that the conditions of Proposition 3(i) are fulfilled. It is
easy to verify that the LD-monoid obtained in this way is a free LD-monoid, and
that the present construction corresponds to that considered (in the case of a
monogenerated LD-system) in [12] and [14].

To give other examples, let us consider the case of the cyclic LD-monoids An

of [6], [8], [13]. Denote the associative and the distributive operations of An

respectively by ◦n and ∗n, both defined on {1, . . . , 2
n}. The companion operation

at e is given by
x ∗n,e y = (x ∗n e)◦ny.

In this case, it is trivial to reconstruct ∗n and ◦n from the companion operations,
and even from ∗n,1 solely, for the latter is the preimage of ∗n under the bijective
map x 7→ x ∗n 1; for e ≤ 2n, the operation ∗n,e is obtained similarly from the
distributive operation (x, y) 7→ x[e] ∗n y — observe that, for any LD-system (S, ∗)

and any term t(x) involving a single variable x, the formula (x, y) 7→ t(x) ∗ y
defines a new left distributive operation.

Finally, we refer to [5] where the case of the distributive operations on Artin’s
braid group B∞ and its extensions is investigated.



Multiple left distributive systems 625

References

[1] Dehornoy P., Infinite products in monoids, Semigroup Forum 34 (1986), 21–68.
[2] Dehornoy P., Algebraic properties of the shift mapping, Proc. Amer. Math. Soc. 106.3
(1989), 617–623.

[3] Dehornoy P., The adjoint representation of a left distributive magma, Comm. in Algebra
20.4 (1992), 1201–1215.

[4] Dehornoy P., Braid groups and left distributive operations, Trans. Amer. Math. Soc. 345.1
(1994), 115–151.

[5] Dehornoy P., Transfinite braids and left distributive operations, Math. Zeitschr., to appear.
[6] Drápal A., Homomorphisms of primitive left distributive groupoids, Comm. in Algebra 22.7
(1994), 2579–2592.

[7] Drápal A., On the semigroup structure of cyclic left distributive algebras, Semigroup Forum
51 (1995), 23–30.

[8] Drápal A., Persistence of left distributive algebras, J. Pure Appl. Algebra 105 (1995),
137–165.

[9] Drápal A., Finite left distributive algebras with one generator, J. Pure Appl. Algebra, to
appear.

[10] Larue D.M., Left-Distributive and Left-Distributive Idempotent Algebras, PhD Thesis, Uni-
versity of Colorado, Boulder, 1994.

[11] Larue D.M., Left-distributive idempotent algebras, Comm. in Algebra, to appear.
[12] Laver R., The left distributive law and the freeness of an algebra of elementary embeddings,

Advances in Math. 91.2 (1992), 209–231.
[13] Laver R., On the algebra of elementary embeddings of a rank into itself, Advances in Math.

110 (1995), 334–346.
[14] Zapletal J., Completion of free distributive groupoids, unpublished notes, 1991.

Mathématiques, Université, 14 032 Caen, France

E-mail : dehornoy@math.unicaen.fr

(Received November 19, 1996)


		webmaster@dml.cz
	2012-04-30T17:32:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




