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On a nonlinear elliptic system:

resonance and bifurcation cases

Mario Zuluaga

Abstract. In this paper we consider an elliptic system at resonance and bifurcation type
with zero Dirichlet condition. We use a Lyapunov-Schmidt approach and we will give
applications to Biharmonic Equations.

Keywords: elliptic system at resonance, bifurcation points, Lyapunov-Schmidt method

Classification: Primary 35J55; Secondary 58J55

1. Introduction

In this paper we shall study the existence of solutions and nonzero solutions of
the elliptic system

(S)
−∆u = λu+ δv + g1(u, v)− r1(x)

−∆v = θu+ γv + g2(u, v)− r2(x)

in Ω, where Ω ⊂ R
N is a bounded smooth domain, subject to Dirichlet boundary

conditions u = v = 0 on ∂Ω, r1(x), r2(x) ∈ L2(Ω), g1, g2 are real valued functions
and λ, δ, γ, θ are real numbers.
(S) represents a steady state case of reaction-diffusion systems of interest in

biology. Reaction-diffusion systems have been intensively studied during recent
years, see [30] where many references can be found.
There exists a decoupling technique, which consists of reducing the system (S)

to a single nonlinear equation containing an integral and a differential term. This
technique was introduced by Rothe [28], Lazer & McKenna [21] and Brown [6]
and has been used thereafter by many authors.
For the resonant case many known techniques used to solve the scalar case

can be applied to find solutions and positive solutions. See for example Ahmad,
Lazer & Paul [1], Ambrosetti & Mancini [2], Anane [3], Bartolo, Benci & Fortu-
nato [4], Berestycki & De Figueiredo [5], Capozzi, Lupo & Solimini [7], Cesari &
Kannan [8], Costa & Magalhães [11], De Figueiredo & Gossez [13], Gossez [15],
Innacci & Nkashama [17], Innacci & Nkashama [18], Landesman & Lazer [20],
Lupo & Solimini [22], Omari & Zanolin [26], Rabinowitz [27], Schechter [29], Soli-
mini [31], Vargas & Zuluaga [32], Vargas & Zuluaga [33], Zuluaga [34], [35] and
the references therein.
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The decoupling technique has some obvious shortcomings, for example, it is
very difficult to apply to systems with three or more equations. Even, in the case
of two equations is too restrictive to give conditions to solve the second equation
of (S) for v in terms of u.
Letting

U = (u, v), −~∆U =

(
−∆u
−∆v

)
, A =

(
λ δ
θ γ

)
, G(U) =

(
g1(u, v)
g2(u, v)

)
, R =

(
r1(x)
r2(x)

)
,

we can write (S) as

P(R) −~∆U = A(U) +G(U)−R.

This approach gives us a good meaning of resonance for undecoupling systems.
In fact, using the eigenvalues of the matrix A, which are the numbers

ζ =
λ+ γ

2
−

√(
λ− γ

2

)2
+ δθ, η =

λ+ γ

2
+

√(
λ− γ

2

)2
+ δθ,

we will be able to give a precise description of the kernel of the operator −~∆−A.
If we assume that G is bounded it is natural to say that P(R) is a resonant system

if there exists U ∈ L2(Ω) × L2(Ω), U 6= 0 such that (−~∆ − A)U = 0. If δθ > 0
then (S) is called a cooperative system, and if δθ < 0 is called a noncooperative
system.

It is known, see [11], and easy to see that the kernel of −~∆ − A is nonzero if
and only if A−λjI is singular for some eigenvalue λj of the operator −∆. If x =

(x1, x2) 6= (0, 0) is such that A(x) = λjx then U = (x1φj , x2φj) ∈ Ker(−~∆−A).
It is clear that the foregoing presentation is a generalization of resonance of

the scalar case known in the literature. In this paper we will consider the case in
which A− λ1I is singular. We shall also study a bifurcation case at (0, A) where
A is such that (λ − λ1)(γ − λ1) − δ.θ = 0. It is a natural generalization of the
scalar case where we have bifurcation points at eigenvalues of multiplicity odd. In
our case, the bifurcation point is a manifoldM defined by the foregoing equation.
Here we use the fixed point approach and we give applications to biharmonic

equations. The references more related to the research in the present work are
[11], [14], [32], [33] and [34].

2. Preliminaries and notation

In E = L2(Ω)× L2(Ω) we use the induced inner product and norm given by

〈U,Φ〉 = 〈u, φ〉L2(Ω) + 〈v, ψ〉L2(Ω), ‖U‖2 = ‖u‖2
L2(Ω) + ‖v‖2

L2(Ω),

for U = (u, v) and Φ = (φ, ψ). In order to simplify the notation later on, given
U = (u, v) ∈ E with u =

∑
ujφj , v =

∑
vjφj , where {φj} are the eigenfunctions



On a nonlinear elliptic system: resonance and bifurcation cases 703

associated with the eigenvalues λj , we will say that Uj = (uj , vj) ∈ R
2 are

the coordinates of U . Also we will denote Φj = (φj , φj) and we write simply

U =
∑
UjΦ

j .
Now we introduce the following bracket

[U,Φ] =
(
〈u, φ〉L2(Ω), 〈v, ψ〉L2(Ω)

)
∈ R

2, U = (u, v), Φ = (φ, ψ) ∈ E.

By using the foregoing bracket we see that Uj = [U,Φ
j ]. It is easy to see that

1. [U,Φ] = [Φ, U ], for any U,Φ ∈ E;
2. [U,Φ+ Λ] = [U,Φ] + [U,Λ], for any U,Φ,Λ ∈ E;
3. [λU,Φ] = λ[U,Φ], for any λ ∈ R and U,Φ ∈ E;

4. [(~∆)−1U,Φ] = [U, (~∆)−1Φ], for any U,Φ ∈ E;
5. U =W if and only if Uj =Wj for all j = 1, 2... ;

6. [BU,Φj ] = B[U,Φj ], or in this form: (BU)j = BUj , for any matrix B of
order 2× 2.

Solutions of P(R). We say that U ∈ H10 (Ω)×H10 (Ω) is a solution of P(R) if

(2.1) U = (−~∆)−1(AU +G(U)−R).

It is clear that (−~∆)−1 : E → H10 (Ω)×H10 (Ω) is a linear, selfadjoint, continuous

and bijective operator. Also, the embedding H10 (Ω) × H10 (Ω) →֒ E is compact,

thus (−~∆)−1 : E → E is compact, selfadjoint and injective as well.
Since we shall assume that g1, g2 are continuous and bounded, the operator

G is defined on E with range in E, and it is continuous and bounded. Thus the
operator defined by the right hand side of (2.1) is compact.

The Lyapunov-Schmidt method. We will denote by X the subspace of E
spanned by Φ1, that is to say, X = {wΦ1, w ∈ R

2}. We shall also denote

Y = X⊥ on E. Then all U ∈ E can be written as U = x+ y, x ∈ X and y ∈ Y .
Let us denote P and Q the projection on X and Y , respectively. Applying P
and Q to both sides of (2.1) we obtain a decomposition of it in two equations as
follows

(2.2) x = P (−~∆)−1(Ax+G(x + y)−R)

and

(2.3) y = Q(−~∆)−1(Ay +G(x + y)−R).

For each x ∈ X fixed, we solve (2.3) and the operator solution y(x) will be plugged
into (2.2). Thus, the solutions of (2.1) will be of the form x+ y(x).
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3. Main results

Throughout this paper we shall suppose that gi ∈ C1 is bounded and gi(0) = 0
for i = 1, 2.

Theorem 3.1. Suppose that

(H.1) G is Lipschitzian with constant k where k + ‖A‖ < λ2;
(H.2) λ1 is an eigenvalue of A with multiplicity two;
(H.3) G′(0) is regular.

Then there are an open set V ⊂ E and [a1, b1]× [a2, b2] ⊂ R
2 such that, if R ∈ V

the problem P(R) has a solution, and if [R,Φ1] /∈ [a1, b1]× [a2, b2] then P(R) has
no solutions.

Proof: By using (H.1) it is standard to see that for x ∈ X fixed and R ∈ E
the righthand side of (2.3) is a contraction, thus there exists only one solution
y(x,R) ∈ Y of (2.3). Let T : X × E → Y be the function such that T (x,R) is
the only fixed point of (2.3). By using (H.1), it is a routine matter to show that
T is continuous, T (0, 0) = 0 and T (., R) ∈ C1(X,Y ) for all R ∈ E and T (., R) is
bounded in C1 norm. See [2] or [32] for details.
Now we plug T (x,R) in (2.2) and our problem is reduced to find solutions of

(3.1) x = P (−~∆)−1(Ax+G(x + T (x,R))−R).

Let x = wΦ1 with some w ∈ R
2. The condition (H.2) ensures any w ∈ R

2 is an
eigenvector of A corresponding to λ1. Hence, by properties 4 and 5 of bracket,

noting that (−~∆)−1Φ1 = 1
λ1
Φ1, and by (H.2), (3.1) is equivalent to

(3.2) [R,Φ1] = [G(wΦ1 + T (wΦ1, R)),Φ1].

Let F(w,R) = [G(wΦ1+T (wΦ1, R))−R,Φ1]. Then F(0, 0) = 0 and a calculation
tells us that F′

w(0, 0) = G
′(0). By (H.3) and the Implicit Function Theorem there

exist an open neighborhood V of R = 0 and a continuous function ψ : V → R
2

such that

(3.3) [R,Φ1] = [G(ψ(R)Φ1 + T (ψ(R)Φ1, R)),Φ1].

By (3.3) it is clear that if R ∈ V then (3.1) has a solution x = wΦ1 and therefore
P(R) has a solution in the form wΦ1 + T (wΦ1, R).
On the other hand, let

ai = inf
w∈R

2

R∈E

∫

Ω
gi(wΦ

1 + T (wΦ1, R))φ1, i = 1, 2

and

bi = sup
w∈R

2

R∈E

∫

Ω
gi(wΦ

1 + T (wΦ1, R))φ1, i = 1, 2.
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Since G is bounded, ai, bi are finite numbers. Then by (3.3) we conclude our
second assertion. �

Remark. Theorem 3.1 is a generalization of the scalar case. In that case the
problem has a solution if

∫
ΩRφ1 ∈ (a1, b1) and it has not solution if

∫
ΩRφ1 /∈

[a1, b1]. See [2] or [32].
If we change the hypothesis (H.2) in Theorem 3.1 we can get a theorem in the

same spirit as that in the scalar case.
Let us suppose that A has two eigenvalues, λ1 and µ. Let us denote Λ =

(sinα, cosα) and Π = (sinβ, cos β) the eigenvectors associated with λ1 and µ,
respectively. Then we have the following

Theorem 3.2. Let us assume (H.1) and

(H.4) A has two eigenvalues, λ1 and µ such that (µ− λ1) 6= 0.
(H.5) The following inequality holds

k

|µ− λ1||p|

{
1 +

k(| sinβ|+ | cosβ|)

λ2 − ‖A‖ − k

}
< 1,

where p is sinβ or cosβ.

Then we have: If p = sinβ 6= 0 there exists [c2, d2] finite such that if
∫
Ω r2φ1 ∈

(c2, d2) then the problem P(R) has a solution, and if
∫
Ω r2φ1 /∈ [c2, d2] then the

problem P(R) has no solutions. We have a similar result if p = cosβ 6= 0.

Proof: Suppose that p = sinβ 6= 0, since {Λ, Π} is linearly independent, w ∈ R
2

can be written as w = xΛ + yΠ, for some x,y ∈ R and we can write (3.1) with
x = (xΛ + yΠ)Φ1 as

(xΛ + yΠ)Φ1 = P (−~∆)−1(A(xΛ + yΠ)Φ1 +G(wΦ1 + T (wΦ1, R))−R),

which can be written as

[R,Φ1] = [y(µ− λ1)ΠΦ
1 +G(wΦ1 + T (wΦ1, R), R),Φ1].

That is to say

(3.4.a)

∫

Ω
r1φ1 = (µ− λ1)y sinβ +

∫

Ω
g1(wΦ

1 + T (wΦ1, R))φ1

and

(3.4.b)

∫

Ω
r2φ1 = (µ− λ1)y cosβ +

∫

Ω
g2(wΦ

1 + T (wΦ1, R))φ1.

Now, by (H.5), for each x ∈ R fixed

f(y) =
1

(µ− λ1) sinβ

{∫

Ω
(r1 − g1((xΛ + yΠ)Φ1 + T ((xΛ+ yΠ)Φ1, R)))φ1

}
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is a contraction. Then, for each x ∈ R fixed, (3.4.a) has only one solution y =
t(x, R). Now we can argue as in [2] or [32] and see that t : R × E → R is
continuous, t(0, 0) = 0, t(., R) ∈ C1 and t(., R) is bounded in C1.
Finally we plug t(x, R) in (3.4.b) and we obtain our assertion, where

c2 = inf
x∈R

{
(µ− λ1) cosβ.t(x, R) +

∫

Ω
g2(wΦ

1 + T (wΦ1, R))φ1

}

and

d2 = sup
x∈R

{
(µ− λ1) cosβ.t(x, R) +

∫

Ω
g2(wΦ

1 + T (wΦ1, R))φ1

}
.

�

Nonzero solutions. Now we consider the homogeneous case of system (S). That
is: r1(x) = r2(x) = 0. Then we have the following

Theorem 3.3. Let us assume (H.1) and suppose that

(H.6) A has two eigenvalues, λ1 and µ such that (µ− λ1) > 2;
(H.7) D1g1(0){D2g2(0) + µ− λ1} −D1g2(0)D2g1(0) > 0.

Then system (S), where r1(x) = r2(x) = 0, has at least a nonzero solution.

Proof: As in Theorem 3.1, our problem can be reduced to find solutions of

(3.5) x = P (−~∆)−1(Ax+G(x + T (x))).

Now, (3.5) is equivalent to

(3.6) 0 = P (−~∆)−1([A− λ1]x+G(x+ T (x))).

Let x = wΦ1 with some w ∈ R
2. Hence, the properties 4 and 5 of the bracket

and (H.6) tell us that (3.6) is equivalent to

0 = [(A− λ1)wΦ
1 +G(wΦ1 + T (wΦ1)),Φ1]

that we can put as

(3.7) 0 = Aw +Gw,

whereGw = [G(wΦ1+T (wΦ1)),Φ1] andAw = [(A−λ1)wΦ
1,Φ1]. It is important

to note that the eigenvalues of A are 0 and µ− λ1.
The condition (H.7) tells us that

(3.8) ind[−(A+G), 0] = 1.
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Now, since G is bounded, A+G− I is asymptotically linear to A− I and its
eigenvalues are −1 and µ− λ1 − 1. Then by Theorem 21.2 of [19] we have

(3.9) dB [I − {A+G− I}, B(0, ρ), 0] = (−1)1 = −1,

for ρ large enough. Here, dB denotes the Brouwer degree.
Now, by using (H.6), we can see that 2I − {A + G} and −{A + G} are

homotopically equivalent on ∂B(0, ρ) for ρ large enough. To see that it is sufficient
to consider the homotopy

H(t, u) = 2f(t)u− g(t)(A+G), 0 ≤ t ≤ 1,

where, it is clear, the case t = 0 can be omitted and the functions f, g can be
picked such that f(1) = g(1) = 1, f(0) = 0, g(0) = 1 and f < g for t 6= 1. If
we suppose that H(t, u) = 0 on ∂B(0, ρ) for ρ large enough we get that A has a
positive eigenvalue less than 2. This contradiction shows our assertion. Then by
(3.9) we get

(3.10) dB [−{A+G}, B(0, ρ), 0] = (−1)1 = −1.

By (3.8), (3.10) and the domain decomposition property of the Brouwer degree
theory there exists α ∈ R

2, α 6= 0 such that αΦ1 + T (αΦ1) is a nonzero solution
of system (S) in the case r1(x) = r2(x) = 0. �

Example. As an application of Theorem 3.3 we have the following example: The
system

−u′′ = 4u+ sin v

−v′′ = αv − sinu,

with u(0) = v(0) = u(π2 ) = v(π2 ) = 0 and 6 < α < 12 has at least a nonzero
solution.

4. Bifurcation results

The (H.2) condition tells us that A ∈ M with

M = {(λ, γ, δ, θ) ∈ R
4; (λ− λ1)(γ − λ1)− δθ = 0}.

It is easy to see that M − (λ1, λ1, 0, 0) is a C
1 manifold. Our main theorem is

Theorem 4.1. Suppose that (H.1) and (H.8) hold with

(H.8) G′(0) = 0.

Then for any matrix A ∈ M2×2 for which one and only one of the conditions
(H.4) or (H.2) holds, (0, A) is a bifurcation point of

P(0) −~∆U = A(U) +G(U).
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Proof: First we shall suppose that (H.4) holds. Let B = A + tλ1I, t ∈ R. For
|t| small enough, the (H.1) condition holds for our matrix B. Then the solutions

of −~∆U = B(U) +G(U) can be reduced to find solutions of

(4.1) x = P (−~∆)−1(Bx +G(x+ T (x,B))),

as we did in the proof of Theorem 3.1. It is important to remark that T :
X ×M2×2 → Y is C1 and, by (H.1), T (0, .) = 0.
Let x = wΦ1 with some w ∈ R

2. Hence, by properties 4 and 5 of the bracket
and by (H.4), the equation (4.1) is equivalent to

(4.2) 0 = [tλ1wΦ
1 + (µ− λ1)P (wΦ

1) +G(wΦ1 + T (wΦ1, B)),Φ1],

where P is the projection onto the eigenspace associated with µ. By (H.8) we

conclude that there exists G̃(w, t) such that G(x + T (x,A + tλ1I)) = G̃(x, t).x

with G̃(0, t) = 0. Now, since Y = X⊥ and T (wΦ1, C) ∈ Y , for any w ∈ R
2 and

any matrix C of order 2 × 2, we see that [T (wΦ1, C), zΦ1] = 0, for all z, w ∈ R
2

and for any matrix C of order 2× 2. Hence we have

d

dt
[G(wΦ1 + T (wΦ1, A+ tλ1I)),Φ1]

∣∣∣∣
t=0

= [G′(wΦ1 + T (wΦ1, A)) ◦ T ′
2(wΦ

1, A)(wΦ1, λ1I),Φ
1]

= 0.

By the foregoing equation we obtain

(4.3) G̃t(wΦ
1, 0) = 0.

Now, (4.2) is equivalent to

(4.4) 0 = tλ1w + (µ− λ1)P (w) + G̃(wΦ
1, t)w.

Now, let

H =
{
w ∈ R

2;P (w) = 0
}
.

It is clear that our problem can be reduced to find zeros of

0 = tλ1w + G̃(wΦ
1, t)w, w ∈ H .

These zeros can be found if we find zeros of

0 = tλ1 + G̃(wΦ
1, t), w ∈ H .

If we denote F (w, t) = tλ1 + G̃(wΦ
1, t) we see that F (Θ, 0) = 0 and, by (4.3),

Ft(Θ, 0) = λ1, where Θ = (0, 0) ∈ R
2. The Implicit Function Theorem tells
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us that there are a neighborhood V of Θ (V ⊂ H) and a continuous function
Ψ : V → R such that Ψ(Θ) = 0 and F (w,Ψ(w)) = 0. Then, for all w ∈ V ,

0 = Ψ(w)λ1 + G̃(w,Ψ(w)).

Now, since Ψ is unique, Ψ 6= 0, there exists a sequence {wn} ⊂ V such that
wn → 0, wn 6= 0 and Ψ(wn)→ 0, Ψ(wn) 6= 0. It is clear that

{sn = Ψ(wn)λ1wnΦ
1 + T (wnΦ

1, A+Ψ(wn)λ1I)}

is a sequence of nonzero solutions of P (0) such that sn → 0.
Finally, if we assume that the (H.2) holds then µ − λ1 = 0 and (4.4) will be

0 = tλ1w + G̃(wΦ
1, t)w with w ∈ R

2. Now, we argue as we did before, in this
case without the restriction w ∈ H , and the Theorem is proved. �

Remark. As a consequence of Theorem 4.1 we can consider an interesting example
common in the literature. Suppose that r1 = r2 = 0 and λ1 < λ < λ2, δ = 0 and
γ = λ1. Also suppose that g1(u, v) = 0 and g2(u, v) = g2(v). It is well known
that u = 0 and (S) can be reduced to the scalar problem

(4.5) −∆v = λ1v + g2(v).

Then we have the following

Corollary 4.2. Suppose (H.1), (H.4) and (H.8) (in this case (H.8) has the form
g′2(0) = 0). Then (0, λ1) is a bifurcation point of (4.5).

This result is a particular case of Theorem 5.1 in [10, p. 188].

Remark. In the scalar case (4.5) the condition (H.4) can be weakened. See for ex-
ample [32, p. 251], where a bifurcation point of supercritical type was considered.

5. Biharmonic equations

Theorem 3.2 can be applied to biharmonic equations under Navier and Dirichlet
conditions. For example

(5.1) −∆2u = −λ21u+ g2(u)− r2(x),

where u = ∆u = 0 on ∂Ω.
Indeed, (5.1) can be stated as

−∆u = 0u+ (−1)v

−∆v = −λ21u+ 0v + g2(u)− r2(x).

Here the matrix A is A =
(
0 −1

−λ2
1
0

)
and its eigenvalues are: λ1 and −λ1. Then,

as Theorem 3.2, we have the following
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Theorem 5.1. Suppose (H.1) and (H.5). Then there exists [c2, d2] finite such
that if

∫
Ω r2φ1 ∈ (c2, d2) the problem (5.1) has a solution, and if

∫
Ω r2φ1 /∈ [c2, d2]

the problem (5.1) has no solutions.

Proof: Note that all conditions of Theorem 3.2 hold. �

Acknowledgment. I thank the Referee for his comments and suggestions on
revising this article.
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