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Induced near-homeomorphisms

W lodzimierz J. Charatonik

Abstract. We construct examples of mappings f and g between locally connected con-
tinua such that 2f and C(f) are near-homeomorphisms while f is not, and 2g is a near-
homeomorphism, while g and C(g) are not. Similar examples for refinable mappings are
constructed.

Keywords: cell-like, continuum, dendrite, hyperspace, induced mapping, monotone,
near-homeomorphism, refinable

Classification: 54B20, 54E40

For a metric continuum X we denote by 2X and C(X) the hyperspaces of all
nonempty closed and of all nonempty closed connected subsets of X , respectively.
Given a mapping f : X → Y between continua X and Y , we let 2f : 2X → 2Y

and C(f) : C(X) → C(Y ) denote the corresponding induced mappings. The
following theorem is known ([7, Lemma 2.1, p. 750]).

1. Theorem. For any continuaX and Y and a mapping f : X → Y the following
three statements are equivalent:

(a) f : X → Y is monotone;

(b) 2f : 2X → 2Y is cell-like;
(c) C(f) : C(X)→ C(Y ) is cell-like.

As applications of these results we show that if f is a monotone mapping
between locally connected continua, then 2f is a near-homeomorphism between
Hilbert cubes. Moreover, if the continua X and Y contain no free arcs, then C(f)
is a near-homeomorphism, too. We show appropriate examples of mappings f

and g such that 2f and C(f) are near-homeomorphisms while f is not, and 2g is
a near-homeomorphism, while g and C(g) are not. Finally, we present examples
of non-refinable mappings whose induced mappings are near-homeomorphisms, in
particular are refinable. Several questions are asked.
All spaces considered in this paper are assumed to be metric. Amapping means

a continuous function. A continuum means a compact connected space. Given a
continuum X with a metric d, we denote by 2X the hyperspace of all nonempty
closed subsets of X equipped with the Hausdorff metric H defined by

H(A, B) = max{sup{d(a, B) : a ∈ A}, sup{d(b, A) : b ∈ B}}



134 W.J. Charatonik

(equivalently: with the Vietoris topology: see e.g. [6, (0.1), p. 1 and (0.12), p. 10].
Furthermore, we denote by C(X) the hyperspace of all subcontinua of X , i.e.,

of all connected elements of 2X . The reader is referred to Nadler’s book [6] for
needed information on the structure of hyperspaces.
Given a mapping f : X → Y between continua X and Y , we consider mappings

(called the induced ones)

2f : 2X → 2Y and C(f) : C(X)→ C(Y )

defined by

2f (A) = f(A) for every A ∈ 2X and C(f)(A) = f(A) for every A ∈ C(X).

A continuous mapping ω : 2X → R is called a Whitney map provided that
ω({x}) = 0 for each point x ∈ X , and that if A and B are nonempty closed
subsets of X with A ⊂ B and A 6= B, then ω(A) < ω(B).
A continuum is said to have trivial shape if it is the intersection of a decreasing

sequence of compact absolute retracts. A mapping f : X → Y between continua
X and Y is called cell-like if, for each point y ∈ Y the preimage f−1(y) is a
continuum of trivial shape. In particular, cell-like mappings are monotone, i.e.
the preimages of points are connected.
A mapping f : X → Y between continua X and Y is called a near-homeo-

morphism if f is the uniform limit of homeomorphisms from X onto Y . A proof
of the following proposition is straightforward.

2. Proposition. If a surjective mapping f : X → Y between continua X and
Y is a near-homeomorphism, then the two induced mappings 2f : 2X → 2Y and
C(f) : C(X)→ C(Y ) are near-homeomorphisms, too.

We will show that the converse implications do not hold.
An arc ab in a space X is said to be free provided that ab \ {a, b} is an open

subset of X .

3. Theorem. Let continua X and Y be locally connected, and let a mapping
f : X → Y be monotone. Then 2X and 2Y are homeomorphic to the Hilbert
cube, and the induced mapping 2f is a near-homeomorphism. If, moreover, X

and Y do not contain free arcs, then C(X) and C(Y ) are homeomorphic to the
Hilbert cube, and C(f) is a near-homeomorphism.

Proof: The hyperspaces 2X and 2Y are homeomorphic to the Hilbert cubes by
[6, (1.97), p. 137]. Similarly, if X and Y do not contain free arcs, then C(X)
and C(Y ) are homeomorphic to the Hilbert cube by [6, (1.98), p. 138]. Then by

Theorem 1 the two induced mappings 2f and C(f) are cell-like mappings between
Hilbert cubes, so they are near-homeomorphisms by [5, Theorem 7.5.7, p. 357 and
Corollary 7.8.4, p. 372]. �

The next example shows that even if continua X and Y are homeomorphic, the
conditions that both induced mappings are near-homeomorphisms do not imply
that f is a near-homeomorphism.
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4. Example. There are a locally connected continuum X and a mapping
f : X → X such that the induced mappings 2f and C(f) are near-homeo-
morphisms, while f is not.

Proof: To describe the example recall that a Gehman dendrite is a dendrite G

having the Cantor ternary set in [0, 1] as the set E(G) of its end points, such that
all ramification points of G (the set of which is denoted by R(G)) are of order 3
and are situated in G in such a way that E(G) = clR(G) \R(G) (see the figure).
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Figure

Let e0 and e1 denote two end points of G being of the maximal distance apart,
i.e., these end point of G correspond to points 0 and 1 of the Cantor set when
it is embedded into [0, 1] in the natural way. Let r be a ramification point of G
lying in the left half of G and having the maximal distance from e0. Let K be the
component of G\ {r} containing the end point e1, and let D be the closure of the
union of two other components of G \ {r}. Note that D is a copy of G diminished
thrice with respect to the size of G. Thus there is a homothety h : D → G with the
center e0 and the ratio 3, which maps homeomorphically D onto G. Therefore, if
g : G → D is a monotone retraction of G onto D which shrinks K to the singleton
{r} and which is the identity on D, then the composition h ◦ g : G → G is a
monotone mapping which is not a near-homeomorphism. The above construction
is due to Dr. K. Omiljanowski, see [1, Example 5.3, p. 177].
Let

f = (h ◦ g)× id : G × [0, 1]→ G × [0, 1],

and observe that the induced mappings 2f and C(f) are near-homeomorphisms,
again by Theorem 3.
To see that f is not a near-homeomorphism note that f((e1, 0)) = (v, 0), where

v is the highest point ofG, and that each neighborhood of the point (e1, 0) contains
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the Cartesian product of a triod by an interval, while small neighborhoods of (v, 0)
do not contain such products. �

5. Example. There are a locally connected continuum X and a mapping
f : X → X such that the induced mapping 2f is a near-homeomorphism, while f

and C(f) are not.

Proof: Let X = G be the Gehman dendrite, and let the mappings g and h have
the same meaning as in the previous example. Put f = h◦ g, and observe that 2f

is a near-homeomorphism, again by Theorem 3. So, we need only to verify that
C(f) is not a near-homeomorphism. Denote, as previously, by v the top of G.
Thus f(e1) = v. Note that if N is a closed connected neighborhood of e1, then
dimC(N) =∞ by [6, (1.103), p. 142], while dimension of the hyperspace of sub-
continua of a small closed connected neighborhood of v is two. Therefore there is
no homeomorphism from C(X) to C(X) sending {e1} into a neighborhood of {v}.
This shows that C(f) is not a near-homeomorphism. The proof is complete. �

6. Questions. Let a mapping f : X → Y between continua X and Y be such
that the induced mapping C(f) is a near-homeomorphism (in particular, C(X)

and C(Y ) are homeomorphic). Does it imply that 2f is a near-homeomorphism?
The same question, if X = Y .

Now we are going to discuss relations between refinable induced mappings. Let
us start with a definition. A surjective mapping f : X → Y is called refinable
(see [2, p. 263]; see also a survey article [4] for more information) if for each ε > 0
there is a surjective ε-mapping g : X → Y (called ε-refinement of f) which is
ε-close to f , that is, ρ(f, g) < ε (where ρ means the supremum metric on the

functional space Y X) and diam g−1(y) < ε for each y ∈ Y . In particular, every
near-homeomorphism is refinable, while in general the continua X and Y do not
have to be homeomorphic. However, if there exists a refinable mapping from X

onto Y , then X has to be Y -like, in particular

(7) dimX ≤ dimY.

It is known that if f is refinable, then 2f is refinable, [3, Theorem 2.4 (i), p. 3].
Now we will investigate other possible relations between the three conditions:

(A) f is refinable;

(B) 2f is refinable;
(C) C(f) is refinable.

8. Example. Let f : [0, 1]2 → [0, 1] be the natural projection. Then 2f is
a near-homeomorphism (in particular it is refinable), while C(f) and f are not
refinable.

Proof: 2f is a near-homeomorphism by Theorem 3. C(f) and f are not refinable
because inequality (7) is not satisfied. �
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9. Example. Let f : [0, 1]3 → [0, 1]2 be the natural projection. Then 2f and
C(f) are near-homeomorphisms (in particular they are refinable), while f is not
refinable.

Proof: The argument is exactly the same as for the previous example. �

The following two questions remain open.

10. Question (Hosokawa, [3, p. 2]). Does f refinable imply C(f) refinable?

11. Question. Does C(f) refinable imply 2f refinable?

A surjective mapping f : X → Y is called monotonely refinable if it is refin-
able, and each ε-refinement of f can be chosen to be a monotone mapping. In
particular each near-homeomorphism is monotonely refinable. It is known that if
the mapping f is monotonely refinable, then the two induced mappings, 2f and
C(f) also are monotonely refinable, [3, Theorem 2.4 (ii), p. 3]. Example 9 shows
that none of the two opposite implications is true. Furthermore, by Example 8,
2f is monotonely refinable does not imply that C(f) is monotonely refinable.

12. Question. Does C(f) monotonely refinable imply 2f monotonely refinable?
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