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On topological and algebraic structure

of extremally disconnected semitopological groups

A.V. Arhangel’skii

Abstract. Starting with a very simple proof of Froĺık’s theorem on homeomorphisms
of extremally disconnected spaces, we show how this theorem implies a well known
result of Malychin: that every extremally disconnected topological group contains an
open and closed subgroup, consisting of elements of order 2. We also apply Froĺık’s
theorem to obtain some further theorems on the structure of extremally disconnected
topological groups and of semitopological groups with continuous inverse. In particular,
every Lindelöf extremally disconnected semitopological group with continuous inverse
and with square roots is countable, and every extremally disconnected topological field
is discrete.
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All spaces considered in this note are assumed to be Hausdorff. A semitopolo-
gical group is a group with a topology such that all left and right translations are
continuous. The neutral element of a group is always denoted by e.
A topological space X is called extremally disconnected, if the closure of any

open subset of X is open in X . It is still an open question, formulated for the
first time in [1], in 1967, whether there exists in ZFC a non-discrete extremally
disconnected topological group.
The first consistent example of a non-discrete extremally disconnected topolo-

gical group was constructed by S. Sirota in [10]. Further work in this direction was
done by V.I. Malychin [8]. In particular, he was the first to notice a remarkable
fact: that every extremally disconnected topological group G contains an open
(and closed) Abelian subgroup H such that a2 = e, for each a ∈ H .
Below we provide a very simple and transparent proof of Malychin’s theorem,

based on a general theorem on homeomorphisms of extremally disconnected spaces
belonging to Z. Froĺık [4], [5], [6] (Theorem 1) (see also [9] and [7]). For the sake
of completeness, we present here a direct proof of Theorem 1, all the more so since
it is amazingly simple and short.
Theorem 1 is just what we need to get Malychin’s result and to obtain further

theorems on the structure of extremally disconnected topological groups, and to
partially extend these to semitopological groups.
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Theorem 1. Let X be an extremally disconnected space, and h a homeomor-

phism of X onto itself. Then the set M = {x ∈ X : h(x) = x} of all fixed points
under h is an open and closed subset of X .

Proof: A subset A of X will be called h-simple, if h(A) ∩ A = ∅. Let (using
Zorn’s Lemma) C be a maximal chain of h-simple open subsets ofX . Put U = ∪C.
Then, by an obvious standard argument, U is h-simple. Thus, the sets U and
h(U) are disjoint. Therefore, since h is a homeomorphism, the sets h−1(U) and
h(U) are also h-simple open sets. Since X is extremally disconnected, it follows
that the closures of U and h(U) are disjoint open sets as well. Thus, Ū is h-simple.
Notice, that maximality of the chain C and the definition of U imply that U is a
maximal h-simple open subset of X . Therefore, Ū coincides with U , that is, U is
closed. It follows that the sets h(U) and h−1(U) are also closed. Hence, the set
F = U ∪ h(U) ∪ h−1(U) is closed.
Now, it is obvious that the intersection of M with any h-simple set is empty.

Since F is the union of three h-simple sets, it follows that M ∩F = ∅. Therefore,
X \ F is an open set containing M . Let us show that M = X \ F (which will
obviously make the proof of Theorem 1 complete).
Assume the contrary. Then there exists a ∈ X \ F such that h(a) 6= a. Since

X is Hausdorff and h is continuous, there exists an open neighbourhood W of a
such that h(W ) ∩ W = ∅ and W ∩ F = ∅. Then W is h-simple, and W ∩ U = ∅,
W ∩ h(U) = ∅, W ∩ h−1(U) = ∅, from which it follows that U ∪W is an h-simple
open set that properly contains U . On the other hand, by maximality of U this
is impossible, a contradiction. �

Remark 1. The sets U and h(U) are disjoint, as well as the sets U and h−1(U),
while the sets h(U) and h−1(U) may have a non-empty intersection. If we wish
to have a disjoint covering of the complement to M by open and closed h-simple
subsets of X , we only have to replace h−1(U) by the set h−1(U)\h(U). Compare
the result obtained with Problem 183 in [2, Chapter 6, Section 5].

Theorem 2 (V.I. Malychin [8]). Let G be an extremally disconnected topological
group. Then there exists an open and closed Abelian subgroup H of G such that

a2 = e, for each a ∈ H .

Proof: By Theorem 1, the set U = {a ∈ G : a2 = e} is an open neighbourhood
of the neutral element e. Since G is a topological group, there exists an open
neighbourhood V of e such that V 2 ⊂ U . Every two elements a and b of V

commute. Indeed, abab = e, since ab ∈ U . Now from a2 = e and b2 = e it follows
that ab = ba. Therefore, the subgroup H generated by V in G is Abelian. Since
V is open, the subgroup H is also open, and therefore closed in X . Finally, since
H is Abelian and is generated by V , and all elements of V are of order 2, it follows
that a2 = e, for every a ∈ H . �

The proof above heavily depends on the assumption that G is a topological
group, in particular, on the joint continuity of multiplication in G. If we replace
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this assumption with a weaker one that the multiplication is separately contin-
uous, we cannot derive a conclusion as strong as in Theorem 2, but we still can
obtain some interesting information on the topologo-algebraic structure of G. Re-
call that a semitopological group is a group with a topology such that left and
right multiplications are separately continuous.

Theorem 3. Let G be an extremally disconnected semitopological group with

continuous inverse. Then the set W of all elements a of G such that a2 = e is an

open (and closed) neighbourhood of the neutral element e of G.

Proof: Indeed, the inverse mapping of G onto itself is a homeomorphism, and e

is a fixed point of this mapping. It remains to apply Theorem 1. �

If G is a group and a is an element of G such that a2 is the neutral element
e of G, we say that a is an element of order 2. It is well known that elements of
order 2 need not constitute a subgroup. This happens because they do not have
to commute. In this light, the next result is of some interest.

Proposition 4. Let G be an extremally disconnected semitopological group with

continuous inverse. Then, for every element a of G of order 2, there exists an
open neighbourhood V of the neutral element e such that a commutes with every

element of V ∪ aV .

Proof: By Theorem 3, the set U of all elements of G of order 2 is open in G.
Since G is semitopological, there exists an open neighbourhood V of the neutral
element e such that aV ⊂ U . Let b ∈ V . Then ab ∈ U ; therefore, abab = e. Since
a2 = e and b2 = e, it follows that ab = ba. Thus, a commutes with every element
of V .
Now, let c ∈ aV . Then c = ab, for some b ∈ V , and ac = aab, ca = aba = aab.

Therefore, ac = ca. �

In the proof of Theorem 6 below we apply Proposition 4. However, it seems
worth noting the next stronger statement that is proved by a slightly more elab-
orate argument. If G is a group and a ∈ G, we denote by Ca the set of all b ∈ G

which commute with a (that is, satisfy the condition ab = ba).

Theorem 5. Let G be an extremally disconnected semitopological group with

continuous inverse. Then, for any a ∈ G, the set Ca of all b ∈ G that commute

with a is an open and closed subgroup of G (containing a).

Proof: Let φ be the mapping of G into G given by the rule: φ(x) = a−1xa, for
each x ∈ G. Clearly, φ is a homeomorphism of the space G onto itself. Therefore,
by Theorem 1, the set F of all fixed points under φ is open and closed. Since it is
well known that Ca is always a subgroup of G, it remains to check that Ca = F .
We have: φ(x) = x if and only if a−1xa = x if and only if ax = xa if and only if
x ∈ Ca. �



806 A.V. Arhangel’skii

Remark 2. Theorem 5 allows to strengthen Theorem 2 in the following way. Let
G be an extremally disconnected topological group. Then, for any a ∈ G, there

exists an open (and closed) Abelian subgroup A of G such that, for every element

b of A, ab = ba and b2 = e.

Theorem 6. Let G be an extremally disconnected semitopological group with

continuous inverse, such that G is generated by every open neighbourhood of the

neutral element e. Then G is Abelian, and a2 = e, for each a ∈ G.

Proof: Let U = {a ∈ G : a2 = e}. Take any a ∈ U and any b ∈ G. By
Proposition 4, there exists an open neighbourhood V of e such that a commutes
with every element of V . Then, obviously, a commutes with every element of the
subgroup H algebraically generated by V . However, H coincides with G by the
assumption. Hence, a commutes with every element of G. It follows, in particular,
that any two elements of U commute. By Theorem 3, U is an open neighbourhood
of e. Therefore, by the assumption, U generates G. On the other hand, if a ∈ U

and b ∈ U , then a−1 = a ∈ U , and ab ∈ U , since abab = abba = aea = a2 = e.
Therefore, U is a subgroup of G. It follows that G = U . �

Corollary 7 ([9]). Let h be a homeomorphism of the Stone-Čech compactifica-

tion βN of an infinite discrete space N onto βN such that there are no fixed

points of h in N . Then no point of βN is fixed under h.

Proof: Since the space βN is extremally disconnected, this follows from Theo-
rem 1. �

Several other results in the paper [9] of R. Raimi can be similarly deduced from
Theorem 1; such proofs seem to be more elementary and transparent, than the
original ones.

Theorem 8. LetG be a separable extremally disconnected semitopological group

with continuous inverse. Then there exists an Abelian subgroup H of G such that

H is a closed Gδ-subset of G. Moreover, H can be chosen so that every element

of H commutes with every element of G.

Proof: Fix a countable dense subset A of G. By Theorem 5, for each a ∈ A there
exists an open and closed subgroup Ha of G such that every x ∈ Ha commutes
with a. Put H = ∩{Ha : a ∈ A}. Then H is a closed subgroup of G and a
Gδ-subset of G; it is also clear that every x ∈ H commutes with every element
of A. Since A is dense in G, and left and right translations are continuous, it
follows that every x ∈ H commutes with each element of G. In particular, H is
Abelian. �

Theorem 9. Let G be an extremally disconnected semitopological group with

continuous inverse, and b any element of G. Then the set Mb = {x ∈ G : x2 = b}
is open and closed in G.
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Proof: Let hb be the mapping of G into itself given by the rule: hb(x) = x−1b,
for each x ∈ G. Obviously, hb is a homeomorphism of the space G onto itself.
Therefore, the set F of all fixed points under hb is an open and closed subset of G.
Now, F coincides with Mb. Indeed, for a ∈ G, hb(a) = a if and only if a = a−1b

if and only if a2 = b. �

Corollary 10. Let G be an extremally disconnected semitopological group with

continuous inverse, and let S2 = S2(G) = {Mb : b ∈ G}, where the sets Mb are

defined as in Theorem 9. Then S2 is a disjoint open covering of the space G.

Everywhere below S2 and Mb have the same meaning as in Theorem 9 and
Corollary 10. We say that the discrete Souslin number of a space X is countable
if every discrete in X family of non-empty open subsets of X is countable.

Proposition 11. Let G be an extremally disconnected semitopological group

with continuous inverse such that the discrete Souslin number of the space G is

countable. Then the set of all b ∈ G, for which there exists a ∈ G such that

a2 = b, is countable.

Proof: This follows from Corollary 10 which guarantees that, under the re-
strictions on G in Proposition 11, for only countably many b in G the set Mb is
non-empty. �

We will call a group G a group with square roots , if for each b ∈ G there exists
a ∈ G such that a2 = b. From Proposition 11 we immediately get the next result:

Theorem 12. Let G be an extremally disconnected semitopological group with

continuous inverse and with square roots such that the discrete Souslin number

of the space G is countable. Then G is countable.

Corollary 13. Let G be a pseudocompact extremally disconnected semitopolo-

gical group with continuous inverse and with square roots. Then G is finite.

Proof: By Theorem 12, G is countable. Therefore it is Lindelöf, and G being
pseudocompact, it has to be compact. Since every countable compact Hausdorff
space has an isolated point, G must be discrete. Therefore, G is finite. �

Corollary 14. Let G be a Lindelöf extremally disconnected semitopological

group with continuous inverse and with square roots. Then G is countable.

Corollary 15. Let G be an extremally disconnected semitopological group with

continuous inverse and with square roots such that the Souslin number of G is

countable. Then G is countable.

Theorem 16. Let G be an extremally disconnected semitopological group with

continuous inverse and with square roots such that the discrete Souslin number

of the space G is countable and the space G has the Baire property. Then G is

countable and discrete.
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Proof: This assertion follows from Theorem 12, since every countable T1 -space
with the Baire property has an isolated point. Indeed, then the space G, being
homogeneous, must be discrete. �

Remark 3. Notice, that if G is an extremally disconnected group, then the set
L = {x ∈ G : x3 = e} need not be open in G. Indeed, if L is open, then L

is a neighbourhood of e; therefore, L ∩ Me is also an open neighbourhood of the
neutral element e in G. On the other hand, it is clear thatMe∩L = {e}; therefore,
e is isolated in G, which implies that G is discrete.

Observe that the next old question, put forward in [1], remains open:

Problem 1. Is there in ZFC an example of a non-discrete extremally discon-
nected topological group?

Even the answer to the following, much more general, question seems to be
unknown:

Problem 2. Is there in ZFC an example of a non-discrete extremally discon-
nected semitopological group with continuous inverse?

It is well known that if we do not require the continuity of inverse in Problem 2,
then the answer is “yes” ([3]).
In connection with Theorem 2, it is natural to ask the following question:

Problem 3. Let G be an extremally disconnected semitopological group with
continuous inverse. Is then true that there exists an open and closed Abelian
subgroup of G?

Notice that Theorem 8 is a partial result just in this direction.

In connection with Problems 2 and 3, we should mention that Theorem 3 is
strong enough to derive the following statement which shows that many (alge-
braic) groups do not admit a topology of the kind we are looking for.
An element a of a group G we call Boolean if a 6= e and a2 = e. Then

Theorem 1 immediately implies the following statements:

Corollary 17. Let G be a group such that the set of all Boolean elements of G is

finite, and T is a topology on G such that the inverse operation is continuous and

the one-point set e does not belong to T . Then T is not extremally disconnected.

Corollary 18. Let G be a group such that the set of all Boolean elements of

G is finite, and T is a topology on G such that the inverse operation is continu-

ous and the space (G, T ) is homogeneous. Then the space (G, T ) is extremally
disconnected if and only if it is discrete.

Example 19. The assumption that the space (G, T ) is homogeneous cannot be
dropped in Corollary 18. Indeed, let us fix an extremally disconnected topology
T on the set P of all positive real numbers such that P is dense in itself. For
V ⊂ P , put −V = {−x : x ∈ V }. Then the family B = T ∪{−V : V ∈ T }∪{{0}}
is a base of a non-discrete extremally disconnected topology T ∗ on the set R of
all real numbers such that the inverse mapping is continuous.
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In conclusion, we present the following theorem:

Theorem 20. If a topological skew field F is extremally disconnected, then it is

discrete.

Proof: A topological skew field F is a topological ring in which multiplication is
not necessarily commutative and the set G of all non-zero elements is a topological
group under the multiplication. Let 0 and 1 denote the zero element and the unit
element of F . Notice that G = F \ {0} is dense in F and, therefore, the space G

is also extremally disconnected.

Since F is an extremally disconnected topological group with respect to addi-
tion, there exists an open neighbourhood V of 0 such that a + a = 0, for each
a ∈ V .

Since G is an extremally disconnected topological group with respect to mul-
tiplication, there exists an open neighbourhoodW of 1 such that b2 = 1, for each
b ∈ W . Clearly, W is open in F since G is open in F .

Since F is a semitopological group with respect to addition, there exits an open
neighbourhood U of 0 such that

1 + U ⊂ W.

Then for any a ∈ U we have: (1+a)(1+a) = 1+(a+a)+a2 = 1+0+a2 = 1+a2,
since a ∈ V . On the other hand, (1 + a)2 = 1, since 1 + a ∈ W . Therefore,
1 = 1 + a2 which implies that a2 = 0. Since all non-zero elements of F are
invertible, it follows that a = 0. Therefore, U = {0}, and, hence, F is discrete.

�

Remark 4. Theorem 20, as it is clear from its proof, remains true if we only
assume that F is an extremally disconnected semitopological skew field, that is,
both F and G are semitopological groups with continuous inverse.
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