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On α-normal and β-normal spaces

A.V. Arhangel’skii, L. Ludwig

Abstract. We define two natural normality type properties, α-normality and β-normality,
and compare these notions to normality. A natural weakening of Jones Lemma immedi-
ately leads to generalizations of some important results on normal spaces. We observe
that every β-normal, pseudocompact space is countably compact, and show that if X is
a dense subspace of a product of metrizable spaces, then X is normal if and only if X is
β-normal. All hereditarily separable spaces are α-normal. A space is normal if and only
if it is κ-normal and β-normal.
Central results of the paper are contained in Sections 3 and 4. Several examples are

given, including an example (identified by R.Z. Buzyakova) of an α-normal, κ-normal,
and not β-normal space, which is, in fact, a pseudocompact topological group. We
observe that under CH there exists a locally compact Hausdorff hereditarily α-normal
non-normal space (Theorem 3.3). This example is related to the main result of Section 4,
which is a version of the famous Katětov’s theorem on metrizability of a compactum the
third power of which is hereditarily normal (Corollary 4.3). We also present a Tychonoff

space X such that no dense subspace of X is α-normal (Section 3).

Keywords: normal, α-normal, β-normal, κ-normal, weakly normal, extremally discon-
nected, Cp(X), Lindelöf, compact, pseudocompact, countably compact, hereditarily sep-
arable, hereditarily α-normal, property wD, weakly perfect, first countable

Classification: 54D15, 54D65, 54G20

§0. Introduction

One of natural approaches to a systematic study of a notion of interest is to
compare it with its weaker or stronger versions. For example, it helps to under-
stand compactness better, when we study countable compactness, pseudocom-
pactness, initial compactness, and so on. A deeper understanding of paracom-
pactness can be achieved by a study of a great wealth of paracompactness type
properties, such as metacompactness, strong paracompactness, countable para-
compactness, and so on. Normality is no exception to this rule, and quite a few
interesting normality type notions were introduced earlier (see, for example, [1],
[8], [19], [21]).
Below we define two new normality type properties: α-normality and β-nor-

mality. Results in the first section of the paper are elementary; we just review
from the new point of view some old classical examples of normal spaces and see
that the classical proofs of non-normality in these examples show that the spaces
under consideration are not α-normal.
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Results in Section 2 are less obvious, though their proofs are not long. For
example, this relates to Theorem 2.2, Theorem 2.3, and to Corollary 2.6. The
proofs of Theorems 2.3 and Corollary 2.6 depend on some deep theorems on
product spaces and Cp-spaces.
Central results of the paper are obtained in Sections 3 and 4. In particular,

we present an argument, belonging to R.Z. Buzyakova, showing that there exists
an α-normal space which is not β-normal. Theorems 3.9 and 3.10 also seem to
be interesting. Under CH, it is demonstrated that there exists a locally compact
Hausdorff hereditarily α-normal not normal space (Theorem 3.3). The main result
of Section 4 is a version of the famous Katětov’s theorem on metrizability of a
compactum, the third power of which is hereditarily normal (Corollary 4.3).
Our notation and terminology are as in [10]. However, we prefer to use the

expression “a closed discrete subset A of a space” instead of the shorter expression
“a discrete subset A of a space”, since the latter is quite often used when the
subspace A is discrete in itself.

§1. Definitions and first results on α-normality

A space X will be called α-normal if for any two disjoint closed subsets A and
B of X there exist disjoint open subsets U and V of X such that A ∩ U is dense
in A and B ∩ V is dense in B.
A space X will be called β-normal if for any two disjoint closed subsets A and

B of X there exist open subsets U and V of X such that A ∩ U is dense in A,
B ∩ V is dense in B, and U ∩ V = ∅.
Clearly, any normal space is β-normal and any β-normal space is α-normal.

Also, we have the following easy to prove statements:

Proposition 1.1. If a β-normal space X satisfies the T1 separation axiom, then
the space X is regular.

Proposition 1.2. If an α-normal space X satisfies the T1 separation axiom, then
the space X is Hausdorff.

From now on we assume all spaces under consideration to satisfy the T1 sepa-
ration axiom.
The following questions regarding the relationship between α-normality, β-

normality, and the classical separation axioms come naturally to mind.

Question 1. Does there exist a Hausdorff α-normal non-regular space?

Question 2. Does there exist a regular Hausdorff α-normal not Tychonoff space?

Question 3. Does there exist a Tychonoff α-normal not normal space?

Question 4. Does there exist a Tychonoff β-normal not normal space?
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Question 5. Does there exist an α-normal, Tychonoff, not β-normal space?

We answer some of these questions below. Somewhat unexpectedly, it turns
out to be not too easy to get these answers. In this section, we present first results
on α-normality. We start with two obvious general statements.

Proposition 1.3. A closed subspace of an α-normal space (β-normal space) is
α-normal (β-normal).

Proposition 1.4. If a space X is α-normal, then any two disjoint closed discrete
subsets A and B of X can be separated by open disjoint subsets of X .

By Proposition 1.4, we have the following refinement of F.B. Jones Lemma:

Proposition 1.5. Let X be space with a discrete subspace S of cardinality λ
and a dense subspace D of cardinality κ. Then

1) if X is hereditarily α-normal, then 2κ ≥ 2λ;
2) if X is α-normal and S is closed, then 2κ ≥ 2λ.

Corollary 1.6. If 2ω < 2ω1 and X is a separable, α-normal space, then every
closed discrete subset A of X is countable. In addition, if X is a separable,

α-normal space, then for any closed discrete subset A of X we have |A| < 2ω.

Example 1.7. With the help of Proposition 1.4, it is easy to verify that the
following spaces are not α-normal (the standard proofs of their non-normality
show this. Only in the case of Mrowka space we have to slightly expand the
argument).

1. The deleted Tychonoff Plank.

2. The Dieudonné Plank.

3. Any nontrivial Mrowka Space M.

Recall thatM is constructed with the help of a maximal almost disjoint infinite
family of infinite subsets of ω (see [10]). This space is pseudocompact (due to
maximality of the family) and not countably compact (since it contains an infinite
closed discrete subspace). Therefore, M is not normal (this is an elementary well
known fact: every pseudocompact normal space is countably compact [10]). So
there exist closed disjoint subsets A and B of M that cannot be separated by
open sets.
Suppose M is α-normal. Let

A1 = A ∩ (M \ ω),

B1 = B ∩ (M \ ω),

A2 = A ∩ ω,

B2 = B ∩ ω.



510 A.V.Arhangel’skii, L. Ludwig

Then A1 and B1 are disjoint closed discrete subsets of M . Hence, there exists
open disjoint subsets U1 and V1 of M such that U1 ∩ A1 = U1 ∩A1 = A1 ⊆ U1
and V1 ∩ B1 = V1 ∩B1 = B1 ⊆ V1. Now (U1 \ B) ∪ A2 and (V1 \ A) ∪ B2 are
disjoint open subsets of M which contain A and B respectively. This contradicts
the fact that A and B cannot be separated by open sets.

4. The square of the Sorgenfrey Line.

5. The Niemytzki Plane.

A natural step now is to take a classical theorem about normality and to try
to replace normality with α-normality or with β-normality. Sometimes this turns
out to be possible. Corollary 1.6 is just one of such results.

Here is a generalization of the famous theorem of F.B. Jones [12]:

Corollary 1.8. If 2ω < 2ω1 , then every separable α-normal Moore space X is
metrizable.

Proof: Every Moore space has a σ-discrete network. Therefore, it suffices to
show that each closed discrete subset of X is countable (this would imply that X
is Lindelöf). It remains to apply Corollary 1.6. �

Another natural question to consider is: what additional properties, when
added to α-normality, result in normality? Here is a result of this kind. Recall
that a Hausdorff space X is extremally disconnected if the closure of every open
set in X is open. The proof of the next result is straightforward.

Theorem 1.9. Every extremally disconnected, α-normal space X is normal.

§2. First results on β-normality

Proposition 2.1. A space X is β-normal if and only if, for each closed A ⊆ X
and for all open U ⊆ X with A ⊆ U , there exists an open V ⊆ X such that

V ∩A = A ⊆ V ⊆ U .

Proof: (→) Let X be β-normal, A a closed subset of X , and U an open subset
of X such that A ⊆ U . Put B = X \ U . Since B is closed and X is β-normal,
there exist open sets W1, W2 in X with disjoint closures and such that W1 ∩ A
and W2 ∩B are dense in A and B, respectively. Thus, W1 ∩B = ∅ which implies
that W1 ⊆ U .

(←) Let A and B be closed disjoint subsets of X . Since X \ B is open in X
and A ⊆ X \B, by hypothesis there exist W1 open in X such that W1 ⊆ X \ B
and W1 ∩A = A. Moreover, X \W1 is open in X and contains B, so, by the
hypothesis, there exists an open subset W2 of X such that W2 ⊆ X \W1 and
W2 ∩B = B. Since W1 ∩W2 = ∅, the space X is β-normal. �

Every normal pseudocompact space is countably compact (see [10]). The same
is true for β-normal spaces.
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Theorem 2.2. Every β-normal, pseudocompact space X is countably compact.

Proof: Suppose that X is not countably compact. This implies that there exists
a countable, closed, discrete subset A = {an : n ∈ ω} in X . Since X is regular,
there exists a family {Un : n ∈ ω} of open subsets of X such that an ∈ Un for
all n ∈ ω and Ui ∩ Uj = ∅ for all i 6= j. So,

⋃

n∈ω Un is open in X , hence

F = X \
(
⋃

n∈ω Un

)

and A are closed disjoint subsets of X . Since X is β-normal,

there exist open subsets U and V of X such that U ∩ V = ∅, U ∩ F = F and
V ∩A = A. Now γ = {V ∩ Un : n ∈ ω} is a discrete family of nonempty open
subsets of X . But this contradicts X being pseudocompact. �

Theorem 2.3. Let X be a dense subspace of a product of metrizable spaces.

Then X is normal if and only if X is β-normal.

Proof: E.V. Ščepin [19] defined a space to be κ-normal if any two disjoint
canonically closed sets in X have disjoint neighborhoods. Ščepin and R. Blair
independently showed that every dense subspace of any product of metrizable
spaces is κ-normal ([8], [20]). Therefore, since X is κ-normal and β-normal, it
remains to apply the next theorem. �

Theorem 2.4. A space X is normal if and only if it is κ-normal and β-normal.

Proof: (→) Clear.

(←) Let A and B be any two closed disjoint subsets of X . Since X is β-normal,
there exist open subsets U and V of X such that U ∩ V = ∅, U ∩A = A, and
V ∩B = B. So, U and V are disjoint canonical closed sets containing A and B,
respectively. Since X is κ-normal, there exist disjoint, open subsets W1 and W2
of X such that A ⊆ U ⊆W1 and B ⊆ V ⊆W2. �

Recall that R
τ is not normal if τ > ω ([10]). So, we have the following corollary:

Corollary 2.5. If τ > ω, then R
τ is not β-normal.

Corollary 2.6. For any Tychonoff space X , the space Cp(X) is normal if and
only if it is β-normal.

Proof: Indeed, Cp(X) is always a dense subspace of R
X (see [3]). �

In the above statement, β-normality cannot be replaced by α-normality. We
will see this in the next section.

§3. Examples of α-normal not β-normal spaces

We will now present two examples of α-normal, not normal spaces.

Theorem 3.1. Let X be a regular space such that for every closed subspace Y
of X there exists a Lindelöf subspace Z of Y that is dense in Y . Then X is

α-normal.
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Proof: Let A and B be closed disjoint subsets of X . By the hypothesis, there
exist Lindelöf subspaces W , Z, and Y that are dense subsets of A, B, and X ,
respectively. Put D = Y ∪ W ∪ Z. Then D is a dense Lindelöf subspace of
X . Hence, D is normal. So, there exist open disjoint subsets UA and UB of D
separating the closed disjoint subsets A ∩D and B ∩D of D. Moreover, since D
is dense in X , there exist open disjoint subsets VA and VB of X such that UA =
VA∩D and UB = VB ∩D. Since W is dense in A, fromW ⊆ A∩D ⊆ VA∩A ⊆ A
it follows that VA ∩A = A. Similarly, VB ∩B = B. Hence, X is α-normal. �

Corollary 3.2. If every closed subspace of a regular space X is separable, then
X is α-normal.

Now we are ready to present one of the main results of this section:

Theorem 3.3 (CH). There exists a locally compact, Tychonoff, first countable,
not normal space Y such that Y n is hereditarily α-normal, for each n ∈ ω.

Proof: In his classic 1948 article [14], M. Katětov showed that a compact Haus-
dorff space X is metrizable if and only if X ×X ×X is hereditarily normal. On
the other hand, K. Kunen constructed, under the continuum hypothesis, a non-
metrizable, compact, perfectly normal spaceK of cardinality continuum such that
all finite powers of K are hereditarily separable (see [17]). Now, K × K × K is
compact and hereditarily separable, so by Corollary 3.2, K × K × K is hered-
itarily α-normal. However, by Katětov’s result, K × K × K is not hereditarily
normal, since K is not metrizable. It is well known and easy to prove, that a
space X is hereditarily normal if and only if every open subspace of X is normal.
So, K ×K ×K has an open subspace Y such that Y is not normal. Clearly, Y
is locally compact, and Y n is hereditarily separable and therefore, hereditarily
α-normal, for each n ∈ ω. �

This example not only answers Question 3 (consistently), but also helps to
answer Question 2 (also consistently). In [13], F.B. Jones showed that if there
exists a non-normal, hereditarily separable, regular Hausdorff space X , then there
exists a non-Tychonoff, hereditarily separable, regular Hausdorff space. So under
CH, we can create a new example of a space via Jones’ machine that is α-normal by
Corollary 3.2 but not Tychonoff. This answers in positive Question 2 under CH.

Example 3.4. Assume CH. Then there exists a space X such that Cp(X) is
hereditarily α-normal but not normal. Indeed, from Katětov’s and Kunen’s re-
sults cited and applied above we know that under CH there exists a non-normal
Tychonoff space X such that every finite power Xn of X is hereditarily sepa-
rable. Fix such X and consider the second Cp-space over X , that is, the space
Z = Cp(Cp(X)). Then X is homeomorphic to a closed subspace of Z (see [3]).
Therefore, Z is not normal. On the other hand, the space Z is κ-normal (see the
proof of Corollary 2.6). Now from Theorem 2.4 it follows that Z is not β-normal.
We claim that Z is hereditarily α-normal. Indeed, Z is hereditarily separable,
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since every finite power of X is hereditarily separable (see Corollary 2.5.29 in [3]).
Hence, Z is hereditarily α-normal by Corollary 3.2.

Notice, that Z is a “very nice” space: it is a linear topological space, therefore
Z is homogeneous; also the Souslin number of Z is countable.

Question 6. Is there a ZFC example of an α-normal space Cp(X) which is not
normal?

It is well known that, for every Tychonoff space X , the space Cp(X) is a dense

subspace of RX . Therefore, Example 3.4 shows, under CH, that in Theorem 2.3 it
is not possible to replace β-normality with α-normality, even when all factors are
separable metrizable spaces. However, the situation becomes more delicate when
we consider the products of not more than ω1 of separable metrizable spaces (in
particular, Rω1).
We need the following lemma, the proof of which is contained in the proof of

Theorem 1 in D.P. Baturov’s paper [7], and is therefore omitted.

Lemma 3.5. Suppose that Y is a dense subspace of the product X = Π{Xα :
α < ω1} of separable metrizable spacesXα. Suppose further that Z is an uncount-
able discrete subspace of Y . Then there exist disjoint subsets A and B of Z such
that, for each countable subset S of ω1, the images πS(A) and πS(B) of the sets
A and B under the natural projection of X onto the space XS = Π{Xα : α ∈ S}
are not separated in XS (that is, the closure of at least one of them intersects the
other set).

Now we need the next version of M.F. Bockstein’s lemma [9] which is a part of
the folklore. We briefly sketch the proof of it, for the sake of completeness.

Lemma 3.6. Let X = Π{Xα : α ∈ A} be the product of separable metrizable
spacesXα. Suppose further that Y is a dense subspace of X , and U , V are disjoint
open subsets of Y . Then there exists a countable subset S of A such that the
images πS(U) and πS(V ) are separated in the space XS = Π{Xα : α ∈ S}.

Proof: Since Y is dense in X , we can expand U and V to disjoint open sets
in X . Therefore, we can assume that Y = X . Now, by the classic Bockstein’s
lemma [9] (see also 2.7.12 b) in [10]), there exists a countable subset S of A such
that the images πS(U) and πS(V ) are disjoint. Since πS(U) and πS(V ) are open
sets in XS , they are separated in XS . �

The least upper bound of the cardinalities of closed discrete subsets of a space
X is called the extent of X . From Lemmas 3.5 and 3.6 we immediately obtain:

Theorem 3.7. The extent of each α-normal dense subspace Y of the product
X = Π{Xα : α < ω1} of separable metrizable spaces Xα is countable.

J. Mycielski showed [16] that the extent of any uncountable power ωτ of the
discrete space ω is uncountable. Combining this with Theorem 3.7, and also
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using the fact that α-normality is closed hereditary, we obtain a new proof of the
following recent result of D. Burke, announced at the Ben Fitzpatrick Memorial
Conference at Auburn University in February 2001:

Corollary 3.8 (D.K. Burke). The product of uncountably many of non-compact
metrizable spaces is never α-normal.

In particular, the space R
ω1 is not α-normal (D.K. Burke). Here is a curious

application of Theorem 3.7, based on some delicate results of Cp-theory. The next
theorem improves a result in [4].

Theorem 3.9. The space Cp(ω1 + 1) is not α-normal. Moreover, no dense sub-
space of Cp(ω1 + 1) is α-normal.

Proof: Assume the contrary, and fix an α-normal dense subspace Y of Cp(ω1+1).
Since Cp(ω1 + 1) is a dense subspace of R

ω1 ([3]), Y is also a dense subspace
of R

ω1 . Therefore, by Theorem 3.7, the extent of Y is countable. Now it follows
from Baturov’s theorem [6] (see also Theorem 3.6.1 in [3]), that the space Y is
Lindelöf. Obviously, the set Y ⊆ Cp(ω1+1) separates points of the space ω1+1.
This contradicts Corollary 4.11.10 in [3]. �

In connection with Theorem 3.9, we state the following question:

Question 7. Suppose X is a compact space such that Cp(X) is α-normal. Is
then Cp(X) normal? Is then the tightness of X countable?

We now present an example of an α-normal, pseudocompact, not normal space
in ZFC.
Let D = {0,1} be the two-point discrete space. Fix a set A of cardinality ℵω.

Put X =
∏

α∈ADα and take the subspace H = {χB : B ⊆ A, |B| < ℵω} of X ,
where χB is the characteristic function of B (on A). It is well known that the
space H has the following properties: H is dense in X , H is pseudocompact, but
H is neither countably compact, nor Lindelöf. It follows that H is not normal
(since every pseudocompact normal space is countably compact, see [10]).
G. Gruenhage and R. Buzyakova independently established that H is also

linearly Lindelöf (see [2]). This again implies that H is not countably compact,
since every linearly Lindelöf countably compact space is compact.
Our interest in the space H lies in the following fact established by R. Bu-

zyakova. We are grateful to her for allowing us to present her argument in this
article.

Theorem 3.10 (R.Z. Buzyakova). The space H is α-normal.

Proof: Let F be a closed subset of H . We will show that there exists a subset
M of F such that M = F and M is σ-compact. Then, by Theorem 3.1, H will
be α-normal. Since w(X) = ℵω, we have w(F ) ≤ ℵω. Hence, d(F ) ≤ ℵω. Fix
L ⊆ F such that L is dense in F and |L| ≤ ℵω. Then L = {χCα

: α < ℵω}.
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Put Ln = {χCα
: |Cα| ≤ ℵn, α ≤ ℵn} for all n ∈ ω. Then L =

⋃

n∈ω Ln and
|Ln| ≤ ℵn, for all n ∈ ω. Next, put Cn =

⋃

{C ⊂ A : χC ∈ Ln}. Clearly,
|Cn| ≤ ℵn. Finally, put Wn =

∏

α∈Cn
Dα ×

∏

α∈A\Cn
Oα, where Oα = {0},

for each α ∈ A \ Cn. Now Ln ⊆ Wn ⊆ H , and Wn is compact. Therefore,
Wn is closed in H . Hence, the closure of Ln in H is compact, and the subspace

M =
⋃

n∈ω Ln
H
is σ-compact. Since L ⊆ M ⊆ F and L is dense in F , we have

M = F . �

By the above argument, we have actually proved the following more general
statement:

Proposition 3.11. (R.Z. Buzyakova). If F is a closed subset of H , then, for
every subset L of F such that |L| ≤ ℵω, there exists a subspaceM ⊆ F such that
L ⊆M and M is σ-compact.

Since H is pseudocompact and not countably compact, it follows from Theo-
rem 2.2 that H is not β-normal. Thus, we have the next result:

Corollary 3.12 (R.Z. Buzyakova). There exists a pseudocompact α-normal not
β-normal space (which is, therefore, not normal).

This answers positively Questions 3 and 5 in ZFC. Notice, that the property of
H established in Proposition 3.11 can be regarded as a natural weakening of the
requirement that every closed subspace of a space should be separable. It is much
more difficult to construct a pseudocompact space in which every closed subspace
is separable (see [2], [10]).

A space X is said to be weakly normal ([1]) if for every pair A, B of disjoint
closed subsets of X there exists a continuous mapping f of X onto a separable
metrizable space Y such that the sets f(A) and f(B) are disjoint.

Question 8. Is the space H weakly normal?

It was observed in [1] that every countably compact weakly normal T1-space is
normal. However, we do not know if the same is true for pseudocompact weakly
normal spaces. Thus we have the following question which is obviously related to
Question 8.

Question 9. Is every pseudocompact weakly normal space normal?

§4. On hereditary β-normality and the property wD

A space X is called weakly perfect if for all closed subsets F of X there exists
a Gδ set A in X such that A = F . Interesting results on weakly perfect spaces
were obtained by R.W. Heath [11] and L. Kočinac [15].
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Proposition 4.1. Suppose that X is a countably compact Hausdorff space and
Y a countable space with exactly one non-isolated point e. Suppose also that
X × Y is hereditarily β-normal. Then X is weakly perfect.

Proof: Let F be a closed subset of X . Put E = Y \ {e}, and enumerate E
in a one-to-one way: E = {ai : i ∈ ω}. Consider the subsets A = F × E and
B = (X \ F )× {e} of the product space X × Y . Clearly, A = F × Y . Therefore,
A ∩B = ∅. We also have A ∩B = ∅, since B ⊆ X × {e} and A ∩ (X × {e}) = ∅.
Hence, the subspace Z = (X ×X) \ (A ∩B) contains the sets A and B, and the
closures of A and B in Z are disjoint.

By the assumption, the space Z is β-normal. It is also open inX×Y . Therefore,
there exist open sets U and V in Z such that A ⊆ U ∩A, B ⊆ V ∩B, and the
closures of U and V in Z are disjoint. Then, in particular, B ∩ U = ∅.
Now put Ui = {x ∈ X : (x, ai) ∈ U}, for each i ∈ ω. The set Ui is open in X ,

since ai is isolated in X and U is open in X × Y .

Clearly, the set Fi = F × {ai} is an open and closed subset of A. Since U ∩A
is dense in A, it follows that U ∩ Fi is open and dense in Fi. Hence, Ui ∩ F is
open and dense in F .

Finally, let us show that the set M = ∩{Ui : i ∈ ω} is contained in F . Assume
the contrary. Then we can fix x ∈ M \ F . By the definition of Ui, we have

(x, ai) ∈ U , for each i ∈ ω. It follows that (x, e) ∈ U , since (x, e) ∈ {x} × E.
However, (x, e) ∈ B, since x /∈ F . Therefore, B ∩ U 6= ∅, a contradiction. Hence,
M ⊆ F .

The space F is countably compact, since F is closed in X . Therefore, M is
dense in F , by the Baire Category Theorem. Hence, X is weakly perfect. �

Theorem 4.2. If X and Z are infinite countably compact Hausdorff spaces such
that X×Z is hereditarily β-normal, then X and Z are first countable and weakly
perfect.

Proof: By Proposition 1.1, the spaces X and Z are regular. Therefore, there ex-
ists an infinite countable discrete subspace E of Z. Since Z is countably compact,
the set E accumulates to some point e ∈ Z \ E. Put Y = E ∪ {e}. Clearly, the
space X×Y is hereditarily β-normal and X , Y satisfy all assumptions in Proposi-
tion 4.1. It follows that X is weakly perfect. Since every point in a weakly perfect
space is a Gδ, and every regular countably compact space satisfies the first ax-
iom countability at every Gδ-point, it follows that the space X is first countable.
Similarly, Z is weakly perfect and first countable. �

A space X is said to be a space with a dense Gδ-diagonal if the diagonal in the
product X × X contains a dense Gδ-subset of X × X . In [5] Arhangel’skii and
Kočinac showed that if X is a Čech-complete space with a dense Gδ-diagonal,
then in every closed subspace of X there exists a dense subspace metrizable by
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a complete metric. Thus, since a compact Hausdorff space is Čech-complete, we
have the following:

Corollary 4.3. Let X be a compact Hausdorff space such that X × X × X is
hereditarily β-normal. Then in every closed subspace of X there exists a dense
subspace metrizable by a complete metric.

Notice that, under CH, Proposition 4.1 and Theorem 4.2 do not generalize to
hereditarily α-normal spaces.

For example, take the one point compactification a(Y ) of the locally compact
Hausdorff space Y constructed in the proof of Theorem 3.3. Since Y is not normal,
the space a(Y ) is not first countable at the point a. Clearly, (a(Y ))n is hereditarily
separable, for each n ∈ ω, since Y n is hereditarily separable. Therefore, by
Corollary 3.2, (a(Y ))n is hereditarily α-normal, for each n ∈ ω.

A space X is said to satisfy Property wD ([18]) if for every infinite closed
discrete subspace C of X , there exists a discrete collection {Un : n ∈ ω} of open
subsets of X such that each Un meets C in exactly one point.

Proposition 4.4. Every β-normal space X has Property wD.

Proof: Let A be any infinite closed discrete subspace of X . We may assume
that A is countable. Fix a one-to-one enumeration of A: A = {an : n ∈ ω}. By
Proposition 1.1, the space X is regular. Using this, it is easy to construct (by
induction) a disjoint family of open neighborhoods Un of the points an in X . Put
U =

⋃

{Un : n ∈ ω}. Then U is an open set and U contains A. By Proposition 2.1,
we can find an open set V such that A ∩ V is dense in A and V ⊆ U . Since A
is discrete, it follows that A ⊆ V . Put Vn = V ∩ Un, for each n ∈ ω. Then
{Vn : n ∈ ω} is, obviously, a discrete collection of open sets witnessing that X
has Property wD. �

Note, that the proof of Proposition 4.4 shows actually more: if X is a β-normal
space and {xn : n ∈ ω} is a sequence of pairwise distinct points in X such that
{xn : n ∈ ω} is a closed discrete subspace of X , then there exists a discrete family
{Vn : n ∈ ω} of open sets in X such that xn ∈ Vn, for each n ∈ ω. This property
is sometimes called Property D, it obviously implies Property wD.

Theorem 4.5. Let X be a compact Hausdorff space and x a non-isolated point
in X . Then the following conditions are equivalent:

1. (X×X)\{(x, x)} has Property wD, and there exists at least one sequence
in X \ {x} converging to x;

2. X is first countable at x.

Proof: (→) Let S = {xn : n ∈ ω} be a sequence in X \{x} converging to x. Put
A = {x} × S and B = (X \ {x})× {x}. We also put zi = (x, xi), for each i ∈ ω.
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Note, that A ∩ B = ∅, A ∩ B = ∅, and A ∩B = {(x, x)}. Put Z = (X ×X) \
(A ∩B). The set Z is open in X ×X , and A and B are closed in Z. Since Z has
Property wD, there exists {Ui : i ∈ ω}, a discrete family of open subsets of Z (also
open in X) such that Ui meets exactly one element zni of A. Obviously, Ui can be
chosen to be disjoint from B. Since the space Z is regular, there exists a discrete
(in Z) family γ = {Vi : i ∈ ω} of open subsets of Z such that zni ∈ Vi ⊆ Vi ⊆ Ui,

for each i ∈ ω. Since B ∩Ui = ∅ and γ is discrete in Z, we have B ∩
⋃

i∈ω Vi = ∅.
Now, put Wi = {y ∈ X : (y, xni) ⊆ Vi}, for each i ∈ ω. The set Wi is open in X ,
for each i ∈ ω.

Claim:
⋂

i∈ω Wi = {x}.

Suppose not. Then there exists w ∈
⋂

i∈ω Wi \{x}. Thus, for all i ∈ ω, (w, xni ) ∈

Vi ⊆
⋃

i∈ω Vi and x ∈ S \ S. Hence, (w, x) ∈ {x} × S, and therefore, (w, x) ∈
⋃

i∈ω Vi. But this is a contradiction, since (w, x) ∈ B.

(←) Since X is first countable at x and x is not isolated, there exists a sequence
S = {xi : i ∈ ω} in X \ {x} converging to x. Clearly, (X ×X) \ {(x, x)} = Y is
σ-compact. Therefore, Y is normal and has Property wD. �

Remark 4.6. After this paper was submitted to Commentationes Mathemati-
cae Universitatis Carolinae, its results were presented and discussed at seminars
on Topology in Prague, and in Oxford, Ohio. E. Murtinová from Prague and
D. Burke from Oxford independently answered Question 1 (by providing relevant
examples). L. Ludwig and P. Szeptycki showed consistency of the existence of
a β-normal non-normal Tychonoff space, and E. Murtinová constructed such an
example in ZFC. Thus, only Questions 6, 7, 8 and 9 remain unanswered at present.
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[15] Kočinac L., An example of a new class of spaces, Mat. Vesnik 35:2 (1983), 145–150.
[16] Mycielski J., α-incompactness of Nα, Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys. 12

(1964), 437–438.
[17] Negrepontis S., Banach spaces and topology, in: The Handbook of Set Theoretic Topology,

North Holland, 1984, pp. 1045–1142.
[18] Nyikos P., Axioms, theorems, and problems related to the Jones lemma, General topology

and modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980), pp. 441–449,
Academic Press, New York-London, 1981.
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