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A canonical Ramsey-type theorem for finite subsets of N

Diana Piguetová

Abstract. T. Brown proved that whenever we color Pf (N) (the set of finite subsets of
natural numbers) with finitely many colors, we find a monochromatic structure, called
an arithmetic copy of an ω-forest.
In this paper we show a canonical extension of this theorem; i.e. whenever we color

Pf (N) with arbitrarily many colors, we find a canonically colored arithmetic copy of an
ω-forest. The five types of the canonical coloring are determined. This solves a problem
of T. Brown.

Keywords: canonical coloring, forests, van der Waerden’s theorem, arithmetic progres-
sion

Classification: 05C55

1. Introduction

In [Br–00] T. Brown made an analogy to the well known van der Waerden’s
theorem, for finite coloring of finite subsets of natural numbers, which we shall
state after introducing some definitions. For a formulation and a proof of the van
der Waerden’s theorem see [Ne–95].

Convention and notation: In this article we understand rooted trees and
forests as partially ordered sets, where the roots are the minimal elements and
the leaves, the maximal. By a predecessor of a vertex x we understand any vertex
y for which x > y. Then vertex x is a successor of vertex y. x ∧ y is the biggest
vertex for which x and y are the successors. If such vertex does not exist, it is not
defined. By a chain we understand any sequence of vertices x1 < x2 < · · · < xk.

Definition (ω-trees, ω-forest). An ω-tree of height n is an infinite rooted tree
such that any maximal chain has n+ 1 vertices and any vertex that is not a leaf
has degree ω. An ω-forest of height n is a disjoint union of ω many ω-trees of
height n.

The author acknowledges the support of ITI, the Project LN00A056 of the Czech Ministry
of Education.
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Definition (Arithmetic copy). Let F be a finite (resp. infinite) rooted forest.
An arithmetic copy of F in P({1, . . . , n}) (resp. in Pf (N)) is a subset S of
P({1, . . . , n}) (resp. of Pf (N)) for which there exist natural numbers a, d and
a bijection φ : V (F)→ S such that for all vertices x, y ∈ V (F) it holds:

1. x ≤ y ⇔ φ(x) ⊆ φ(y),
2. ∃ x ∧ y ⇒ φ(x ∧ y) = φ(x) ∩ φ(y),
3. x ∈ F1, y ∈ F2, F1 6= F2 ∈ F ⇒ φ(x) ∩ φ(y) = ∅,
4. (∀x < y) (∄z, x < z < y) ⇒ |φ(y) − φ(x)| = d,
5. x is a root of a tree in F ⇒ |φ(x)| = a.

Theorem 1.1 (Brown). If we color Pf (N) by finitely many colors, then for every
natural number n there exists a monochromatic arithmetic copy of an ω-forest of
height n in Pf (N).

The purpose of this paper is to show an analogy of the canonical van der
Waerden’s theorem in the same spirit as Brown made an analogy to van der
Waerden’s theorem. This solves an open problem stated in [Br–00]. For the
canonical van der Waerden’s theorem see [ErGr–80].
In Section 2, we shall give some technical tools for the proof of the analogy of

the canonical van der Waerden’s theorem. Section 3 is devoted to this analogy. In
Section 4 we shall prove that the mentioned canonical coloring cannot be reduced
to less than the five stated types.

2. Technical tools

Definition (Under-diagonal mapping). An under-diagonal mapping is any map-
ping f : X → X (the range and the domain are the same) for which f(x) ≤ x for
all x ∈ X .

Definition (Stair mapping). A stair mapping induced by an under-diagonal
mapping f : X → X and a set B ⊆ X is the mapping gfB : B → B for
which gfB(x) = min{y ∈ B; f(x) ≤ y}.

Remark 2.1. A stair mapping gfB induced by a under-diagonal mapping f and
a set B is itself an under-diagonal mapping and f(x) ≤ gfB(x) ≤ x.

Lemma 2.2. For any natural number n there exists a natural number m such
that for any under-diagonal mapping f : {0, . . . , m} → {0, . . . , m} there exists an
arithmetic progression B of length n, such that the stair mapping gfB induced
by f and the arithmetic progression B is either a constant mapping or an identity
on B.

Proof of Lemma 2.2: First we remark that if gfA is a constant mapping on A,
then gfA(x) = minA for all x ∈ A. Therefore we may suppose that for every
arithmetic progressionB in {0, . . . , m} of length n, gfB is not a constant mapping
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on B. Now we want to find an arithmetic progression A of length n such that
gfA(x) = x for all x ∈ A.
From our assumption, for every k ∈ {0, . . . , m} and for every B = {k + d; d ∈

{0, . . . , n}} there exists x ∈ B with f(x) > k; otherwise gfB(B) ≡ k = minB.
Set r = ⌊m

n ⌋. Now we build a sequence (Bi)
r
i=0, Bi = {ai + d; d ∈ {0, . . . , n}},

ai = i(n+ 1). We get that, for every i, there exists xi ∈ Bi such that f(xi) ∈ Bi.
Let us define a coloring χ : {0, . . . , r − 1} → {0, . . . , n} such that χ(i) = t for

xi = ai+ t, where xi is an arbitrary element of Bi, for which f(xi) ∈ Bi. By using

van der Waerden’s theorem we get an arithmetic progression Ã ⊂ {0, . . . , r − 1}
of length n, Ã = {p, p+d, . . . , p+nd}, which is monochromatic. It means that we
have an arithmetic progression A ⊂ {1, . . . , m}, A = ap+t, ap+d+t, . . . , ap+nd+t
for which gfA(xi) = min{y ∈ A|f(xi) ≤ y} = xi for all xi ∈ A, what we wanted
to prove. �

Proposition 2.3. Let L be an ω-forest of height n and let χ : V (L) → ω be a
coloring of its vertices, such that no two vertices of the same height have the same
color. Then there exists an ω-forest F ⊆ L of height n, such that the coloring χ
restricted to V (F) is injective.

Proof: Let us first introduce some notation. For s ∈ {0, . . . , n} let Ls denote
the set of vertices of height s. We partition Ls into ω many classes lsk of size ω
such that two vertices are in the same partition class iff they have the same direct
ancestor, i.e., for x ∈ lsk and y ∈ lsk′ , k = k′ iff x ∧ y ∈ Ls−1. If s = 0 then we
have only one class of partition and l0 = L0. Set Xsl = {i < ω : χ−1(i) ∩ Ls 6=
∅ ∧ χ−1(i) ∩ Ls 6= ∅}.
For a fixed pair i < j ∈ {0, . . . , n} we shall delete vertices of height i and j

in such a way that we shall still have an ω-forest of height n and the colors of
vertices of height i will not occur between the colors of the vertices of height j.
Set

Yh = χ−1(Xij) ∩ lih, Yhr = {x ∈ Yh : ∃y ∈ ljr χ(x) = χ(y)},

Zk = χ−1(Xij) ∩ ljk, Zkr = {y ∈ Zk : ∃x ∈ lir χ(y) = χ(x)}.

Note that |Ysm| = |Zms| for s, m < ω. We define a bijection ϕsm : Ysm → Zms

by ϕsm(x) = y, where y is the vertex in Lj having the same color as x.

For every pair (s, m), s, m ∈ ω, we partition Ysm into two classes Y 1sm and
Y 2sm. If |Ysm| = 1 then set Y 1sm = ∅ if s ≤ m and set Y 1sm = Ysm otherwise. If
|Ysm| 6= 1 then the partition classes have similar size, i.e. either both are empty or
both are finite non empty or both are infinite. Let Z1ms and Z2ms be the induced
partition of Zms, i.e. Z

r
ms = ϕ(Y r

sm) for r = 1, 2. Now we delete vertices of Y 1sm
and vertices of Z2ms.
We have now just to realize that no two vertices of the new Li ∪ Lj have the

same color, which gives us the injectivity of the coloring, and that from each lrl,
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r = i, j, l ∈ ω we kept ω many vertices, which guarantees us that we still have
an ω-forest after the operation. This proves Proposition 2.3. �

Lemma 2.4. For every natural number n there exists a natural number m such
that for any matrix M with m rows and ω columns of natural numbers such
that no two elements in the same row are the same, there exists an arithmetic
progressionA in {1, . . . , m} of length n and there exists a subset X of the columns

with |X | = ω such that for the submatrix M̃ := A×X (containing only the rows
of A and the columns of Xof the matrix M) it holds that

A) either no two numbers in the whole matrix M̃ are the same, or

B) ∃f : X → N injective such that the element M̃(i,j) = f(j).

Proof: First we would like to find an infinite set X ⊆ Y such that no element
from a column is repeated in another column. We show this by induction on
j ∈ ω.
For any column j, the numbers M(i,j), i ∈ {1, . . . , m}, can be repeated only in

a finite number of columns and therefore there exists t = t(i, j) ∈ ω such that for
any t ≤ k ∈ ω the number M(i,j) does not occur in the column k. Let Rj be the

maximum of such t(i, j) for all i ∈ {1, . . . , m}. Let s = min (ω \ {1, . . . , Rj}) and
we continue in the same way for the column j = s. Because we cannot stop after
a finite numbers of steps (we shall always be able to find the required s), we get
infinitely many such s and, therefore we get a set Y for which the following holds:
in the submatrix {1, . . . , m}×Y , elements with the same number may occur only
in the same column.
For every column i let Si ⊆ P({1, . . . , m}) be such a partition of {1, . . . , m}

that two elements are in the same cell of the partition iff they have the same
number. The set Si tells us what the pattern of the column i is; i.e. which rows
are the same and which are not. For two columns i1, i2 which have the same
partition S of its rows, there exists a permutation π of the natural numbers such
that (j, i1) = π((j, i2)) ∀j ∈ {1, . . . , m}; i.e., the two columns are the same up to
a relabeling of their elements.
Having defined the sets Si we define a coloring χ : Y → 2m by χ(i) = Si. The

infinite Ramsey’s theorem (for a formulation and proof see [Ne–95]) guarantees
us that there exists an infinite subset X of Y such that every column in X have
a given structure S.
Now it is enough to use the canonical van der Waerden’s theorem on the first

column in X . We get an arithmetic progression A of length n such that the
elements of the first column are either all different or all the same. As all columns
in X have the same structure S, this holds for every column in X . Therefore we
get a submatrix M̃ = A× X for which it holds that
A) either no two element in M̃ are the same,

B) or there exists an injective mapping f : X → N such that the elements M̃(i,j)
have number f(j), for i ∈ A and j ∈ X . �
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3. Canonical coloring

We formulate now the main result of this paper. It is a canonical version of
Brown’s theorem 1.1: an analogy to the canonical van der Waerden’s theorem.

Theorem 3.1. For any coloring χ : Pf (N)→ ω and any natural number n there
exists an arithmetic copy S of an ω-forest F of height n, such that one of the
following holds:

A) χ restricted to S is injective;
B) χ restricted to S is constant;
C) χ(φ(x)) = χ(φ(y))⇔ height of x = height of y.
D) χ(φ(x)) = χ(φ(y))⇔ x and y are in the same tree;
E) χ(φ(x)) = χ(φ(y)) ⇔ height of x = height of y and x and y are in the
same tree.

Notation: Let
(X

k

)

denote the set of all k-element subsets of the set X and let
f ↾A stand for the restriction of the mapping f to the set A.

By an ω-forest Fa in an ω-forest Fb corresponding to an arithmetic progression
A we shall not understand any subgraph of Fb, but an ω-forest defined as follows:
For each ω-tree Ti ∈ Fb we choose one vertex vi ∈ Ti such that the height of vi

in Fb is the first element of the arithmetic progression A; these vertices will be
the roots of Fa. Having defined a vertex v in Fa, let us reduce our attention
to its successors in Fb. These successors form an ω-forest. In each ω-tree of this
forest choose one vertex which has the height of the next element in the arithmetic
progression A in Fb. We shall link these vertices with v by edges.

Proof of Theorem 3.1: By repeating the canonical Ramsey’s theorem [Ra–86]
we get that for any natural number k there exists an infinite subset Y of N such

that for any r ≤ k, χ ↾
(

Y
r

)

is canonical. Now we shall construct an arithmetic

copy S̃ of an ω-forest of height k such that S̃ ⊆ P(Y ). We use the following
construction:

Construction: Let us split Y into ω many sets Yi of size ω. So we have: Y =
⋃

∞

i=1 Yi. The copy of the ith tree Ti will be a subset of P(Yi) and the copy of
every tree will be constructed in the same way as Ti. The root ri of Ti will be
mapped to min Yi. Ỹi = Yi \min Yi is infinite and can be split into ω many sets

Ỹij of size ω such that Ỹi =
⋃

∞

j=1 Ỹij . Ti \ {ri} is an ω-forest with ω-trees Tij ,

j ∈ ω. The root rij of the tree Tij will be mapped to the set min Ỹij ∪ minYi.

Again Ȳij = Ỹij \min Ỹij is infinite and Tij \ {rij} is an ω-forest. We continue in
the same way until we get the required arithmetic copy.

For such an arithmetic copy S̃ the following holds:

∀ 1 ≤ r ≤ k ∃! j = j(r) ≤ r ∀A, B ∈ S̃, |A| = |B| = r

χ(A) = χ(B)⇔ |A ∩ B| ≥ j.
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In words: for any natural number r smaller or equal to k there exists exactly
one number j (depending on r and smaller or equal to r) such that for any two
sets A, B of size r, A and B have the same color if and only if the size of their
intersection is at least j.
Let us define a function f : {0, . . . , k} → {0, . . . , k} such that f(r) = j(r)

if r ≥ 1 and f(0) = 0. Now we can use Lemma 2.2 and we get an arithmetic
progression P ∈ {1, . . . , k} of length n′ such that gfP ↾ P , the stair mapping
induced by f and P , is either (a) an identity or (b) a constant mapping.
We have to realize that gfP (r) = j̄, where j̄ is the only element in P for which:

for all A, B ∈ S̄ with |A| = |B| = r, χ(A) = χ(B) ⇔ |A ∩ B| ≥ j̄. The stair

mapping gfP shows us how the coloring of any arithmetic copy S̄ ⊆ S̃ of an
ω-forest F , corresponding to P , is structured. Let us color an ω-forest F so that
the bijection between it and the arithmetic copy will preserve the coloring.

(a) If gfP ↾ P is an identity, then any two sets of the same size have different
colors, i.e. any two vertices with the same height in the ω-forest F have different
colors. So using Proposition 2.3 we get A).
(b) gfP ↾P is a constant mapping: We have to distinguish two cases:

1) If gfP (P ) = 0 then the coloring depends only on the size of the set. So for
the coloring of the ω-forest F , all the vertices with height i have the same color,
say ci. If we define a coloring c : {0, . . . , n′} → ω such that c(i) = ci we can
apply the canonical van der Waerden’s theorem on this coloring and we get an
arithmetic progression P ′ of length n on which the coloring c is either constant
or injective.

Let F ′ be an ω-forest in F corresponding to P ′. Then F ′ is either monochro-
matic or each height has a different color. Its associated arithmetic copy implies
cases B) or C).

2) If gfP (P ) 6= 0 then the coloring depends on two things: the size of the set
and its first element. This implies that the coloring of a vertex of F depends on
its height and on the tree in which it lies.
Let us define a coloring c0 : ω → ω by c0(i) = bi, bi ∈ ω, if the root of the ith

ω-tree has the color bi. Using the canonical Ramsey’s theorem we get a set B0 of
ω many ω-trees such that they have either roots of the same color or each one has
a root of a different color. Having defined a set Bj , j ≤ n′, of ω many ω-trees, we
define a coloring cj+1 : ω → ω by cj+1(i) = di, di ∈ ω, if the vertices of the ith
ω-tree at height j + 1 have the color di. Using the canonical Ramsey’s theorem
again, we get a set Bj+1 of ω many ω-trees such that either all vertices at height
j + 1 of the ω-forest on Bj+1 have the same color or two vertices at height j + 1
of this ω-forest have the same color iff they are in the same ω-tree.
We get an ω-forest on Bn′ such that for every height i either the vertices have

the same color or they have different colors from one ω-tree to another. Let us
define a coloring c̃ : {0, . . . , n′} → {0, 1} by c̃(i) = 0 if the vertices of height i are
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monochromatic and c̃(i) = 1 if two vertices of height i have the same color iff they
are in the same tree. If we use van der Waerden’s theorem we get a monochromatic
arithmetic progression P̃ of height ñ in {0, . . . , n′}. Let F ′ be the ω-forest in F
corresponding to P̃ .

2a) If P̃ has color 0 then we have an ω-forest in which each height is monochro-
matic. We can map the height to the color it has and using the canonical van
der Waerden’s theorem we get an arithmetic progression either monochromatic
or with an injective coloring. This yields the cases B) or C).

2b) If P̃ has color 1 then we define an equivalence ∼ on the ω-forest F ′ such
that x ∼ y iff x and y have the same height and belong to the same ω-tree. Then
F ′/∼ is isomorphic to a matrix n×ω with elements of N such that no two numbers
(=colors) in the same row are the same. Therefore we can use Lemma 2.4 which
implies that for an arithmetic progression P̄ of length n and for a set X ∈ ω, the
matrix P̄ × X satisfies: ♣ Either no two numbers in the whole matrix are the
same or ♠ there exists an injective mapping f : X → N such that all the elements
of the jth column have number f(j).

♣ The ω-forest corresponding to the arithmetic progression P̄ restricted to the
ω-tree of X has the property that two vertices have the same color iff they have
the same height and belong to the same ω-tree. Let S be the image of this ω-forest
in S̄. Then E) holds for S.

♠ The ω-forest corresponding to the arithmetic progression P̄ restricted to the
ω-tree of X has the property that two vertices have the same color iff they belong
to the same ω-tree. Let S be the image of this ω-forest in S̄. Then D) holds for S.

�

4. Canonical colorings are minimal

Next theorem shows that Theorem 3.1 cannot be improved, i.e. we cannot take
away any of the types of canonical coloring.

Proposition 4.1. There exist colorings χA, χB , χC , χD, χE : Pf (N)→ ω such
that case J (which stands for one of the cases A), B), . . . , E) in Theorem 3.1)
occurs but none of the cases A), B), . . . , E) distinct of J can occur for coloring χJ .

Proof: Coloring χA: None of the cases B), C), D) and E) can occur for any
injective coloring of Pf (N) and any arithmetic copy of height n will imply case A).

Coloring χB: None of the cases A), C), D) and E) can occur for any constant
coloring of Pf (N), and any arithmetic copy of height n will imply case B).

Coloring χC : Let us define the coloring χC by χC(A) = |A|, where A is any finite
subset of N. It is clear that χC cannot be injective nor constant on any arithmetic
copy. The colorings in cases D) and E) depend on the trees and therefore cannot
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happen as any two sets of the same size have the same color not depending on
whether they intersect or not. Any arithmetic copy of height n implies case C).

Coloring χD: Let us define the coloring χD by χD(a) = minA, where A is any
finite subset of N. χD cannot be injective for any arithmetic copy of height n, as,
if we consider a vertex x and vertices y1, y2, y3, . . . , its immediate successors, the
following holds in any arithmetic copy:

φ(x) =
∞
⋂

j=1

φ(yj).

At the same time min φ(yi) 6= min φ(yj) for only finitely many i 6= j, as there
are only finitely many elements smaller or equal to φ(x). This implies that there
will always be ω many yi for which χD(φ(x)) = χD(φ(yj)). For the same reason,
none of the cases C) and E) can occur. χD cannot be constant on any arithmetic
copy, as any two finite sets belonging to the image of different trees are disjoint
and therefore cannot have the same minimal number. If we follow the construction
from the proof of Theorem 3.1, we get an arithmetic copy for which case D) holds.

Coloring χE: Let us define the coloring χE by χE = (minA, |A|), where A
is again any finite subset of the set N. Let us use the same notation as for the
coloring χD. All φ(yj) will have colors different from χE(φ(x)), which implies
that cases B) and D) cannot occur. On the other hand, there exists a color c
such that for ω many yj ’s, it holds that χE(φ(yj)) = c. This implies that case A)
cannot occur. Next, it is enough to realize that any two disjoint finite subsets of
N have different colors to see that case C) cannot occur. Finally, if we follow the
construction from the proof of Theorem 3.1, we get an arithmetic progression of
length n for which case E) holds. �

5. Open problems

It would be interesting to consider the combination of the polynomial van der
Waerden’s theorem with trees and lattices in the spirit of [Br–00], [BeLe–99] and
[NeRo–84] and their canonical versions. For a proof of the polynomial extension
of van der Waerden’s theorem see [BeLe–96].
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A canonical Ramsey-type theorem for finite subsets of N 243

[Ne–95] Nešeťril J., Ramsey Theory, in Handbook of Combinatorics, editors R. Graham,
M. Grötschel and L. Lovász, Elsevier Science B.V., 1995, pp. 1333–1403.
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Czech Republic

E-mail : diana@kam.mff.cuni.cz

(Received June 13, 2002, revised November 14, 2002)


