Commentationes Mathematicae Universitatis Carolinae

Aleš Drápal
Cyclic and dihedral constructions of even order

Commentationes Mathematicae Universitatis Carolinae, Vol. 44 (2003), No. 4, 593--614

Persistent URL: http://dml.cz/dmlcz/119414

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2003

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Cyclic and dihedral constructions of even order

Aleš Drápal

Abstract

Let $G(\circ)$ and $G(*)$ be two groups of finite order n, and suppose that they share a normal subgroup S such that $u \circ v=u * v$ if $u \in S$ or $v \in S$. Cases when G / S is cyclic or dihedral and when $u \circ v \neq u * v$ for exactly $n^{2} / 4$ pairs $(u, v) \in G \times G$ have been shown to be of crucial importance when studying pairs of 2-groups with the latter property. In such cases one can describe two general constructions how to get all possible $G(*)$ from a given $G=G(\circ)$. The constructions, denoted by $G[\alpha, h]$ and $G[\beta, \gamma, h]$, respectively, depend on a coset α (or two cosets β and γ) modulo S, and on an element $h \in S$ (certain additional properties must be satisfied as well). The purpose of the paper is to expose various aspects of these constructions, with a stress on conditions that allow to establish an isomorphism between G and $G[\alpha, h]$ (or $G[\beta, \gamma, h]$).

Keywords: cyclic construction, dihedral construction, quarter distance
Classification: Primary 20D60; Secondary 05B15

For groups $G(\circ)$ and $G(*)$ define $d(\circ, *)$ as the size of the set $\{(u, v) \in G \times G$; $u \circ v \neq u * v\}$. If G is of order n and n is a power of two, then $d(\circ, *)<n^{2} / 4$ implies $G(\circ) \cong G(*)$, by [3]. The cases with $d(\circ, *)=n^{2} / 4$ were studied in [2], [7], [6] and [4]. It has been observed in [4] that a relatively general assumption on the structure of the distance set $\{(u, v) \in G \times G ; u \circ v \neq u * v\}$ implies the existence of $S \triangleleft G$ such that $G(\circ) / S \cong G(*) / S$ is cyclic or dihedral. In such cases the relation of $G(*)$ and $G(\circ)$ is so close that one can give a prescription how to construct all $G(*)$ given S and $G=G(\circ)$. These constructions are the subject of this paper.

The mathematics we use remains within elementary group theory. The main concept behind our work is an effort to interpret groups of certain order as a graph with edges corresponding to passages between those groups that exhibit a large amount of similarity, measured by the least possible distance computed over all situations, in which the groups share their underlying sets. At this point it is too early to decide, if this effort will end as a combinatorial curiosity, or will develop into a new effective tool of group theory (other constructions in addition to the cyclic and dihedral ones would probably had to exist in such a case). Nevertheless, experiments on small sets (see below) are encouraging and

[^0]this paper was motivated by these experiments in the sense that the constructions very often yield a group isomorphic to the original group. Some theory explaining why this is happening seemed to be desirable.

The parameters of the cyclic construction are a normal subgroup $S \triangleleft G$, a generating coset $\alpha \in G / S$ and an element $h \in S \cap Z(G)$. The group $G(*)$ constructed from these parameters is denoted by $G[\alpha, h]$. We shall show that the possible isomorphism types of $G(*)$ do not depend on the choice of the generating coset α, and that $G\left[\alpha, h_{1}\right] \cong G\left[\alpha, h_{2}\right]$ when $h_{1} h_{2}^{-1}=z^{2 m}$ for some $z \in S \cap$ $Z(G),|G: S|=2 m$. (In fact, the isomorphism already follows from $h_{1} h_{2}^{-1}=$ $z z^{w} \ldots z^{w^{2 m-1}}$, where $w \in \alpha$ and $z \in Z(S)$.)

The parameters of the dihedral construction are a normal subgroup $S \triangleleft G$, generating cosets $\beta, \gamma \in G / S$ such that $\beta^{2}=\gamma^{2}=S$, and an element $h \in S$ that satisfies $h x h=x$ for all $x \in \beta \cup \gamma$. The group $G(*)$ is here denoted by $G[\beta, \gamma, h]$. We shall show that the possible isomorphism types of $G(*)$ do not depend on the choice of the generating cosets β and γ, and that $G\left[\beta, \gamma, h_{1}\right] \cong G\left[\beta, \gamma, h_{2}\right]$ when $h_{1} h_{2}^{-1}=z^{2 m}$ for some $z \in S$ with $z x z=x$ for all $x \in \beta \cup \gamma,|G: S|=4 m$. (The isomorphism already follows from $h_{1} h_{2}^{-1}=z z^{w} \ldots z^{w^{2 m-1}}$, where $w \in \beta \gamma$, and where $z=p q$ for some $p, q \in S$ such that $p x p=x$ for all $x \in \beta$ and $q x q=x$ for all $x \in \gamma$.)

The cyclic group of order r will be denoted by C_{r}, and the dihedral group of order $2 r$ will be denoted by $D_{2 r}$. For the purposes of this paper we shall assume $r \geq 2$, thus regarding Klein's 4-group $C_{2} \times C_{2}$ as the smallest dihedral group.

In our main statements we shall always assume $G / S \cong C_{2 m}$ or $G / S \cong D_{4 m}$, $m \geq 1$. The constructions can be also considered when $G / S \cong C_{r}$ or $G / S \cong$ $D_{2 r}$ for an odd $r \geq 3$, but then they behave somewhat differently. They yield $d(\circ, *)<n^{2} / 4$ and seem to have no bearing on the distances of 2 -groups, to which the results of this paper are directed. First steps towards understanding distances of 3 -groups were taken in [5], and it is to be expected that the cyclic and dihedral constructions with r odd will receive more attention later.

The basic properties of the cyclic construction are developed in Section 2, and its structural properties mentioned above are proved in Section 3.

Section 4 describes the dihedral construction and discusses the maximum possible difference of the nilpotency degrees of G and $G[\beta, \gamma, h]$ when they are nilpotent (cf. Proposition 4.10). Section 5 gives an abstract characterization of the dihedral construction and Section 6 describes some of its structural properties (including those that were mentioned earlier in this introduction).

In abstract group theory one investigates isomorphism types irrespective of their underlying sets. Hence the situation where two group operations are defined on the same set may seem to be of little relevance. However, this changes when one asks in which cases a group (up to an isomorphism) could have been obtained from another group by one of our constructions. We thus ask for which groups
G_{1} and G_{2} there exist groups $G \cong G_{1}$ and $G(*) \cong G_{2}$ such that $G(*)$ can be expressed as $G[\alpha, h]$ or $G[\beta, \gamma, h]$. The answers are in Theorems 2.10 and 5.3, which give, respectively, the abstract characterizations of the cyclic and the dihedral construction.

The groups G_{1} and G_{2} are called $C_{2 m}$-related, if G_{2} can be obtained in the sense above (i.e., up to an isomorphism) from G_{1} by the cyclic construction where the common quotient is the cyclic group of order $2 m$. Similarly, the groups G_{1} and G_{2} are said to be $D_{4 m}$-related if G_{2} can be obtained from G_{1} by means of the dihedral construction. We also say that the groups G_{1} and G_{2} can be placed at quarter distance if they are finite of order n and there exist $G(\circ) \cong G_{1}$ and $G(*) \cong G_{2}$ with $d(\circ, *)=n^{2} / 4$.

It is known that for $n \leq 32, n$ a power of two, one can construct for any two groups G_{1} and G_{2} a sequence $H_{1}=G_{1}, H_{2}, \ldots, H_{k}=G_{2}$ in such a way that H_{i} and H_{i+1} can be placed at quarter distance for all $i, 1 \leq i<k$. For $n \geq 64$ this seems to remain an open problem. In the case $n=64$ the cyclic and dihedral constructions yield two blocks. One contains six groups, and the other all remaining ones.

All presently known cases of groups that can be placed at quarter distance correspond either to the cyclic or to the dihedral construction. Moreover, there are reasons to believe that any other construction, if it exists, is an expansion of these constructions (as the dihedral construction is an expansion of the cyclic construction).

When computing the neighbourhood of a group G (say a 2 -group) with respect to $C_{2 m}$-relationship and $D_{4 m}$-relationship, one can profit from knowing that certain choices of parameters do not bring anything new. We therefore wish to know when certain parameters yield a group isomorphic to the group obtained from other parameters. For example, when all choices for a given S have been considered, there is no need to consider the cases corresponding to $\varphi(S), \varphi \in$ Aut Q. Suppose now that S is fixed. Then we can consider just one generating coset $\alpha \in G / S$ (see Proposition 3.10 and Corollary 3.11) and just one generating pair $\beta, \gamma \in G / S$ (cf. Theorem 6.10), respectively. We have already mentioned that for some choices of h the group obtained by the cyclic or dihedral construction is isomorphic to the original group. The elements h, for which the isomorphism will be proved, form a subgroup, say T, of the group of all possible choices of h. If two choices h_{1} and h_{2} are congruent modulo T, then the groups constructed are isomorphic (see Theorems 3.4 and 6.4). This follows from what is called here the affine behaviour (see Propositions 3.3 and 6.3) of the cyclic and dihedral constructions. This behaviour also implies that all groups which are $C_{2 m}$-related (or $D_{4 m}$-related) to G, with respect to a fixed subgroup S, are mutually $C_{2 m}$-related (or $D_{4 m}$-related, respectively).

The purpose of this paper therefore rests in a description of tools that can make easier the enumeration of all groups which are $C_{2 m}$-related and $D_{4 m}$-related to
a given group. The paper is a generalization of [6], where only the case $m=1$ was treated. Applications of results of this paper can be found in [1].

Section 1 contains various prerequisites for Sections 2-6.
When $*$ is used for a group operation, the inverse element is denoted by x^{*}.

1. Group properties

This section is of an auxiliary nature. It is concerned with those group properties which do not require the presence of two group operations, but which will turn to be relevant in such situations.

Lemma 1.1. Let $A(+,-, 0)$ be an abelian group, and suppose that $\alpha \in \operatorname{Aut}(A)$ is an automorphism of order r. If $\beta \in\langle\alpha\rangle$ is of order r as well, then $\alpha^{0}+\alpha^{1}+$ $\cdots+\alpha^{r-1}=\beta^{0}+\beta^{1}+\cdots+\beta^{r-1}$.

Proof: We have $\beta=\alpha^{j}$ for some j that is invertible modulo r. The set $\{0,1, \ldots, r-1\}$ coincides, modulo r, with the set $\{0 j, 1 j, \ldots,(r-1) j\}$.

The additive notation of Lemma 1.1 is replaced from now on by multiplicative notation. This is necessary, since our abelian groups will occur as subgroups of a general group G.

Lemma 1.2. Assume $S \unlhd G, z \in Z(S), x \in G,\langle S, x\rangle=G$ and $|G / S|=r$. Then $h=z z^{x} \ldots z^{x^{r-1}} \in Z(G)$ and $(z x)^{r}=(x z)^{r}=x^{r} h$.
Proof: Our first goal is to show that $h=z z^{x} \ldots z^{x^{r-1}}$ commutes with x. We have $h^{x}=\left(z^{x} \ldots z^{x^{r-1}}\right) \cdot z=z \cdot\left(z^{x} \ldots z^{x^{r-1}}\right)=h$. To compute $(z x)^{r}$ and $(x z)^{r}$ express the i-th occurence of x when counted from the right as $x^{i} x^{-(i-1)}$ in both terms, $1 \leq i \leq r$. We obtain $(z x)^{r}=\left(z x^{r}\right)\left(z^{x^{r-1}} \ldots z^{x}\right)=\left(x^{r} z\right)\left(z^{x^{r-1}} \ldots z^{x}\right)=$ $x^{r} h$ and $(x z)^{r}=x^{r} z^{x^{r-1}} \ldots z^{x} z=x^{r} h$.

Proposition 1.3. Suppose that G / S is cyclic of order $r, S \unlhd G$. If $x, y \in G$ are such that $\langle S, x\rangle=\langle S, y\rangle=G$, then $z z^{x} \ldots z^{x^{r-1}}=z z^{y} \ldots z^{y^{r-1}}$ for all $z \in Z(S)$. The set of all elements that can be expressed in this way forms a subgroup of $Z(G)$, and this subgroup contains the group $\left\{z^{r} ; z \in Z(G)\right\}$.

Proof: The automorphisms $z \mapsto z^{x}$ and $z \mapsto z^{y}$ generate the same cyclic subgroup of $\operatorname{Aut}(Z(S))$. By Lemma 1.1 these automorphisms yield the same endomorphism of $Z(S)$, and the elements described in our statement correspond to the image of this endomorphism. They belong to $Z(G)$ by Lemma 1.2. Finally, observe that for $z \in Z(G)$ we have $z^{x}=z$ and $z z^{x} \ldots z^{x^{r-1}}=z^{r}$.

Let G be a group. For $X \subseteq G$ put

$$
Q(X)=\{h \in\langle X\rangle \backslash X ; \quad h g h=g \text { for all } g \in X\} .
$$

Furthermore, for $X_{1}, X_{2} \subseteq G$ put

$$
Q\left(X_{1}, X_{2}\right)=Q\left(X_{1} \backslash X_{2}\right) \cap Q\left(X_{2} \backslash X_{1}\right)
$$

These definitions are taken from [6]. In this paper the sets X_{1} and X_{2} will be always disjoint, and in such a case we have $Q\left(X_{1}, X_{2}\right)=Q\left(X_{1}\right) \cap Q\left(X_{2}\right)$. The next statement is also based on [6] (cf. Proposition 1.3 and Lemma 1.5), and we state it without a proof (which is not difficult).
Lemma 1.4. Assume $T<G$ and $|G: T|=2$. Then $Q(G \backslash T)$ is a subgroup of $Z(T)$, and $h \in Z(T)$ belongs to $Q(G \backslash T)$ if and only if $h g h=g$ for at least one (and thus for all) $g \in G \backslash T$. If $h \in Q(G \backslash T)$ and $g \in G \backslash T$, then $h^{g}=h^{-1}$ and $[g, h]=h^{2}$.
Proposition 1.5. Assume $S \triangleleft G$, where G / S is dihedral of order $2 r, r \geq 2$. Suppose that the cosets β and γ generate G / S and that $\beta^{2}=\gamma^{2}=S$. Put $\alpha=\beta \gamma$ and denote by G_{0} the subgroup of G that is generated by α. Then $S<G_{0}<G,\left|G: G_{0}\right|=2$ and

$$
Q(\beta, \gamma)=S \cap Q\left(G \backslash G_{0}\right)
$$

Proof: The inclusion $S \cap Q\left(G \backslash G_{0}\right) \subseteq Q(\beta, \gamma)$ follows from $\beta \cup \gamma \subseteq G \backslash G_{0}$; to prove the converse consider $h \in Q(\beta, \gamma)$. If $u \in \beta$ and $v \in \gamma$, then huv $=$ $h u h h^{-1} v h^{-1} h=u v h$, and we see that h centralizes every element of α, and thus $h \in Z\left(G_{0}\right) \cap S$. If $x \in G \backslash G_{0}$, then $x=u y$ for some $u \in \beta$ and $y \in G_{0}$, and $h x h=h u h h^{-1} y h=u y=x$.

Lemma 1.6. Let $S<G_{0}<G$ be such that $S \triangleleft G, G / S$ is dihedral of order $2 r$ and G_{0} / S is cyclic of order r. Consider $\beta \in G / S$ and $p \in Q(\beta)$, and suppose that β does not intersect G_{0}. Suppose also that $w S$, where $w \in G_{0}$, generates G_{0} / S. Then $h=p p^{w} \ldots p^{w^{r-1}}$ belongs to $Q\left(G \backslash G_{0}\right)$, and $p p^{x} \ldots p^{x^{r-1}}=h$ for all $x \in G_{0}$ such that $x S$ generates G / G_{0}.
Proof: We have $p \in Z(S)$, by Lemma 1.4, and hence the definition of h does not depend on the choice of $w \in G_{0}, G_{0}=\langle w, S\rangle$, by Proposition 1.3. We can assume $w=u v$, where $u \in \beta$. Put $\gamma=v S$ and note that β and γ satisfy the assumptions of Proposition 1.5. We have $h \in Z(S)$, since $p^{x} \in Z(S)$ for all $x \in G$, and hence we only need to show $h \in Q(\beta, \gamma)$. This is equivalent to proving $h^{u}=h^{-1}$ and $h^{v}=h^{-1}$.

We have $p^{u}=p^{-1}$, by Lemma 1.4, and $h=p p^{u v} \ldots p^{(u v)^{r-1}}$. Hence $h^{u}=$ $p^{-1}\left(p^{-1}\right)^{v u} \ldots\left(p^{-1}\right)^{(v u)^{r-1}}=\left(p p^{v u} \ldots p^{(v u)^{r-1}}\right)^{-1}$, and this is equal to h^{-1}, since $v u S$ generates G_{0} / S as well.

Now, v^{2} and $(v u)^{r}$ belong to S, and hence $p^{v}=\left(p^{v}\right)^{(v u)^{r}}=\left(\left(p^{v^{2}}\right)^{u}\right)^{(v u)^{r-1}}=$ $\left(p^{-1}\right)^{(v u)^{r-1}}$. We can express h^{v} as $p^{v}\left(\left(p^{u}\right) \ldots\left(p^{u}\right)^{(v u)^{r-2}}\right)^{v^{2}}$, and this is equal to $\left(p^{-1}\right)^{(v u)^{r-1}} \cdot\left(p^{-1} \ldots\left(p^{-1}\right)^{(v u)^{r-2}}\right)=\left(\left(p \ldots p^{(v u)^{r-2}}\right) \cdot p^{(v u)^{r-1}}\right)^{-1}=h^{-1}$.

Proposition 1.7. Suppose that G / S is dihedral of order $2 r, S \triangleleft G$, and let $G_{0}<G$ be such that $S<G_{0}$ and G_{0} / S is cyclic and of order $r \geq 2$. Let $\beta_{1}, \ldots, \beta_{r}$ be all the cosets modulo S outside G_{0}, and put $Z=Q\left(\beta_{1}\right) \ldots Q\left(\beta_{r}\right)$. Then $Z \leq Z(S)$, and if $\langle S, x\rangle=\langle S, y\rangle=G_{0}$, then $z z^{x} \ldots z^{x^{r-1}}=z z^{y} \ldots z^{y^{r-1}}$ for all $z \in Z$ and $x, y \in G_{0}$. The set of all such elements forms a subgroup of $S \cap Q\left(G \backslash G_{0}\right)$, and this subgroup contains the group $\left\{z^{r} ; z \in S \cap Q\left(G \backslash G_{0}\right)\right\}$.

Proof: We have $Q\left(\beta_{i}\right) \leq Z(S), 1 \leq i \leq r$, by Lemma 1.4, and hence $Z \leq Z(S)$. Consider $z=p_{1} \ldots p_{r} \in Z$, where $p_{i} \in Q\left(\beta_{i}\right)$, and put $h_{i}=p_{i} p_{i}^{x} \ldots p_{i}^{x^{r-1}}, 1 \leq i \leq$ r, where $x S$ generates G_{0} / S. From Lemma 1.6 we see that h_{i} does not depend on the choice of x and that h_{i} belongs to $Q\left(G \backslash G_{0}\right)$. Thus $z z^{x} \ldots z^{x^{r-1}}=h_{1} \ldots h_{r} \in$ $Q\left(G \backslash G_{0}\right)$ does not depend on the choice of x either. We are considering the image of Z by the endomorphism $z \mapsto z z^{x} \ldots z^{x^{r-1}}$ of $Z(S)$, and we have observed that this image is a subgroup of $Q\left(G \backslash G_{0}\right)$. Finally, if $z \in S \cap Q\left(G \backslash G_{0}\right)=\bigcap\left(Q\left(\beta_{i}\right)\right.$; $1 \leq i \leq r) \leq Z$, then $z \in Z\left(G_{0}\right)$, by Lemma 1.4, and hence $z z^{x} \ldots z^{x^{r-1}}=z^{r}$ for every $x \in G_{0}$.

The subgroup of all $z z^{x} \ldots z^{x^{r-1}}$ described in Proposition 1.7 can be perceived as an image of $Z \leq Z(S)$ by an endomorphism $z \mapsto z z^{x} \ldots z^{x^{r-1}}$. The purpose of the next proposition is to show that this image does not change when the elements z are chosen from $Q\left(\beta_{1}\right) Q\left(\beta_{2}\right)$, where $\beta_{2}=\beta_{1} x$. The proposition assumes that r is even. It will be clear from its proof that in the case of odd order r one can choose z just from $Q\left(\beta_{1}\right)$.

Proposition 1.8. Suppose that G / S is dihedral of order $4 m, m \geq 1, S \triangleleft G$, and let $G_{0}<G$ be such that $S<G_{0}$ and G_{0} / S is cyclic and of order $2 m$. Let α generate G_{0} / S, choose $w \in \alpha$, and consider $\beta \in G / S$ that does not intersect G_{0}. Put $Z=Q(\beta) Q(\beta \alpha) \ldots Q\left(\beta \alpha^{2 m-1}\right)$ and $T=\left\{z z^{w} \ldots z^{w^{2 m-1}} ; z \in Z\right\}$. Then $T=\left\{z z^{w} \ldots z^{w^{2 m-1}} ; z \in Q(\beta) Q(\beta \alpha)\right\}$.

Proof: Consider $z=p_{0} \ldots p_{2 m-1}$, where $p_{i} \in Q\left(\beta \alpha^{i}\right), 0 \leq i<2 m$. If $i=2 j$ is even, then $p_{i}=a_{j}^{w^{j}}$ for some $a_{j} \in Q(\beta)$, and if $i=2 j+1$ is odd, then $p_{i}=b_{j}^{w^{j}}$ for some $b_{j} \in Q(\beta \alpha)$. Put $z_{1}=a_{0} a_{1}^{w} \ldots a_{m-1}^{w^{m-1}}, c_{1}=a_{0} a_{1} \ldots a_{m-1}$, $z_{2}=b_{0} b_{1}^{w} \ldots b_{m-1}^{w^{m-1}}$, and $c_{2}=b_{0} b_{1} \ldots b_{m-1}$. Then $z=z_{1} z_{2}, c_{1} \in Q(\beta), c_{2} \in$ $Q(\beta \alpha)$, and it suffices to prove $z_{r} z_{r}^{w} \ldots z_{r}^{w^{2 m-1}}=c_{r} c_{r}^{w} \ldots c_{r}^{w^{2 m-1}}$, for both values of $r \in\{1,2\}$. We shall consider just the case $r=1$, the other case is similar.

Put $h_{j}=a_{j} a_{j}^{w} \ldots a_{j}^{w^{2 m-1}}, 0 \leq j<m$. Then $z_{1} z_{1}^{w} \ldots z_{1}^{w^{2 m-1}}$ can be expressed as $h_{0} h_{1}^{w} \ldots h_{m-1}^{w^{2 m-1}}$. However, $h_{j} \in Q\left(G \backslash G_{0}\right)$, by Lemma 1.6, and thus $h_{j} \in Z\left(G_{0}\right)$, by Lemma 1.4, for all $j, 0 \leq j<m$. Therefore $z_{1} z_{1}^{w} \ldots z_{1}^{w^{2 m-1}}=$ $h_{0} h_{1} \ldots h_{m-1}=c_{1} c_{1}^{w} \ldots c_{1}^{w^{2 m-1}}$.

2. The cyclic construction

We shall now investigate the properties of a construction that appears in Theorem 6.8 of [4]. This construction will be called cyclic. From Section 4 on we shall also be investigating another construction from [4], and that will be called dihedral. The goal of [4] was to prove that both these constructions are obtained naturally from certain general assumptions on the relationship of n-element groups $G(\circ)$ and $G(*)$ with $d(\circ, *)=n^{2} / 4$. However, that motivation is of no importance for our investigation here, and hence Theorem 6.8 mentioned above is the only result of [4] relevant to the cyclic construction that is needed in this paper. We start by restating it.

Theorem 2.1. Assume $S \triangleleft G$, with G / S cyclic of an even order $2 m$. Suppose that $\alpha \in G / S$ is a generator and that $h \in S \cap Z(G)$. Define an operation $*$ on G by

$$
x * y= \begin{cases}x y h, & \text { if } x \in \alpha^{i} \text { and } y \in \alpha^{j}, \\ & \text { where } 1 \leq i, j \leq m \text { and } i+j>m ; \\ x y h^{-1}, & \text { if } x \in \alpha^{-i} \text { and } y \in \alpha^{-j} \\ & \text { where } 1 \leq i, j<m \text { and } i+j \geq m ; \\ x y, & \text { in the other cases. }\end{cases}
$$

Then $G(*)$ is a group.
The group $G(*)$ of Theorem 2.1 will be denoted by $G[\alpha, h]$. The case $|G: S|=2$ was investigated already in [6], and in that paper the group $G[G \backslash S, h]$ was denoted by $G[S, h]$. If $m>1$, then a choice of a generating coset of G / S is necessary to determine $G(*)$ completely, and hence some change in notation could not have been avoided.

Note that for every pair of integers (i, j) there exists $\varepsilon \in\{-1,0,1\}$ such that $x * y=x y h^{\varepsilon}$ for all $(x, y) \in\left(\alpha^{i}, \alpha^{j}\right)$. The operation $*$ is defined so that for all $i, j \in M=\{-m+1, \ldots,-1,0,1, \ldots, m\}$ the value of ε is equal to $\sigma(i+j)$, where $\sigma(k)=0$ if $k \in M, \sigma(k)=1$ if $k>m$ and $\sigma(k)=-1$ if $k \leq-m$. We can thus write

$$
x * y=x y h^{\sigma(i+j)}, \quad \text { where } x \in \alpha^{i}, y \in \alpha^{j} \text { and } i, j \in M
$$

By writing $G(*)=G[\alpha, h]$ we implicitly assume that α is a coset of $S \triangleleft G$ that generates a cyclic group G / S of an even order. Unless otherwise stated, this order is assumed to be equal to $2 m$, and we shall also use M and $\sigma: M \rightarrow \mathbb{Z}$ with the meaning defined above. Furthermore, with respect to h the notation $G(*)=G[\alpha, h]$ carries the assumption that h is an element of $Z(G) \cap S$.

To envisage the value of ε, where $h^{\varepsilon}=(x y)^{-1} \cdot(x * y)$, use a table with the bottom row and the rightmost column labelled by α, and with the remaining rows and columns labelled by $\alpha^{i}, 2 \leq i \leq 2 m$, working from right to left and bottom to top. The top row and the leftmost column thus correspond to the neutral
element $S=\alpha^{2 m}$, and their neighbours correspond to α^{-1}. In this way we obtain a $2 m \times 2 m$ square table, and we shall consider its natural division into four $m \times m$ subsquares. The value $\varepsilon=1$ corresponds to those cells in the bottom right subsquare that are on and over its right-left (i.e., northeast-southwest) diagonal, while $\varepsilon=-1$ corresponds to the cells under the right-left diagonal of the upper left subsquare. The other cells have $\varepsilon=0$. Figure 1 depicts the table for $m=4$ (with + standing for 1 and - for -1).

	S	α^{7}	α^{6}	α^{5}	α^{4}	α^{3}	α^{2}	α
S	0	0	0	0	0	0	0	0
α^{7}	0	0	0	-	0	0	0	0
α^{6}	0	0	-	-	0	0	0	0
α^{5}	0	-	-	-	0	0	0	0
α^{4}	0	0	0	0	+	+	+	+
α^{3}	0	0	0	0	+	+	+	0
α^{2}	0	0	0	0	+	+	0	0
α	0	0	0	0	+	0	0	0

Figure 1: Distribution of the powers of h in the cyclic construction
The operation $*$ determines both α and h uniquely. To see this observe that α^{m} is the only row with m occurences of $\varepsilon \neq 0$, and that α is the only row, for which the only occurence of $\varepsilon \neq 0$ takes place in the column indexed by α^{m}.

The table conveys the definition of $*$ in a clear way. It also seems to suggest that an exchange of α and α^{-1} might be useful, since rows and columns would become labelled in a natural order, and not in the reverse order induced by our choice of α. However, such an exchange would require the differentiation of the cases $m=1$ and $m>1$ in some formulas. For example, in $G(*)$ the $2 m$-th power of $x \in \alpha$ always equals $x^{2 m} h$, while for $x \in \alpha^{-1}$ it equals $x^{2 m} h^{-1}$ if $m>1$, and $x^{2} h$ if $m=1$.

Lemma 2.2. Assume $G(*)=G[\alpha, h]$ and $x y \in S$, for some $x, y \in G$. If $x \notin \alpha^{m}$, then $x * y=x y$. If $x \in \alpha^{m}$, then $x * y=x y h$.

Proof: Define $i, j \in M$ by $x \in \alpha^{i}$ and $y \in \alpha^{j}$. If $i \neq m$, then $j=-i$, and $i+j=0 \in M$ implies $x * y=x y$. If $x, y \in \alpha^{m}$, then $x * y=x y h$, by the definition of $G(*)$.

Corollary 2.3. Assume $G(*)=G[\alpha, h]$ and consider $x \in G$. If $x \notin \alpha^{m}$, then $x^{*}=x^{-1}$. If $x \in \alpha^{m}$, then $x^{*}=x^{-1} h^{-1}$.

The next statement expresses one of the main properties of $G[\alpha, h]$.
Theorem 2.4. Assume $G(*)=G[\alpha, h]$. Then $x * y * x^{*}=x y x^{-1}$ and $x^{*} * y * x=$ $x^{-1} y x$ for all $x, y \in G$.

Proof: Let $x \in \alpha^{i}$ and $y \in \alpha^{j}$, where $i, j \in M$. Suppose first $i \neq m$. Then $x^{*}=x^{-1}$, by Corollary 2.3, and $-i \in M$. By definition, $x * y * x^{-1}=\left(x y h^{\sigma(i+j)}\right) *$ $x^{-1}=x y x^{-1} h^{\sigma(i+j)+\sigma((i \oplus j)-i)}$, where \oplus refers to addition in M modulo $2 m$. We shall show $\sigma(i+j)+\sigma((i \oplus j)-i)=0$. If $i+j=i \oplus j$, then both $i+j$ and $(i \oplus j)-j=i$ belong to M, and hence their σ values equal 0 . If $i+j>m$, then $\sigma(i+j)=1$, and $\sigma((i \oplus j)-i)=-1$ follows from $(i \oplus j)-i=((i+j)-2 m)-i=$ $j-2 m \leq m-2 m=-m$. Similarly, $i+j \leq-m$ induces opposite σ values, since $(i \oplus j)-i=(i+j)+2 m-i=j+2 m>-\bar{m}+2 m=m$. Hence $x * y * x^{*}=x y x^{-1}$ for $x \notin \alpha^{m}$, and from $x^{*}=x^{-1}$ and $x=\left(x^{-1}\right)^{*}$ we also get $x^{*} * y * x=x^{-1} y x$.

Suppose now $x \in \alpha^{m}$. Then $x^{*}=x^{-1} h^{-1}$, and we have to show $x * y * x^{-1}=$ $x y x^{-1} h$ and $x^{-1} * y * x=x^{-1} y x h$, for all $y \in \alpha^{j}, j \in M$. It suffices to prove the former equality, as x^{-1} also falls into α^{m}. If $j \geq 1$, then $-m<j-m \leq 0$ and $(x * y) * x^{-1}=(x y h) * x^{-1}=x y h x^{-1}$, and if $j \leq 0$, then $1 \leq j+m \leq m$ and $(x * y) * x^{-1}=(x y) * x^{-1}=x y x^{-1} h$.
Corollary 2.5. Assume $G(*)=G[\alpha, h]$. Then $x * y * x^{*} * y^{*}=x y x^{-1} y^{-1}$ and $x^{-1} y^{-1} x y=x^{*} * y^{*} * x * y$, for all $x, y \in G$.
Proof: If $y \notin \alpha^{m}$, then $y^{*}=y^{-1}$, by Corollary 2.3, and $x * y * x^{*} * y^{*}=$ $\left(x y x^{-1}\right) * y^{-1}$, by Theorem 2.4. This is equal to $x y x^{-1} y^{-1}$ by Lemma 2.2. For $y \in \alpha^{m}$ we get $y^{*}=y^{-1} h^{-1}$ and $x * y * x^{*} * y^{*}=\left(x y x^{-1}\right) *\left(y^{-1} h^{-1}\right)=$ $x y x^{-1} y^{-1} h^{-1} h=x y x^{-1} y^{-1}$. The computation of $x^{*} * y^{*} * x * y$ is done similarly.

Proposition 2.6. Assume $G(*)=G[\alpha, h]$. A (normal) subgroup H of $G(\cdot)$ is a (normal) subgroup of $G(*)$ if and only if $H \leq S$ or $h \in H$.

Proof: From the definition of $G(*)$ we see that if $h \in H$ or $H \subseteq S$, then $H \subseteq G$ is a subgroup of $G(\cdot)$ if and only if it is a subgroup of $G(*)$. From Theorem 2.4 we see that this correspondence retains normality. If $H<G(\cdot)$ is a subgroup of $G(*)$ that is not contained in S, then $H S / S$ is a nontrivial subgroup of G / S. Hence it is generated by some α^{k}, where k divides $2 m$ and is less than $2 m$. Thus $k \leq m$, and we can consider the greatest $r \geq 1$ such that $k r \leq m$. Choose $x \in H \cap \alpha^{r k}$ and $y \in H \cap \alpha^{k}$, and observe that $(k+1) r>m$ implies $x * y=x y h$. However, that means $h \in H$, since both $x * y$ and $x y$ are assumed to belong to H.

If $G(*)=G[\alpha, h]$, then from the preceding two statements one easily derives the coincidence of the members of the lower and the upper central series.

Proposition 2.7. Assume $G(*)=G[\alpha, h]$. Then $\gamma_{i}(G)=\gamma_{i}(G(*))$, for every $i \geq 1$, and $\vartheta_{j}(G)=\vartheta_{j}(G(*))$, for every $j \geq 0$.

Proof: We shall use induction. We have $\gamma_{1}(G(*))=G=\gamma_{1}(G(\cdot))$. If $\gamma_{i}(G)=$ $\gamma_{i}(G(*))$, then the next member is generated in both operations by the same set of commutators, by Corollary 2.5. This set is included in S, since G / S is abelian, and hence in both operations it generates the same subgroup of S.

The operations \cdot and $*$ share the unit element, and hence $\vartheta_{0}(G)=\vartheta_{0}(G(*))$. Assume $\vartheta_{j}(G)=\vartheta_{j}(G(*))$. The next member of the series can be defined just by means of the commutators, and hence in both operations we get the same subgroup.

Proposition 2.8. For $r \in\{1,2\}$ assume $G_{r}=\left\langle S, u_{r}\right\rangle$, where $S<G_{r}$ is normal and of index $2 m, m \geq 1$. Put $h=u_{2}^{2 m} u_{1}^{-2 m}$. If $s^{u_{1}}=s^{u_{2}}$ for all $s \in S$, then h is central in both G_{1} and G_{2}, and $G_{1}(*)=G_{1}\left[u_{1} S, h\right]$ is isomorphic to G_{2}.

Proof: The computation of $s^{u_{2}^{2 m}}$ in $G_{2}, s \in S$, can be perceived as a result of $2 m$ iterations of the automorphism $s \mapsto s^{u_{2}}$. Since u_{1} gives the same automorphism of S, we get $s^{u_{2}^{2 m}}=s^{u_{1}^{2 m}}$, for all $s \in S$. The element h is defined as the product of $u_{2}^{2 m} \in S$ and $u_{1}^{-2 m} \in S$, and so $s^{h}=s$ for all $s \in S$. Since $u_{2}^{2 m}$ commutes with u_{1}, by $\left(u_{2}^{2 m}\right)^{u_{1}}=\left(u_{2}^{2 m}\right)^{u_{2}}=u_{2}^{2 m}$, we also get $h^{u_{1}}=h$, and hence $h \in Z\left(G_{1}\right)$. Symmetry yields $h^{-1} \in Z\left(G_{2}\right)$. We have proved that h is central in both G_{1} and G_{2}.

Define $\varphi: G_{2} \rightarrow G_{1}$ by $\varphi\left(u_{2}^{i} s\right)=u_{1}^{i} s$ for all $s \in S$ and all $i \in M=\{-m+$ $1, \ldots,-1,0,1, \ldots, m\}$. If $i \in M$ and $s \in S$, then $\varphi\left(s u_{2}^{i}\right)=\varphi\left(u_{2}^{i} u_{2}^{-i} s u_{2}^{i}\right)=$ $u_{1}^{i} \cdot\left(u_{2}^{-i} s u_{2}^{i}\right)=u_{1}^{i} \cdot\left(u_{1}^{-i} s u_{1}^{i}\right)=s u_{1}^{i}$.

Define the group $G_{1}(*)$ by $x * y=\varphi\left(\varphi^{-1}(x) \varphi^{-1}(y)\right)$. Clearly $G_{1}(*) \cong G_{2}$. Our goal is to verify that our definition of $*$ coincides with that of $G_{1}\left[u_{1} S, h\right]$. If $i, j \in M$ and $s, t \in S$, then our definition gives $\left(u_{1}^{i} s\right) *\left(t u_{1}^{j}\right)=\varphi\left(u_{2}^{i} s t u_{2}^{j}\right)=$ $\varphi\left(u_{2}^{i} s t u_{2}^{-i} u_{2}^{j+i}\right)=u_{1}^{i} s t u_{1}^{-i} \varphi\left(u_{2}^{j+i}\right)$. Set $k=j+i$. We need to prove that $\varphi\left(u_{2}^{k}\right)=$ $u_{1}^{k} h^{\sigma(k)}$, for every $k,-2 m+2 \leq k \leq 2 m$.

If $k \in M$, then $\sigma(k)=0$ and $\varphi\left(u_{2}^{k}\right)=u_{1}^{k}$, by the definition of φ. If $k>m$, then $\sigma(k)=1$, and $\varphi\left(u_{2}^{k}\right)=\varphi\left(u_{2}^{2 m} u_{2}^{k-2 m}\right)=u_{2}^{2 m} u_{1}^{k-2 m}=h u_{1}^{2 m} u_{1}^{k-2 m}=$ $u_{1}^{k} h$. Similarly, if $k \leq-m$, then $\sigma(k)=-1$ and $\varphi\left(u_{2}^{k}\right)=\varphi\left(u_{2}^{k+2 m} u_{2}^{-2 m}\right)=$ $u_{1}^{k+2 m} u_{2}^{-2 m}=u_{1}^{k+2 m} u_{1}^{-2 m} h^{-1}=u_{1}^{k} h^{-1}$.

Corollary 2.9. For $r \in\{1,2\}$ assume $G_{r}=\left\langle S, u_{r}\right\rangle$, where $S<G_{r}$ is normal and of index $2 m, m \geq 1$. Assume also $u_{1}^{2 m}=u_{2}^{2 m}$, and $s^{u_{1}}=s^{u_{2}}$, for all $s \in S$. Then there exists an isomorphism $\varphi: G_{2} \cong G_{1}$ such that $\varphi\left(u_{2}^{i} s\right)=u_{1}^{i} s$ and $\varphi\left(s u_{2}^{i}\right)=s u_{1}^{i}$ for all $s \in S$ and $i \in \mathbb{Z}$.

Proof: Consider $G_{1}(*)$ and φ from the proof of Proposition 2.8. We assume $h=1$, and hence $G_{1}(*)$ does not differ from $G_{1}(\cdot)$. The assumption $u_{2}^{2 m}=u_{1}^{2 m}$ makes it possible to extend the formulas for φ from $i \in M$ to all $i \in \mathbb{Z}$.

Recall that the groups G_{1} and G_{2} are $C_{2 m}$-related, $m \geq 1$, if there exist a group $G=G(\cdot)$, its subgroup $S \triangleleft G$, an element $h \in S \cap Z(G)$, and a coset $\alpha \in G / S$, such that $|G: S|=2 m, \alpha$ generates $G / S, G_{1} \cong G(\cdot)$ and $G_{2} \cong G(*)=G[\alpha, h]$.

Theorem 2.10. The groups G_{1} and G_{2} are $C_{2 m}$-related, $m \geq 1$, if and only if there exist groups $H_{r} \cong G_{r}$, their common subgroup $S \triangleleft H_{i},\left|H_{r}: S\right|=2 m$, and elements $u_{r} \in H_{i}$, such that $u_{r} S$ generates $H_{r} / S, r \in\{1,2\}$, and $s^{u_{1}}=s^{u_{2}}$ for all $s \in S$.

Proof: If groups H_{r} and elements u_{r} satisfying the above conditions exist, then G_{1} and G_{2} are $C_{2 m}$-related by Proposition 2.8. If $G_{1} \cong G(\cdot)$ and $G_{2} \cong G(*)$, where $G(*)=G[\alpha, h]$ and $|G: S|=2 m$, then we can put $H_{1}=G(\cdot), H_{2}=G(*)$, and consider any $u_{1}=u_{2} \in \alpha$. The inner automorphisms coincide on S by Theorem 2.4.

Proposition 2.11. Assume $G(*)=G[\alpha, h]$. Then $G(\cdot) /\langle h\rangle \cong G(*) /\langle h\rangle$.
Proof: The group $\langle h\rangle$ is a central subgroup (and thus a normal subgroup) of both $G(\cdot)$ and $G(*)$. The statement hence follows directly from the definition of $*$.

Proposition 2.11 shows that the groups $G(\cdot)$ and $G(*)$ could be handled as central extensions of the same group by the same quotient. Each of these extensions can be represented by a factor system, and many of our results could be obtained alternatively by considering the difference of these two factor systems.

3. Isomorphisms of cyclic constructions

Lemma 3.1. Assume $G(*)=G[\alpha, h]$, and consider $x \in \alpha$. Denote by x_{i} the i-th power $x * \cdots * x, i \geq 0$. If $0 \leq i \leq m$, then $x_{i}=x^{i}$. If $m<i \leq 2 m$, then $x_{i}=x^{i} h$.
Proof: We have $x_{i} \in \alpha^{i}$, and hence $x_{i} * x=x_{i} x$ whenever $0 \leq i \leq 2 m$ and $i \neq m$. We also have $x_{m} * x=x_{m} x h$, and the rest is clear.

The next statement describes the principal case, in which we can establish an isomorphism $G[\alpha, h] \cong G$ without resorting to a specific structural investigation of G.

Proposition 3.2. Assume $G=\langle S, x\rangle$, where $S \triangleleft G$ and $|G: S|=2 m$. Consider $z \in Z(S)$, and put $h=z^{x^{2 m-1}} \ldots z^{x} z$. Then there exists an isomorphism φ : $G[x S, h] \cong G$ such that $\varphi\left(s x^{i}\right)=s(z x)^{i}$ for all $s \in S$ and $i \in \mathbb{Z}$.

Proof: The element h belongs to $Z(G)$ by Lemma 1.2 , and the inner automorphisms of $u_{2}=x$ and $u_{1}=z x$ coincide on S with respect to both group operations, by Theorem 2.4. Hence to apply Corollary 2.9 it suffices to show that $(z x)^{2 m}$ equals $x^{2 m} h$, since the latter element is equal to the $2 m$-th power of x in $G(*)$, by Lemma 3.1. However, $(z x)^{2 m}=x^{2 m} h$ follows from Lemma 1.2.

We shall now point to a property that can be described as the affine behaviour (of the cyclic construction). This behaviour will allow us to derive from Proposition 3.2 an isomorphism $G\left[\alpha, h_{1}\right] \cong G\left[\alpha, h_{2}\right]$ for all $h_{1}, h_{2} \in S \cap Z(G)$ that are equivalent modulo $T=\left\{z^{x^{2 m-1}} \ldots z^{x} z ; z \in Z(S)\right\}$.

Proposition 3.3. Assume $G_{1}=G\left[\alpha, h_{1}\right]$ and $G_{2}=G\left[\alpha, h_{1} h_{2}\right]$, where $h_{1}, h_{2} \in$ $S \cap Z(G)$. Then $G_{2}=G_{1}\left[\alpha, h_{2}\right]$.
Proof: Consider $x \in \alpha^{i}$ and $y \in \alpha^{j}$, where $i, j \in M$. The product of x and y in $G\left[\alpha, h_{1} h_{2}\right]$ is equal to $x y\left(h_{1} h_{2}\right)^{\sigma(i+j)}=x y h_{1}^{\sigma(i+j)} h_{2}^{\sigma(i+j)}$, while the product of x and y in $G_{1}\left[S, h_{2}\right]$ equals $x * y * h_{2}^{\sigma(i+j)}=(x * y) h_{2}^{\sigma(i+j)}$, where $*$ denotes the group operation of $G_{1}=G\left[\alpha, h_{1}\right]$. We have $x * y=x y h_{1}^{\sigma(i+j)}$, and thus the products considered give the same result.
Theorem 3.4. Assume $S \triangleleft G,|G: S|=2 m$, and suppose that G / S is cyclic. For $x \in S,\langle S, x\rangle=G$, put $T=\left\{z^{x^{2 m-1}} \ldots z^{x} z ; z \in Z(S)\right\}$. Then T is a subgroup of $S \cap Z(G)$. It does not depend on the choice of $x \in G,\langle S, x\rangle=G$, and contains $\left\{z^{2 m} ; z \in S \cap Z(G)\right\}$. If α generates G / S, then $G\left[\alpha, h_{1}\right] \cong G\left[\alpha, h_{2}\right]$ whenever $h_{1}, h_{2} \in S \cap Z(G)$ are equivalent modulo T. In particular, $G[\alpha, h] \cong G$ for every $h \in T$.
Proof: The above properties of T are taken from Proposition 1.3. If $h_{1} \equiv$ $h_{2} \bmod T$, then $G\left[\alpha, h_{2}\right]=G_{1}[\alpha, h]$, where $G_{1}=G\left[\alpha, h_{1}\right]$ and $h=h_{1}^{-1} h_{2} \in T$, by Proposition 3.3. From Theorem 2.4 we see that by defining T with respect to G_{1} and G we get the same subgroup of S, and hence $G\left[\alpha, h_{2}\right] \cong G_{1}$ follows from Proposition 3.2.
Corollary 3.5. Assume $G(*)=G[\alpha, h]$. Then there exists $h^{\prime} \in S \cap Z(G)$ such that every prime divisor of its order divides $2 m$, and $G(*) \cong G\left[\alpha, h^{\prime}\right]$.
Proof: Express h as a product of its powers, $h=h^{\prime} h^{\prime \prime}$, in such a way that the order of $h^{\prime \prime}$ is coprime to $2 m$. Then $h^{\prime \prime}=z^{2 m}$ for certain $z \in\left\langle h^{\prime \prime}\right\rangle \leq S \cap Z(G)$.

The following two statements can be easily directly verified, and their proof is thus omitted. They are included here in order to make the list of available isomorphisms as large as possible.
Proposition 3.6. Assume $G_{2}=G_{1}[\alpha, h]$. Then $G_{1}=G_{2}\left[\alpha, h^{-1}\right]$.
Proposition 3.7. Suppose $\varphi: G_{1} \cong G_{2}$ and $G_{1}(*)=G_{1}[\alpha, h]$. Then φ also yields an isomorphism $G_{1}(*) \cong G_{2}(*)$, where $G_{2}(*)=G_{2}[\varphi(\alpha), \varphi(h)]$.

We shall now show that the possible isomorphism types of $G[\alpha, h]$ depend only on the subgroup S, and not on the choice of the generating coset $\alpha \in G / S$. To this purpose we first record two easy lemmas.
Lemma 3.8. Assume $G(*)=G[\alpha, h]$, and consider $x \in \alpha$ and $j \in M$. Then the j-th powers of x in $G(*)$ and in $G(\cdot)$ are the same.
Proof: The equality follows from Lemma 3.1 immediately if $0 \leq j \leq m$. Assume $-1 \geq j \geq-m+1$, and denote by x_{i} the i-th power of x in $G(*)$. From Corollary 2.3 we get $\left(x_{j}\right)^{*}=x_{-j}=x^{-j}=\left(x^{j}\right)^{-1}=\left(x^{j}\right)^{*}$, and hence $x_{j}=x^{j}$.

Lemma 3.9. Assume $G(*)=G[\alpha, h]$, and consider $j \in M$ and $y \in \alpha^{j}$. Then the $2 m$-th power of y in $G(*)$ is equal to $y^{2 m} h^{j}$.

Proof: Let us again use lower indices to denote the powers induced by $*$. If $y, y^{\prime} \in \alpha^{j}$, then there exist $\varepsilon, \varepsilon^{\prime} \in \mathbb{Z}$ such that $y_{2 m}=y^{2 m} h^{\varepsilon}$ and $y_{2 m}^{\prime}=\left(y^{\prime}\right)^{2 m} h^{\varepsilon^{\prime}}$. The indices ε and ε^{\prime} have to coincide, as the powers of h in the definition of $*$ depend only on the incidence to the cosets of S. Hence we can assume $y=x^{j}$, for some $x \in \alpha$. Lemma 3.8 gives $x_{j}=x^{j}$, and from Lemma 3.1 we thus get $y_{2 m}=x_{2 m j}=\left(x_{2 m}\right)^{j}=\left(x^{2 m} h\right)^{j}=\left(x^{j}\right)^{2 m} h^{j}=y^{2 m} h^{j}$.

Proposition 3.10. Assume $G(*)=G\left[\alpha^{j}, h\right]$, where α generates $G / S,|G: S|=$ $2 m$, and $j \in M$ is coprime to $2 m$. Consider $k \in M$ with $j k \equiv 1 \bmod 2 m$. Then $G(*) \cong G\left[\alpha, h^{k}\right]$.

Proof: We shall use Corollary 2.9 with respect to $G_{2}=G(*), G_{1}=G\left[\alpha, h^{k}\right]$ and $u_{2}=x=u_{1}$, where x is an element of α. The automorphisms of S that are induced by x are the same, by Theorem 2.4. From Lemma 3.1 we see that the $2 m$-th power of x in G_{1} equals $x^{2 m} h^{k}$. Let us consider the $2 m$-th power of x in G_{2}. We have $\alpha=\left(\alpha^{j}\right)^{k}$, and hence Lemma 3.9 implies that this power is also equal to $x^{2 m} h^{k}$.

Corollary 3.11. Suppose that α generates $G / S,|G: S|=2 m$. If $H \cong G\left[\alpha^{\prime}, h\right]$, where α^{\prime} is another generator of G / S, then there exists $h^{\prime} \in S \cap Z(G)$ such that $H \cong G\left[\alpha, h^{\prime}\right]$.

4. The dihedral construction

The dihedral construction refers to the situation when there exists $S \triangleleft G$ such that $G / S \cong D_{4 m}$ is a dihedral group of order $4 m, m \geq 1$.

Theorem 4.1. Assume $S \triangleleft G$, with G / S dihedral of order $4 m, m \geq 1$. Suppose that $G / S=\langle\beta, \gamma\rangle$, where β and γ are involutions in G / S, and let $h \in S$ be such that $h x h=x$ for all $x \in \beta \cup \gamma$. Put $\alpha=\beta \gamma$, and for each $(x, y) \in G \times G$ find $i, j \in\{-m+1, \ldots,-1,0,1, \ldots, m\}$ and $\varepsilon, \eta \in\{0,1\}$ such that $x \in \beta^{\varepsilon} \alpha^{i}$ and $y \in \alpha^{j} \gamma^{\eta}$. Put $\xi=(-1)^{\eta}$, and define an operation $*$ on G by

$$
x * y= \begin{cases}x y h^{\xi}, & \text { if } 1 \leq i, j \leq m \text { and } i+j>m ; \\ x y h^{-\xi}, & \text { if }-m<i, j \leq-1 \text { and } i+j \leq-m ; \\ x y, & \text { in the other cases. }\end{cases}
$$

Then $G(*)$ is a group.
The proof is not necessary, since the construction is the same as that of [4, Theorem 7.8]. However, some observations should be made since the wording of the two theorems is not exactly the same.

Firstly, in [4] one does not use the notational shortcut involving ξ, but gives an explicit formula for all cases $(\varepsilon, \eta) \in\{0,1\} \times\{0,1\}$. Secondly, the condition $\langle\beta, \gamma\rangle=G / S$ is clearly equivalent to the requirement of [4] that $\alpha=\beta \gamma$ is of order $2 m$. Put $G_{0}=\langle\alpha\rangle$ and note that $Q(\beta, \gamma)=S \cap Q\left(G \backslash G_{0}\right)$, by Proposition 1.5. Hence, thirdly, the choice of $h \in Q(\beta, \gamma)$ in Theorem 4.1 is the same as the choice of $h \in S \cap Q\left(G \backslash G_{0}\right)$ in [4].

The group $G(*)$ will be denoted by $G[\beta, \gamma, h]$, and whenever we write $G(*)=$ $G[\beta, \gamma, h]$ we implicitly assume that G / S, where $S=\beta^{2}=\gamma^{2}$, is a dihedral group of order $4 m$, that $G / S=\langle\beta, \gamma\rangle$ and that $h \in S$ satisfies $h x h=x$ for all $x \in \beta \cup \gamma$. Furthermore, the meaning of m, S, G_{0} and α will be regarded as generically fixed. The set $\{-m+1, \ldots,-1,0,1, \ldots, m\}$ will be denoted by M as in the preceding sections, and we shall also use the mapping σ in the same sense.

The notation $G[U, V, h]$ that was used in [7] and [6] means in our present notation $G\left[\beta, \gamma, h^{-1}\right]$, where $m=1, U=S \cup \beta$ and $V=S \cup \gamma$.

Note that the operation $*$ can be expressed by

$$
x * y=x y h^{(-1)^{\eta} \sigma(i+j)}, \text { where } x \in \beta^{\varepsilon} \alpha^{i}, y \in \alpha^{j} \gamma^{\eta}, i, j \in M \text { and } \varepsilon, \eta \in\{0,1\} .
$$

The following facts are therefore clear.
Lemma 4.2. Assume $G(*)=G[\beta, \gamma, h]$. Then $S \cup \beta=\{x \in G ; x * y=x y$ for all $y \in G\}$ and $S \cup \gamma=\{x \in G ; y * x=y x$ for all $y \in G\}$. Furthermore, G_{0} is also a subgroup of $G(*)$, and $G_{0}(*)=G_{0}[\alpha, h]$.

The formula $x * y=x y h^{(-1)^{\eta} \sigma(i+j)}$ is not fully satisfactory, as the description of the cosets is different for x and y. Now, $\beta \alpha^{j}=\alpha^{1-j} \gamma$ and $\alpha^{j} \gamma=\beta \alpha^{1-j}$ for all $j \in \mathbb{Z}$, and the mapping $\mu: j \mapsto 1-j$ yields an involutory permutation of M. We obtain
$x * y=x y h^{(-1)^{\eta} \sigma\left(i+\mu^{\eta}(j)\right)}$, where $x \in \beta^{\varepsilon} \alpha^{i}, y \in \beta^{\eta} \alpha^{j}, i, j \in M$ and $\varepsilon, \eta \in\{0,1\}$.

The pictorial representation of $G(*)=G[\beta, \gamma, h]$ is discussed in [4], following Theorem 7.8. It consists of four subsquares, where the left upper subsquare corresponds to the pictorial representation of $G_{0}[\alpha, h]$ that is discussed in Section 2. The other three subsquares are obtained by propagating its pattern first down and then to the right. Rows of $G \backslash G_{0}$ are labelled $\beta=\beta \alpha^{2 m}, \beta \alpha^{2 m-1}, \ldots, \beta \alpha$, and the motion down is just a shift. There are two ways of representing the subsquares on the right, depending on our choice of column labels. If the columns are denoted by $\gamma=\alpha^{2 m} \gamma, \alpha^{2 m-1} \gamma, \ldots, \alpha \gamma$, then the pattern is obtained by shifting, and if they are denoted by $\beta=\beta \alpha^{2 m}, \beta \alpha^{2 m-1}, \ldots, \beta \alpha$, one has to use mirroring. However, in both cases the value of ε, where $h^{\varepsilon}=(x * y)(x y)^{-1}$, changes to $-\varepsilon$. Figure 2 gives the table for the case $m=2$ (with + standing for 1 and - for -1).

	1	α^{3}	α^{2}	α	β	$\beta \alpha^{3}$	$\beta \alpha^{2}$	$\beta \alpha$
1	0	0	0	0	0	0	0	0
α^{3}	0	-	0	0	0	0	+	0
α^{2}	0	0	+	+	-	-	0	0
α	0	0	+	0	0	-	0	0
β	0	0	0	0	0	0	0	0
$\beta \alpha^{3}$	0	-	0	0	0	0	+	0
$\beta \alpha^{2}$	0	0	+	+	-	-	0	0
$\beta \alpha$	0	0	+	0	0	-	0	0

Distribution of the powers of h in the dihedral construction
Lemma 4.3. Assume $G(*)=G[\beta, \gamma, h]$ and $x y \in S$, for some $x, y \in G$. If $x \notin \alpha^{m}$, then $x * y=x y$. If $x \in \alpha^{m}$, then $x * y=x y h$.

Proof: We have $x \in G_{0}$ if and only if $y \in G_{0}$. One can use Lemma 2.2, when $x \in G_{0}$, and so we can assume $x \in G \backslash G_{0}$. Then $x S=y S$, and for $x \in \beta \alpha^{i}$, $i \in M$, we obtain $x * y=x y h^{-\sigma(i+1-i)}=x y$, as $\sigma(1)=0$.

Lemma 4.4. Assume $G(*)=G[\beta, \gamma, h]$, and consider $u \in G \backslash G_{0}$. Then $H=$ $S \cup S u$ is a common subgroup of both $G(\cdot)$ and $G(*)$, and $x * y=x y$ for all $x, y \in H$.

Proof: To observe that H is a subgroup, it is sufficient to note that $S u$ is an involution in G / S. Assume $x, y \in H \backslash S$. Then $x * y=x y$, by Lemma 4.3.

Corollary 2.3 can be thus extended to
Corollary 4.5. Assume $G(*)=G[\beta, \gamma, h]$ and consider $x \in G$. If $x \notin \alpha^{m}$, then $x^{*}=x^{-1}$. If $x \in \alpha^{m}$, then $x^{*}=x^{-1} h^{-1}$.

In the dihedral construction there always exist cases with $x * y * x^{*} \neq x y x^{-1}$:
Lemma 4.6. Assume $G(*)=G[\beta, \gamma, h]$. If $s \in S$, then $x * s * x^{*}=x s x^{-1}$, $x^{*} * s * x=x^{-1} s x$ and $s^{*} * x^{*} * s * x=s^{-1} x^{-1} s x$, for all $x \in G$. If $u \in \alpha^{m}$, then $u * x * u^{*}=u x u^{-1} h^{-1}$ and $x * u * x^{*} * u^{*}=x u x^{-1} u^{-1} h^{-1}$ for all $x \in G \backslash G_{0}$.

Proof: The equalities with $s \in S$ follow from Theorem 2.4, Corollary 2.5 and Lemma 4.4. Assume $u \in \alpha^{m}$ and $x \in \beta \alpha^{i}, i \in M$. Express x as $e * y=e y$, where $e \in \beta$ and $y \in \alpha^{i}, i \in M$, and note that α^{m} is in the centre of G / S. We obtain $u * x * x^{*}=\left(u * e * u^{*}\right) *\left(u * y * u^{*}\right)=\left(u *\left(e u^{-1} h^{-1}\right)\right)\left(u y u^{-1}\right)=$ $\left(u e u^{-1} h^{-1} h^{-\sigma(m+1-m)}\right)\left(u y u^{-1}\right)=u e y u^{-1} h^{-1}=u x u^{-1} h^{-1}$, using Theorem 2.4, Lemma 4.2, Lemma 2.2 and the definition of $*$. The last equality now easily follows from Lemma 4.4 and Corollary 4.5.

Proposition 4.7. Assume $G(*)=G[\beta, \gamma, h]$. A subgroup H of $G(\cdot)$ is a subgroup of $G(*)$ if and only if $h \in H$ or $H \leq S \cup S x$, for some $x \in G \backslash G_{0}$. If H is a common subgroup of $G(\cdot)$ and $G(*)$, and H is normal in $G(\cdot)$, then H is normal in $G(*)$ if and only if $h \in H$ or $H \leq S$.

Proof: A subset $H \subseteq G$ with $h \in H$ is clearly a (normal) subgroup of $G(\cdot)$ if and only if it is a (normal) subgroup of $G(*)$. For subgroups of $S \cup S x, x \in G \backslash G_{0}$, use Lemma 4.4. If $H \leq S$, then the normality is retained by Lemma 4.6. The same lemma implies $h \in H$ when H is normal in both $G(\cdot)$ and $G(*)$, and satisfies $H \leq S \cup S x$ and $H \cap S x \neq \emptyset$, for some $x \in G \backslash G_{0}$. If $H \leq G(\cdot)$ is contained in no $S \cup S x, x \in G \backslash G_{0}$, then $G_{0} \cap H$ is not contained in S. If in such a case H is to be a subgroup of $G(*)$, then $G_{0} \cap H$ is a subgroup of both $G_{0}(\cdot)$ and $G_{0}(*)$. Since it is not contained in S, it has to contain h, by Proposition 2.6.

If $G(*)=G[\beta, \gamma, h]$, then $h \in Q\left(G \backslash G_{0}\right)$, and $h^{g}=h^{ \pm 1}$, by Lemma 1.4. From Lemma 4.6 we see that $\langle h\rangle$ is a normal subgroup of both $G(\cdot)$ and $G(*)$. The following statement is therefore an immediate consequence of the definition of $*$.

Proposition 4.8. Assume $G(*)=G[\beta, \gamma, h]$. Then $\langle h\rangle$ is a cyclic normal subgroup of both $G(\cdot)$ and $G(*)$, and the quotient groups $G(\cdot) /\langle h\rangle$ and $G(*) /\langle h\rangle$ coincide.

It is clear that the operation • can be recovered from $*$ by a converse procedure, and hence we can state without a proof the following proposition, which is analogous to Proposition 3.6.

Proposition 4.9. If $G(*)=G[\beta, \gamma, h]$, then $G(\cdot)=G(*)\left[\beta, \gamma, h^{-1}\right]$.
The dihedral group $D_{4 m}$ is nilpotent if and only if $m=2^{k}$ for some $k \geq 0$, and in such a case its nilpotency degree is equal to $k+1$. These are the only cases when it makes sense to consider the nilpotency of $G[\beta, \gamma, h]$.

Proposition 4.10. Assume $G(*)=G[\beta, \gamma, h]$ and suppose that $G / S \cong D_{4 m}$, $m=2^{k}$. The group $G(*)$ is nilpotent if and only if $G(\cdot)$ is nilpotent, and their nilpotency differs at most by $k+1$.

Proof: The relationship of $G(\cdot)$ and $G(*)$ is symmetric, by Proposition 4.9. We can thus assume that $G(\cdot)$ is nilpotent. Let $1 \leq G_{t} \triangleleft G_{t-1} \triangleleft \ldots G_{1} \triangleleft G_{0}=G$ be the upper central series of $G(\cdot)$, and let $S=H_{k} \triangleleft \ldots \triangleleft H_{0}=G$ be such that $H_{k} / S \triangleleft \ldots \triangleleft H_{0} / S$ is the lower central series of $G / S \cong D_{2^{k+2}}$. The series

$$
1=G_{t} \cap S \unlhd G_{t-1} \cap S \unlhd \ldots \unlhd G_{1} \cap S \unlhd S \triangleleft H_{k-1} \triangleleft \ldots \triangleleft H_{0}=G
$$

is a central series in $G(*)$, by Proposition 4.7 and Lemma 4.6 , since the commutators in $G(*)$ and $G(\cdot)$ coincide when one of their arguments lies in S.

Surprisingly, the estimate of Proposition 4.10 is the best possible. Indeed, consider the group

$$
G=\left\langle x, y, z ; x^{2^{k}}=y^{2}=z^{2^{k}}=1, x z=z x, x^{y}=x^{-1}, z^{y}=z^{-1}\right\rangle
$$

where $k \geq 1$. This group is a semidirect product of $C_{2^{k}} \times C_{2^{k}}$ with C_{2}, and is of order $2^{2 k+1}$. It is nilpotent of degree k, and we shall show that for $S=\langle x\rangle$ and $h=x$ we can get $G(*)$ that is isomorphic to $D_{2^{2 k+1}}$. This will be the example we need, since $G / S \cong D_{2^{k+1}}$.

Put $\beta=y S$ and $\gamma=y z S$. The crucial point is to show that the $2 m$-th power of z in $G(*)$ is an element of S that is of order $2 m$ (we have $2 m=2^{k}$). However, by Lemma 3.1 it is equal to $z^{2^{k}} h=x$, and so the order of z in $G(*)$ is $2^{2 k}$. Furthermore, $y * y=y^{2}=1$ and $y * z=y z$, by Lemma 4.2, and for $m \geq 2$ we have $y * z * y=(y z) * y=y z y h^{-\sigma(1+1)}=y z y=z^{-1}=z^{*}$, by Lemma 4.5, while for $m=1$ we obtain $y * z * y=(y z) * y=y z y h^{-1}=z h^{-1}=z^{*}$.

Further information about the groups that can be derived from $D_{2^{k}}$ by means of cyclic and dihedral constructions can be found in [1]. For the case $m=1$ see also [7].

5. Characterization of the dihedral construction

Proposition 5.1. For $i \in\{1,2\}$ assume $G_{i}=\left\langle S, u_{i}, v_{i}\right\rangle$, where S is normal in G_{i}, G_{i} / S is dihedral of order $4 m, G_{i} / S=\left\langle u_{i} S, v_{i} S\right\rangle, u_{1}^{2}=u_{2}^{2} \in S$ and $v_{1}^{2}=v_{2}^{2} \in S$. Put $h=\left(u_{2} v_{2}\right)^{2 m}\left(u_{1} v_{1}\right)^{-2 m}$. If $s^{u_{1}}=s^{u_{2}}$ and $s^{v_{1}}=s^{v_{2}}$ for all $s \in S$, then $h \in Q\left(u_{i} S, v_{i} S\right)$ for both $i \in\{1,2\}$, and $G_{1}(*)=G_{1}\left[u_{1} S, v_{1} S, h\right]$ is isomorphic to G_{2}.
Proof: We start by proving $\left(u_{1} v_{1}\right)^{j}\left(v_{1} u_{1}\right)^{j}=\left(u_{2} v_{2}\right)^{j}\left(v_{2} u_{2}\right)^{j} \in S$, for all $j \geq 0$. The case $j=0$ is clear. Assume $j \geq 0$ and put $s=\left(u_{1} v_{1}\right)^{j}\left(v_{1} u_{1}\right)^{j}$. The induction step follows from $\left(u_{1} v_{1}\right)^{j+1}\left(v_{1} u_{1}\right)^{j+1}=u_{1} v_{1} s v_{1} u_{1}=u_{1}\left(v_{1}^{2} s^{v_{1}}\right) u_{1}=$ $u_{1}^{2}\left(v_{2}^{2} s^{v_{2}}\right)^{u_{1}}=u_{2}^{2}\left(v_{2} s v_{2}\right)^{u_{2}}=u_{2} v_{2} s v_{2} u_{2}=\left(u_{2} v_{2}\right)^{j+1}\left(v_{2} u_{2}\right)^{j+1}$. The role of u_{i} and $v_{i}, i \in\{1,2\}$, is at this stage symmetric, and hence also $\left(v_{1} u_{1}\right)^{j}\left(u_{1} v_{1}\right)^{j}=$ $\left(v_{2} u_{2}\right)^{j}\left(u_{2} v_{2}\right)^{j}$, for all $j \geq 0$. Both equalities can be inverted, and therefore they hold for all integers j.

The index of S in $\left\langle S, u_{i} v_{i}\right\rangle, i \in\{1,2\}$, is equal to $2 m$, and the respective quotient is cyclic. We have $s^{u_{1} v_{1}}=s^{u_{2} v_{2}}$ for all $s \in S$, and hence h lies in the centre of $\left\langle S, u_{i} v_{i}\right\rangle$, by Proposition 2.8. From $h\left(u_{1} v_{1}\right)^{2 m}=\left(u_{1} v_{1}\right)^{2 m} h$ we obtain $\left(u_{2} v_{2}\right)^{2 m}\left(u_{1} v_{1}\right)^{2 m}=\left(u_{1} v_{1}\right)^{2 m}\left(u_{2} v_{2}\right)^{2 m}$, and this gives

$$
\begin{aligned}
& \left(u_{2} v_{2}\right)^{2 m}\left(u_{1} v_{1}\right)^{-2 m}\left(v_{2} u_{2}\right)^{2 m}\left(v_{1} u_{1}\right)^{-2 m}= \\
& \quad\left(u_{1} v_{1}\right)^{-2 m}\left(u_{2} v_{2}\right)^{2 m}\left(v_{2} u_{2}\right)^{2 m}\left(v_{1} u_{1}\right)^{-2 m}= \\
& \quad\left(u_{1} v_{1}\right)^{-2 m}\left(u_{1} v_{1}\right)^{2 m}\left(v_{1} u_{1}\right)^{2 m}\left(v_{1} u_{1}\right)^{-2 m}=1
\end{aligned}
$$

This means $h^{-1}=\left(v_{2} u_{2}\right)^{2 m}\left(v_{1} u_{1}\right)^{-2 m}$. Now, $h^{u_{i}}=\left(\left(u_{2} v_{2}\right)^{2 m}\right)^{u_{i}}\left(\left(u_{1} v_{1}\right)^{-2 m}\right)^{u_{i}}$ $=\left(\left(u_{2} v_{2}\right)^{2 m}\right)^{u_{2}}\left(\left(u_{1} v_{1}\right)^{-2 m}\right)^{u_{1}}=\left(v_{2} u_{2}\right)^{2 m}\left(v_{1} u_{1}\right)^{-2 m}=h^{-1}$, for both $i \in\{1,2\}$. We have proved $h \in Q\left(u_{i} S\right)$, by Lemma 1.4. Symmetrically we also get $h^{-1} \in$ $Q\left(v_{i} S\right)$, and so $h \in Q\left(u_{i} S, v_{i} S\right), i \in\{1,2\}$.

Define now $\varphi: G_{2} \rightarrow G_{1}$ by $\varphi\left(u_{2}^{\varepsilon}\left(u_{2} v_{2}\right)^{j} s\right)=u_{1}^{\varepsilon}\left(u_{1} v_{1}\right)^{j} s$, for all $s \in S$, $\varepsilon \in\{0,1\}$ and $j \in M=\{-m+1, \ldots,-1,0,1, \ldots, m\}$. If s^{\prime} is another element of S, then $\varphi\left(u_{2}^{\varepsilon} s^{\prime}\left(u_{2} v_{2}\right)^{j} s\right)=\varphi_{2}\left(u_{2}^{\varepsilon}\left(u_{2} v_{2}\right)^{j}\left(s^{\prime}\right)^{\left(u_{1} v_{1}\right)^{j}} s\right)=u_{1}^{\varepsilon} s^{\prime}\left(u_{1} v_{1}\right)^{j} s$. Similarly, for $s_{1}, s_{2}, s_{3} \in S$ we get $\varphi\left(s_{1} u_{2}^{\varepsilon} s_{2}\left(u_{2} v_{2}\right)^{j} s_{3}\right)=\varphi\left(u_{2}^{\varepsilon} s_{1}^{u_{2}^{\varepsilon}} s_{2}\left(u_{2} v_{2}\right)^{j} s_{3}\right)=$ $u_{1}^{\varepsilon} s_{1}^{u_{1}^{\varepsilon}} s_{2}\left(u_{1} v_{1}\right)^{j} s_{3}=s_{1} u_{1}^{\varepsilon} s_{2}\left(u_{1} v_{1}\right)^{j} s_{3}$.

For $s_{1}, s_{2}, s_{3} \in S, \varepsilon \in\{0,1\}$ and $j \in M$ we also obtain

$$
\begin{aligned}
& \varphi\left(s_{1} u_{2}^{\varepsilon} s_{2}\left(v_{2} u_{2}\right)^{-j} s_{3}\right)=\varphi\left(s_{1} u_{2}^{\varepsilon} s_{2}\left(v_{2} u_{2}\right)^{-j}\left(u_{2} v_{2}\right)^{-j}\left(u_{2} v_{2}\right)^{j} s_{3}\right)= \\
& s_{1} u_{1}^{\varepsilon} s_{2}\left(v_{1} u_{1}\right)^{-j}\left(u_{1} v_{1}\right)^{-j}\left(u_{1} v_{1}\right)^{j} s_{3}=s_{1} u_{1}^{\varepsilon} s_{2}\left(v_{1} u_{1}\right)^{-j} s_{3}
\end{aligned}
$$

If $j \in M$, then $-(j-1) \in M$ as well, and $\left(u_{2} v_{2}\right)^{j} v_{2}$ is equal to

$$
u_{2}\left(v_{2} u_{2}\right)^{j-1} v_{2}^{2}\left(v_{2} u_{2}\right)^{-(j-1)}\left(v_{2} u_{2}\right)^{j-1}=u_{2}\left(v_{1} u_{1}\right)^{j-1} v_{1}^{2}\left(v_{1} u_{1}\right)^{-(j-1)}\left(v_{2} u_{2}\right)^{j-1}
$$

Hence $\varphi\left(s_{1} u_{2}^{\varepsilon} s_{2}\left(u_{2} v_{2}\right)^{j} s_{3} v_{2}\right)$ is equal to

$$
\varphi\left(s_{1} u_{2}^{\varepsilon} s_{2} u_{2}\left(v_{1} u_{1}\right)^{j-1} v_{1}^{2}\left(v_{1} u_{1}\right)^{-(j-1)}\left(v_{2} u_{2}\right)^{j-1} s_{3}^{v_{1}}\right)
$$

For $\varepsilon=0$ this gives $s_{1} s_{2}\left(u_{1} v_{1}\right)^{j} s_{3} v_{1}$, while for $\varepsilon=1$ we obtain

$$
s_{1} u_{1}^{2} s_{2}^{u_{1}}\left(v_{1} u_{1}\right)^{j-1} v_{1}^{2}\left(v_{1} u_{1}\right)^{-(j-1)}\left(v_{1} u_{1}\right)^{j-1} s_{3}^{v_{1}}=s_{1} u_{1} s_{2}\left(u_{1} v_{1}\right)^{j} s_{3} v_{1}
$$

We have proved that

$$
\varphi\left(s_{1} u_{2}^{\varepsilon} s_{2}\left(u_{2} v_{2}\right)^{j} s_{3} v_{2}^{\eta}\right)=s_{1} u_{1}^{\varepsilon} s_{2}\left(u_{1} v_{1}\right)^{j} s_{3} v_{1}^{\eta}
$$

for all $s_{1}, s_{2}, s_{3} \in S, j \in M$ and $\varepsilon, \eta \in\{0,1\}$.
Assume $i, j \in M, \varepsilon, \eta \in\{0,1\}$ and $s, t \in S$. When $x=u_{1}^{\varepsilon}\left(u_{1} v_{1}\right)^{i} s$ and $y=t\left(u_{1} v_{1}\right)^{j} v_{1}^{\eta}$ are multiplied in $G_{1}\left[u_{1} S, v_{1} S, h\right]$, then one gets $x y h^{(-1)^{\eta} \sigma(i+j)}$. Define $*$ on G_{1} by $x * y=\varphi\left(\varphi^{-1}(x) \varphi^{-1}(y)\right)$. Then $\varphi: G_{1}(*) \cong G_{2}$, and it remains to show that $x * y=x y h^{(-1)^{\eta} \sigma(i+j)}$. We have $x * y=\varphi\left(u_{2}^{\varepsilon}\left(u_{2} v_{2}\right)^{i} \operatorname{st}\left(u_{2} v_{2}\right)^{j} v_{2}^{\eta}\right)=$ $\varphi\left(u_{2}^{\varepsilon}(s t)^{\left(u_{2} v_{2}\right)^{-i}}\left(u_{2} v_{2}\right)^{i+j} v_{2}^{\eta}\right)$, and from the above formula for φ we see that $x * y$ is equal to $u_{1}^{\varepsilon}(s t)^{\left(u_{1} v_{1}\right)^{-i}} w v_{2}^{\eta}$, where $w=\varphi\left(\left(u_{2} v_{2}\right)^{k}\right)$ and $k=i+j$. If $\varphi\left(\left(u_{2} v_{2}\right)^{k}\right)=$ $\left(u_{1} v_{1}\right)^{k} h^{\sigma(k)}$, then $x * y=u_{1}^{\varepsilon}\left(u_{1} v_{1}\right)^{i} \operatorname{st}\left(u_{1} v_{1}\right)^{j} h^{\sigma(i+j)} v_{2}^{\eta}$, and from $h v_{2}=v_{2} h^{-1}$ one really gets the required formula $x * y=x y h^{(-1)^{\eta}} \sigma(i+j)$. Hence we need to prove $\varphi\left(\left(u_{2} v_{2}\right)^{k}\right)=\left(u_{1} v_{1}\right)^{k} h^{\sigma(k)}$ for every $k,-2 m \leq k \leq 2 m$. This can be done by repeating the last paragraph of the proof of Proposition 2.8 (where u_{i} is replaced by $\left.u_{i} v_{i}, i \in\{1,2\}\right)$.

Corollary 5.2. For $i \in\{1,2\}$ assume $G_{i}=\left\langle S, u_{i}, v_{i}\right\rangle$, where $S<G_{i}$ is a normal subgroup of index $4 m$, and G_{i} / S is generated by involutions $u_{i} S$ and $v_{i} S$. Assume also $u_{1}^{2}=u_{2}^{2}, v_{1}^{2}=v_{2}^{2},\left(u_{1} v_{1}\right)^{2 m}=\left(u_{2} v_{2}\right)^{2 m}$, and suppose $s^{u_{1}}=s^{u_{2}}$ and $s^{v_{1}}=s^{v_{2}}$ for all $s \in S$. Then there exists an isomorphism $\varphi: G_{2} \cong G_{1}$ such that $\varphi\left(u_{2}^{\varepsilon} s\left(u_{2} v_{2}\right)^{j} t v_{2}^{\eta}\right)=u_{1}^{\varepsilon} s\left(u_{1} v_{1}\right)^{j} t v_{1}^{\eta}$ for all $s, t \in S$ and all $\varepsilon, \eta, j \in \mathbb{Z}$.

Proof: Consider $G_{1}(*)$ and φ from the proof of Proposition Diso. We assume $h=1$, and hence $G_{1}(*)$ does not differ from $G_{1}(\cdot)$. The isomorphism φ maps u_{2} to u_{1}, v_{2} to $v_{1}, u_{2} v_{2}$ to $u_{1} v_{1}$, and fixes each $s \in S$. Hence the formula for φ can be extended to all integers ε, η and j.

Recall that the groups G_{1} and G_{2} are $D_{4 m}$-related, $m \geq 1$, if there exist a group $G=G(\cdot)$, a subgroup $S \triangleleft G$, involutory cosets $\beta, \gamma \in G / S$ and an element $h \in Q(\beta, \gamma)$ such that $|G: S|=4 m, G / S=\langle\beta, \gamma\rangle, G_{1} \cong G(\cdot)$ and $G_{2} \cong G(*)=G[\beta, \gamma, h]$.

Theorem 5.3. The groups G_{1} and G_{2} are $D_{4 m}$-related, $m \geq 1$, if and only if there exist groups $H_{i} \cong G_{i}, i \in\{1,2\}$, a common subgroup $S \triangleleft H_{i}$, and elements $u_{i}, v_{i} \in H_{i} \backslash S$ such that $H_{i} / S=\left\langle u_{i} S, v_{i} S\right\rangle,\left|H_{i}: S\right|=4 m, i \in\{1,2\}$, and $u_{1}^{2}=u_{2}^{2} \in S, v_{1}^{2}=v_{2}^{2} \in S, s^{u_{1}}=s^{u_{2}}$ and $s^{v_{1}}=s^{v_{2}}$, for all $s \in S$.

Proof: If groups H_{i} and elements u_{i} and v_{i} exist, then H_{i} / S is dihedral, and the groups G_{1} and G_{2} are $D_{4 m}$-related by Proposition 5.1. If $G_{1} \cong G(\cdot)$ and $G_{2} \cong G(*)$, where $G(*)=G[\beta, \gamma, h]$ and $|G: S|=4 m$, then we can put $H_{1}=G(\cdot)$, $H_{2}=G(*)$, and consider any $u_{1}=u_{2} \in \beta$ and $v_{1}=v_{2} \in \gamma$. The rest follows from Lemmas 4.4 and 4.6.

6. Isomorphisms of dihedral constructions

Proposition 6.1. Assume $G=\langle S, u, v\rangle$, where $S \triangleleft G, u^{2} \in S, v^{2} \in S$ and G / S is dihedral of order $4 m, m \geq 1$. Suppose that $h=(p q)^{(u v)^{2 m-1}} \ldots(p q)^{(u v)}(p q)$, where $p \in Q(u S)$ and $q \in Q(v S)$. Then $h \in Q(u S, v S)$, and there exists an isomorphism $\varphi: G[u S, v S, h] \cong G$ such that $\varphi\left(u^{\varepsilon} s(u v)^{j} t v^{\eta}\right)=(p u)^{\varepsilon} s(p u v q)^{j} t(v q)^{\eta}$ for all $j, \varepsilon, \eta \in \mathbb{Z}$.

Proof: Put $w=u v$ and $z=p q$. We have $z \in Z=Q\left(u w^{0} S\right) \ldots Q\left(u w^{2 m-1} S\right)$, and hence $h \in S \cap Q\left(G \backslash G_{0}\right)=Q(u S, v S)$, by Propositions 1.7 and 1.5. The existence of φ will be proved by means of Corollary 5.2 , setting $G_{2}=G[u S, v S, h]$, $G_{1}=G, u_{2}=u, v_{2}=v, u_{1}=p u$ and $v_{1}=u q$. The groups $S \cup S u_{1}=S \cup S u_{2}$ and $S \cup S v_{1}=S \cup S v_{2}$ are the same in both G_{1} and G_{2}, by Lemma 4.4, and hence to verify that $u_{1}^{2}=u_{2}^{2}, s^{u_{1}}=s^{u_{2}}, v_{1}^{2}=v_{2}^{2}$ and $s^{v_{1}}=s^{v_{2}}, s \in S$, we can compute both sides of each of these equations in G. Conjugation by u_{i} and $v_{i}, i \in\{1,2\}$, coincides on S, since $p, q \in Z(S)$, by Lemma 1.4. Furthermore, $u_{1}^{2}=(p u p) u=u^{2}=u_{2}^{2}$ and $v_{1}^{2}=v(q v q)=v^{2}=v_{2}^{2}$.

The product of u_{2} and v_{2} in G_{2} is equal to $u_{2} v_{2}=w$, by Lemma 4.2, and the $2 m$-th power of w in G_{2} is equal to $w^{2 m} h$, by Lemma 3.1. To fulfil the assumptions of Corollary 5.2 it remains to verify $w^{2 m} h=(p w q)^{2 m}$, since $p w q=u_{1} v_{1}$.

The elements p, q belong to $Z(S)$ and $\langle S, w\rangle=G_{0}$. A double application of Lemma 1.2 therefore gives

$$
(p w q)^{2 m}=(w q)^{2 m} p p^{w} \ldots p^{w^{2 m-1}}=w^{2 m} q q^{w} \ldots q^{w^{2 m-1}} p p^{w} \ldots p^{w^{2 m-1}}=w^{2 m} h
$$

Corollary 6.2. Assume $G(*)=G[\beta, \gamma, h], \alpha=\beta \gamma$, and put

$$
Z=Q(\beta) Q(\beta \alpha) \ldots Q\left(\beta \alpha^{2 m-1}\right)
$$

If there exists $z \in Z$ and $w \in \alpha$ with $h=z^{w^{2 m-1}} \ldots z^{w} z$, then $G(*) \cong G$.
Proof: This is a direct consequence of Propositions 1.8 and 6.1.
The subgroup $Z=Q(\beta) Q(\beta \alpha) \ldots Q\left(\beta \alpha^{2 m-1}\right)$ has for the dihedral construction a similar role to that of $Z(S)$ for the cyclic construction. By setting $T=$ $\left\{z z^{w} \ldots z^{w^{2 m-1}} ; z \in Z\right\}$ we get a subgroup of $Q(\beta, \gamma)$ such that $G\left[\beta, \gamma, h_{1}\right] \cong$ $G\left[\beta, \gamma, h_{2}\right]$ whenever $h_{1}, h_{2} \in Q(\beta, \gamma)$ are congruent modulo T. This is proved below, but first we have to observe that the dihedral construction exhibits an affine behaviour similar to that of the cyclic case.
Proposition 6.3. Assume $G_{1}=G\left[\beta, \gamma, h_{1}\right]$ and $G_{2}=G\left[\beta, \gamma, h_{1} h_{2}\right]$, where h_{1} and h_{2} are elements of $Q(\beta, \gamma)$. Then $G_{2}=G_{1}\left[\beta, \gamma, h_{2}\right]$.
Proof: Consider $x \in \beta^{\varepsilon} \alpha^{i}$ and $y \in \alpha^{j} \gamma^{\eta}$, where $i, j \in M$ and $\varepsilon, \eta \in\{0,1\}$. The product of x and y in $G_{2}=G\left[\beta, \gamma, h_{1} h_{2}\right]$ is equal to $x y\left(h_{1} h_{2}\right)^{a}=x y h_{1}^{a} h_{2}^{a}$, where $a=(-1)^{\eta} \sigma(i+j)$. Denote by $*$ the operation of $G_{1}=G\left[\beta, \gamma, h_{1}\right]$. The product of x and y in $G_{1}\left[\beta, \gamma, h_{2}\right]$ is equal to $x * y * h_{2}^{a}=(x * y) h_{2}^{a}=x y h_{1}^{a} h_{2}^{a}$. We see that both products give the same result.
Theorem 6.4. Assume $S \triangleleft G, G / S \cong D_{4 m}, m \geq 1$, and suppose that G / S is generated by the cosets β and $\gamma, \beta^{2}=\gamma^{2}=S$. Put $\alpha=\beta \gamma, G_{0}=\langle\alpha, S\rangle$, and $Z=Q(\beta) Q(\beta \alpha) \ldots Q\left(\beta \alpha^{2 m-1}\right)$. If $\langle w, S\rangle=G_{0}$, then $T=\left\{z z^{w} \ldots z^{w^{2 m-1}}\right.$; $z \in Z\}$ is a subgroup of $Q(\beta, \gamma)=S \cap Q\left(G \backslash G_{0}\right)$. It contains $\left\{z^{2 m} ; z \in Q(\beta, \gamma)\right\}$ and does not depend on the choice of $w \in G,\langle w, S\rangle=G_{0}$. If $h_{1}, h_{2} \in Q(\beta, \gamma)$ are such that $h_{1} h_{2}^{-1} \in T$, then $G\left[\beta, \gamma, h_{1}\right] \cong G\left[\beta, \gamma, h_{2}\right]$.
Proof: All of the above mentioned properties of the subgroup T are proved in Proposition 1.7. If $h_{1} \equiv h_{2} \bmod T$, then $G\left[\beta, \gamma, h_{2}\right]=G_{1}[\beta, \gamma, h]$, where $G_{1}=$ $G\left[\beta, \gamma, h_{1}\right]$ and $h=h_{1}^{-1} h_{2} \in T$, by Proposition 6.3. Inner automorphisms act on S in the same way in G and G_{1}, by Lemma 4.6. Hence the group $Q\left(\beta \alpha^{j}\right)$, $0 \leq j<2 m$, does not change when defined with respect to G_{1}. The groups Z and T do not change as well, and so $G\left[\beta, \gamma, h_{2}\right] \cong G_{1}$ follows from Corollary 6.2.

Corollary 6.5. Assume $G(*)=G[\beta, \gamma, h]$. Then there exists $h^{\prime} \in Q(\beta, \gamma)$ such that every prime divisor of its order divides $2 m$, and $G(*)=G\left[\beta, \gamma, h^{\prime}\right]$.
Proof: Express h as a product of its powers, $h=h^{\prime} h^{\prime \prime}$, in such a way that the order of $h^{\prime \prime}$ is coprime to $2 m$. Then $h^{\prime \prime}=z^{2 m}$ for certain $z \in\left\langle h^{\prime \prime}\right\rangle \leq Q(\beta, \gamma)$.
Proposition 6.6. Assume $G(*)=G\left[\gamma, \beta, h^{-1}\right]$. Then there exists an isomorphism $\varphi: G(*) \cong G[\beta, \gamma, h]$ that fixes all elements of $\beta \cup \gamma \cup S$.
Proof: Fix $u \in \beta$ and $v \in \gamma$. The product of u and v in $G[\beta, \gamma, h]$ is equal to $u v$, and the $2 m$-th power of $u v$ in $G[\beta, \gamma, h]$ is equal to $(u v)^{2 m} h$, by Lemma 3.1. We shall construct the required isomorphism by means of Corollary 5.2 (with $u_{1}=u_{2}=u$ and $v_{1}=v_{2}=v$), and we see that the only fact to verify is the equality of the $2 m$-th power of $u * v$ in $G(*)$ to $(u v)^{2 m} h$.

Suppose first $m=1$. Then $x * y=x y h^{-1}$ for $(x, y) \in(\alpha \cup \beta) \times \alpha, x * y=x y h$ for $(x, y) \in(\alpha \cup \beta) \times \gamma$, and $x * y=x y$ in other cases. Hence $(u * v) *(u * v)=$ $(u v h) *(u v h)=u v h u v h h^{-1}=(u v)^{2} h$, as required.

Let us now have $m>1$. Then $u * v=u v$, as $u \in v(v u) S, v \in(v u) u S$ and $1+1=2 \leq m$. We have $u v \in(v u)^{-1} S$ and $-1 \in M$, which implies that the $2 m$-th power of $u v$ in $G(*)$ equals $(u v)^{2 m}\left(h^{-1}\right)^{-1}=(u v)^{2 m} h$, by Lemma 3.9.

The next proposition resembles Proposition 3.7, and it is clear that it can be stated without proof.

Proposition 6.7. Suppose $\varphi: G_{1} \cong G_{2}$ and $G_{1}(*) \cong G_{1}[\beta, \gamma, h]$. Then φ also yields an isomorphism $G_{1}(*) \cong G_{2}(*)$, where $G_{2}(*)=G_{2}[\varphi(\beta), \varphi(\gamma), \varphi(h)]$.
Proposition 6.8. Assume $G(*)=G[\beta, \gamma, h]$ and let β^{\prime} be a coset of G / S that does not intersect G_{0}. Then there exist $\gamma^{\prime} \in G / S$ and $h^{\prime} \in Q(\beta, \gamma)=Q\left(\beta^{\prime}, \gamma^{\prime}\right)$ such that $G(*) \cong G\left[\beta^{\prime}, \gamma^{\prime}, h^{\prime}\right]$.

Proof: We have $G(*) \cong G\left[\gamma, \beta, h^{-1}\right]$, by Proposition 6.6 , and β^{\prime} is a conjugate of either β, or $\gamma=\beta \alpha$. The rest can be derived from Proposition 6.7, with φ an appropriate inner automorphism of $G=G(\cdot)$.
Proposition 6.9. Assume $G(*)=G\left[\beta, \gamma \alpha^{j}, h\right]$, where β and γ generate G / S, $\alpha=\beta \gamma$ and $j \in M$ is coprime to $2 m$. Consider $k \in M$ with $j k \equiv 1 \bmod 2 m$. Then $G(*) \cong G\left[\beta, \gamma, h^{k}\right]$.
Proof: Put $G_{2}=G(*)$ and $G_{1}=G\left[\beta, \gamma, h^{k}\right]$, choose $u \in \beta$ and $v \in \gamma$, and set $u_{2}=u_{1}=u$ and $v_{2}=v_{1}=v$. Note that the product of u and v is equal to $u v$ in both G_{1} and G_{2}, by Lemma 4.2. We shall again construct the required isomorphism by means of Corollary 5.2. From Lemma 4.4 we see that we need only to verify that the $2 m$-th powers of $w=u v$ are the same. In G_{1} this power equals $w^{2 m} h^{k}$, by Lemma 3.1. To compute it in G_{2}, first observe that $\alpha=\left(\alpha^{j}\right)^{k}$. From Lemma 3.9 we now obtain that it equals $w^{2 m} h^{k}$ as well.

Theorem 6.10. Let $S \triangleleft G$ and $\beta_{i}, \gamma_{i} \in G / S$ be such that $G / S \cong D_{4 m}$ is generated by β_{i} and $\gamma_{i}, \beta_{i}^{2}=\gamma_{i}^{2}=S, i \in\{1,2\}$. For $m=1$ also assume $\beta_{1} \gamma_{1}=\beta_{2} \gamma_{2}$. Then $Q\left(\beta_{1}, \gamma_{1}\right)=Q\left(\beta_{2}, \gamma_{2}\right)$ and for every h_{1} from this set there exists an element h_{2} of the same set such that $G\left[\beta_{1}, \gamma_{1}, h_{1}\right] \cong G\left[\beta_{2}, \gamma_{2}, h_{2}\right]$.

Proof: By Proposition 1.5 we have $Q\left(\beta_{i}, \gamma_{i}\right)=S \cap Q\left(G \backslash G_{0}\right)$. For $m \geq 2$ the subgroup G_{0} is determined uniquely. However, for $m=1$ there are three possibilities, and hence the assumption $\beta_{1} \gamma_{1}=\beta_{2} \gamma_{2}$ is needed to guarantee that we are dealing with the same group G_{0} for both $i \in\{1,2\}$. Proposition 6.8 reduces the statement to the case $\beta_{1}=\beta_{2}$, and this case is solved in Proposition 6.9.

References

[1] Bálek M., Drápal A., Zhukavets N., The neighbourhood of dihedral 2-groups, submitted.
[2] Donovan D., Oates-Williams S., Praeger C.E., On the distance of distinct Latin squares, J. Combin. Des. 5 (1997), 235-248.
[3] Drápal A., Non-isomorphic 2-groups coincide at most in three quarters of their multiplication tables, European J. Combin. 21 (2000), 301-321.
[4] Drápal A., On groups that differ in one of four squares, European J. Combin. 23 (2002), 899-918.
[5] Drápal A., On distances of 2-groups and 3-groups, Proceedings of Groups St. Andrews 2001 in Oxford, to appear.
[6] Drápal A., Zhukavets N., On multiplication tables of groups that agree on half of columns and half of rows, Glasgow Math. J. 45 (2003), 293-308.
[7] Zhukavets N., On small distances of small 2-groups, Comment. Math. Univ. Carolinae 42 (2001), 247-257.

Department of Algebra, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18675 Prague 8, Czech Republic
E-mail: drapal@karlin.mff.cuni.cz
(Received March 20, 2003, revised September 12, 2003)

[^0]: Work supported by the institutional grant MSM 113200007 and by Grant Agency of Charles Univ., grant number 269/2001/B-MAT/MFF.

