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Abstract. It is explicitly shown how the Lie algebras can be associated with the analytic
Moufang loops. The resulting Lie algebra commutation relations are well known from
the theory of alternative algebras.
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1. Moufang loops

It is well known how Lie algebras are connected with Lie groups. In the present
paper, it is explicitly shown how Lie algebras can be associated with analytic
Moufang loops.

A Moufang loop [1], [2] is a quasigroup G with the unit element e ∈ G and the
Moufang identity

(ag)(ha) = a(gh)a, a, g, h ∈ G.

Here the multiplication is denoted by juxtaposition. In general, the multiplication
need not be associative: gh · a 6= g · ha. The inverse element g−1 of g is defined
by

gg−1 = g−1g = e.

The left (L) and right (R) translations are defined by

gh = Lgh = Rhg, g, h ∈ G.

Both translations are invertible mappings and

L−1
g = Lg−1 , R−1

g = Rg−1 .
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2. Analytic Moufang loops and infinitesimal Moufang translations

Following the concept of the Lie group, the notion of an analytic Moufang loop
can be easily formulated.
A Moufang loop G is said [3] to be analytic if G is also a real analytic manifold

and the main operations — multiplication and inversion map g 7→ g−1 — are
analytic mappings.
Let Te(G) denote the tangent space of G at the unit e. For x ∈ Te(G), infini-

tesimal Moufang translations are defined as vector fields on G as follows:

Lx: = Lx(g): = (dLg)ex ∈ Tg(G),

Rx: = Rx(g): = (dRg)ex ∈ Tg(G).

Let the local coordinates of g from the vicinity of e ∈ G be denoted by gi

(i = 1, . . . , r: = dimG). Define the auxiliary functions

Li
j(g): =

∂(gh)i

∂hj

∣

∣

∣

h=e
, Ri

j(g): =
∂(hg)i

∂hj

∣

∣

∣

h=e
.

The matrices (Li
j) and (R

i
j) are invertible. Let bj : =

∂
∂gj |e (j = 1, . . . , r) be a

base in Te(G). Then both

Lj : = (dLg)ebj = Li
j(g)

∂

∂gi
∈ Tg(G),

Rj : = (dRg)ebj = Ri
j(g)

∂

∂gi
∈ Tg(G)

form bases at Tg(G). Thus one has two preferred base fields on G. When writing

Te(G) ∋ x = xjbj , one can easily see that

Lx: = Lx(g) = xjLi
j(g)

∂

∂gi
∈ Tg(G),

Rx: = Rx(g) = xjRi
j(g)

∂

∂gi
∈ Tg(G).

3. Structure constants and tangent Mal’tsev algebra

As in the case of Lie groups, structure constants ci
jk of an analytic Moufang

loop are defined by

ci
jk: =

∂2(ghg−1h−1)i

∂gj∂hk

∣

∣

∣

g=h=e
= −ci

kj, i, j, k = 1, . . . , r.
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For any x, y ∈ Te(G), their (tangent) product [x, y] ∈ Te(G) is defined in compo-
nent form by

[x, y]i: = ci
jkxjyk = −[y, x]i, i = 1, . . . , r.

The tangent space Te(G) being equipped with such an anti-commutative multi-
plication is called the tangent algebra of the analytic Moufang loop G.
The tangent algebra of G need not be a Lie algebra. There may exist a triple

x, y, z ∈ Te(G) that does not satisfy the Jacobi identity:

J(x, y, z): = [x, [y, z]] + [y, [z, x]] + [z, [x, y]] 6= 0.

Instead, for any x, y, z ∈ Te(G) one has a more general Mal’tsev identity [3]

[J(x, y, z), x] = J(x, y, [x, z]).

Anti-commutative algebras with this identity are called Mal’tsev algebras.

4. Generalized Maurer-Cartan equations

Denote as above Lx: = Lx(g) and Rx: = Rx(g) for all x ∈ Te(G).
It is well known that the infinitesimal translations of a Lie group obey the

Maurer-Cartan equations

[Lx, Ly]− L[x,y] = [Lx, Ry] = [Rx, Ry] +R[x,y] = 0.

It turns out that for a non-associative analytic Moufang loop these equations are
violated minimally. The algebra of infinitesimal Moufang translations reads as
generalized Maurer-Cartan equations [4]:

[Lx, Ly]− L[x,y] = −2[Lx, Ry] = [Rx, Ry] +R[x,y].

We outline a way of closing of this algebra (generalized Maurer-Cartan equations),
which in fact means construction of a finite dimensional Lie algebra generated by
infinitesimal Moufang translations.
Start by rewriting the generalized Maurer-Cartan equations as follows:

[Lx, Ly] = 2Y (x; y) +
1

3
L[x,y] +

2

3
R[x,y],(1)

[Lx, Ry] = −Y (x; y) +
1

3
L[x,y] −

1

3
R[x,y],(2)

[Rx, Ry] = 2Y (x; y)−
2

3
L[x,y] −

1

3
R[x,y].(3)
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Here (1) or (2) or (3) can be assumed as a definition (recapitulation) of the
Yamagutian Y . It can be shown [4] that

Y (x; y) + Y (y;x) = 0,(4)

Y ([x, y]; z) + Y ([y, z];x) + Y ([z, x]; y) = 0.(5)

The constraints (4) trivially descend from the anti-commutativity of the commu-
tator bracketing, but the proof of (5) needs certain effort. Further, it turns out
that the following reductivity conditions hold [4]:

(6) 6[Y (x; y), Lz] = L[x,y,z], 6[Y (x; y), Rz ] = R[x,y,z]

where the trilinear Yamaguti brackets [·, ·, ·] are defined ([6], [7]) in Te(G) by

[x, y, z]: = [x, [y, z]]− [y, [x, z]] + [[x, y], z].

Finally, the Yamagutian obeys the Lie algebra

(7) 6[Y (x; y), Y (z;w)] = Y ([x, y, z];w) + Y (z; [x, y, w]).

The full proof of the Lie algebra commutation relations (1)–(7) has been presented
in [4]. The idea of proof is as follows: one must find the generalized Lie equations
of an analytic Moufang loop and consider their integrability conditions. The
dimension of the Lie algebra (1)–(7) does not exceed 2r+ r(r − 1)/2. The Jacobi
identities are guaranteed by the defining identities of the Lie [5] and general Lie
[6], [7] triple systems associated with the tangent Mal’tsev algebra Te(G) of G.
We call the pair (L, R) of the maps x 7→ Lx, x 7→ Rx a birepresentation of the

tangent Mal’tsev algebra Te(G) of G if it satisfies the Lie algebra commutation
relations (1)–(7). The Lie subalgebra (7) is a generalized representation [6] of the
tangent Mal’tsev algebra Te(G) of G.
The commutation relations of form (1)–(7) are also well known from the theory

of alternative algebras [8].

5. Triality

Define Mx by
Lx +Rx +Mx = 0, x ∈ Te(G).

If (L, R) is a birepresentation of Te(G), then the following pairs are birepresenta-
tions as well [4]:

(−R,−L), (R, M), (−M,−R), (M, L), (−L,−M).

In particular, the Yamagutian can be expressed in triality invariant form

6Y (x; y) = [Lx, Ly] + [Rx, Ry] + [Mx, My].
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6. Loos brackets and triple closure

Define the Loos brackets {·, ·, ·} by [5]

3{x, y, x}: = [x, [y, z]]− [y, [x, z]] + 2[[x, y], z].

Then one has the Lie algebra commutation relations

[Lx, Ly] := L(x; y)

[L(x; y), Lz ] = L{x,y,z}

[L(x; y), L(z;w)] = L({x, y, z};w) + L(z; {x, y, w}).

By triality, the analogous commutation relations hold for R-operators and M -
operators. The Jacobi identities are guaranteed by the defining identities of the
Lie triple systems [5] associated with the tangent Mal’tsev algebra Te(G) of G.

7. Weak representations

Define the triality conjugated operators

M †
x: = Lx − Rx, L†

x: = Rx − Mx, R†
x: =Mx − Lx.

Evidently,

R†
x + L†

x +M †
x = 0.

Then we have the following weak representation commutation relations of the
tangent Mal’tsev algebra Te(G) of G [7]:

[L†
x, L†

y] = −L†
[x,y]
+ 6Y (x; y)

6[Y (x; y), L†
z ] = L†

[x,y,z]
.

By triality, the analogous relations hold for R†-operators and M †-operators.
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