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Note on the classification theorems of g-natural metrics on

the tangent bundle of a Riemannian manifold (M, g)

Mohamed Tahar Kadaoui Abbassi

Abstract. In [7], it is proved that all g-natural metrics on tangent bundles of m-dimen-
sional Riemannian manifolds depend on arbitrary smooth functions on positive real
numbers, whose number depends on m and on the assumption that the base manifold
is oriented, or non-oriented, respectively. The result was originally stated in [8] for the
oriented case, but the smoothness was assumed and not explicitly proved. In this note,
we shall prove that, both in the oriented and non-oriented cases, the functions generating
the g-natural metrics are, in fact, smooth on the set of all nonnegative real numbers.
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If (M, g) is an m-dimensional Riemannian manifold, then we use the terminol-
ogy of “g-natural metrics” (cf. [2]) on the tangent bundle TM to describe metrics
on TM which come from g by a first order natural operator ([8] and [7]). We
have studied these metrics in [1], [2] and [3]. The well-known example of such
metrics is the Sasaki metric gs [11]. All natural metrics are characterized by the
following result:

Theorem 1 ([8]). There is a bijective correspondence between natural (possibly
degenerated) metrics G on the tangent bundles of (oriented) Riemannian mani-
folds and the triples of first order natural F -metrics (ζ1, ζ2, ζ3), where ζ1 and ζ3
are symmetric. The correspondence is given by

G = ζs
1 + ζh

2 + ζv
3 ,

where ζs, ζh and ζv denote the Sasaki lift, the horizontal lift and the vertical lift

of ζ, respectively.

For the definitions of F -metrics and their lifts, we refer to [8] (see also [7] for
more details on the concept of naturality).
It is proved, furthermore, in [7] that all first order natural F -metrics on (ori-

ented) Riemannian manifolds form a family parameterized by some arbitrary
smooth function on positive real numbers, where the number of functions de-
pends on the dimensions of manifolds (the result was originally stated in [8] for
the oriented case, but the smoothness was assumed and not explicitly proved).
Precisely, with the notations of [7], we have
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Theorem 2 ([7]). 1)All first order natural F -metrics ζ on non-oriented Riemann-
ian manifolds of dimension m > 1 form a family parametrized by two arbitrary
smooth functions α, β : (0,∞)→ R in the following way: For every Riemannian

manifold (M, g) and tangent vectors u, X, Y ∈ Mx

(1) ζ(M,g)(u)(X, Y ) = α(g(u, u))g(X, Y ) + β(g(u, u))g(u, X)g(u, Y ).

If m = 1, then the same assertion holds, but we can always choose β = 0.
In particular, all first order natural F -metrics are symmetric.

2) On oriented Riemannian manifolds, we have the same results for dimensions
m = 1 and m > 3, but for m = 2 and m = 3, there exist other arbitrary smooth
functions ϕ, γ and δ : (0,∞)→ R such that:

If m = 3, then

ζ(M,g)(u)(X, Y ) = α(g(u, u))g(X, Y ) + β(g(u, u))g(u, X)g(u, Y )

ϕ(g(u, u))g(u, X × Y ),

(2)

where × means the vector cross-product.
If m = 2, then

ζ(M,g)(u)(X, Y ) = α(g(u, u))g(X, Y ) + β(g(u, u))g(u, X)g(u, Y )

γ(g(u, u))(g(Jg(u), X)g(u, Y ) + g(u, X)g(jg(u), Y ))

δ(g(u, u))(g(Jg(u), X)g(u, Y )− g(u, X)g(jg(u), Y )),

(3)

where Jg is the canonical almost complex structure on (M, g).

Actually, the arbitrary parameterizing functions are smooth on all the set of
nonnegative real numbers:

Theorem 3. All basic functions from Theorem 2 can be prolonged, in fact, to
smooth functions on the set R

+ of all nonnegative real numbers.

Proof: Note that we will use the technique from [7] throughout the whole proof.

1) Using the same arguments as in [7], we have to discuss all O(m)-equivariant
maps ζ : Rm → R

m∗⊗R
m∗. Denote by g0 =

∑

i dxi⊗dxi the canonical Euclidean
metric, and by | | the induced norm. Each vector v ∈ R

m can be transformed

in |v| ∂
∂x1

|0 by an element of O(m). Hence ζ is determined by its values on the

one-dimensional subspace spanned by ∂
∂x1

|0. Moreover, we can also change the
orientation of the first axis by an element of O(m), i.e., we have to define ζ only

on {t ∂
∂x1

|0, t ≥ 0}.
Let us define a smooth map ξ : R → R

m∗ ⊗ R
m∗ by ξ(t) = ζ(t ∂

∂x1
|0) ∈

R
m∗ ⊗ R

m∗, for all t ∈ R, and consider the group Km of all linear orthogonal
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transformations keeping ∂
∂x1

|0 fixed. So for t ∈ R
+ (or generally R), the tensor

ξ(t) is Km-invariant. On the other hand, every such smooth ξ on R
+ determines

a natural F -metric.
So let us assume sijdxi ⊗ dxj is Km-invariant. Since we can change the ori-

entation of any coordinate axis, except the first one, by elements of Km, then
sij = 0 for i 6= j. Further we can exchange any couple of coordinate axes different
from the first one by elements of Km, and so sii = sjj , for all i 6= 1 and j 6= 1.
Hence all Km-invariant tensors are of the form

(4) ν̄dx1 ⊗ dx1 + µ̄g0,

the reals µ̄ and ν̄ being independent, if m > 1. In dimension 1, all K1-invariant
tensors are of the form µ̄g0 = µ̄dx1 ⊗ dx1.
Thus, our mapping ξ is defined by

(5) ξ(t) = ν̄(t)dx1 ⊗ dx1 + µ̄(t)g0,

for all t ∈ R, where µ̄ and ν̄ are arbitrary smooth functions on R (and they reduce
to one function if m = 1).
For t = 0, since ζ is O(m)-invariant, then the tensor ξ(0) is O(m)-invariant and

so it is a multiple of g0 (cf. [6, I; p. 277]). It follows, by virtue of (5) that ν̄(0) = 0.
On the other hand, if we consider the linear orthogonal transformation Am which
changes the orientation of the first coordinate axis, then the equivariance of ζ by
Am implies that for every t ∈ R, µ̄(−t) = µ̄(t) and ν̄(−t) = ν̄(t), i.e., µ̄ and ν̄ are
even.
Now, given v = t ∂

∂x1
|0, t > 0, we can write

ζ(Rm,g0)(v)(X, Y ) = ξ(|v|)(X, Y )

= µ̄(|v|)g0(X, Y ) + ν̄(|v|) |v|−2 g0(v, X)g0(v, Y ).

To complete the proof, we need the following lemma.

Lemma 4 ([4]). Let f : R → R be a smooth function.

(a) If f is even, then there exists a smooth function g : R
+ → R such that

f(t) = f(0) + t2.g(t2) for any t.

(b) If f is odd, then there exists a smooth function g : R
+ → R such that

f(t) = t.(f ′(0) + t2.g(t2)) for any t.

Let us define the functions µ(t) and ν(t) by ν(t) = t−1ν̄(
√

t) and µ(t) = µ̄(
√

t),
for all t > 0. The functions µ and ν being clearly smooth on the set of positive
real numbers, it remains to prove that they prolong to smooth functions on R

+.
For this, applying (a) of Lemma 4 to µ̄ and ν̄, there exist two smooth functions
α, β : R+ → R, such that µ̄(t) = µ̄(0)+t2α(t2) and ν̄(t) = ν̄(0)+t2β(t2) = t2β(t2)
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(since ν̄(0) = 0), for all t ∈ R
+. We deduce that µ(t) = µ̄(

√
t) = µ̄(0)+ tα(t) and

ν(t) = t−1ν̄(
√

t) = β(t), for all t > 0. In other words, µ and ν coincide on R
+
∗

with two smooth functions on R
+, and the formula (1) of Theorem 2 is extended

to R
+. Obviously, every such operator is natural and 1) of the Theorem is proved.

2) For the oriented situation, when m > 3 and m = 1, the same proof remains
valid if we replace Km by K+m := Km ∩ SO(m) and Am by the element Bm of
SO(m) which changes the orientations of the first and the second axes.
It remains to extend the formulas (2) and (3) from Theorem 2 to R

+. We can
use a similar procedure as before.
For m = 3, let us assume sijdxi ⊗ dxj is K+3 -invariant. If we change the

orientation of any coordinate axis, different from the first one, by an element of
K+3 , then we must change the orientation of the other. It follows that s12 =

s21 = s13 = s31 = 0. Further the element of K
+
3 which exchanges the couple of

second and third coordinate axes must change the orientation of one of them, and
so s22 = s33 and s23 = −s32. Hence all K

+
3 -invariant tensors are of the form

(6) ν̄dx1 ⊗ dx1 + µ̄g0 + κ̄(dx2 ⊗ dx3 − dx3 ⊗ dx2),

the reals µ̄, ν̄ and κ̄ being independent. Thus, our mapping ξ is defined by

(7) ξ(t) = ν̄(t)dx1 ⊗ dx1 + µ̄(t)g0 + κ̄(t)(dx2 ⊗ dx3 − dx3 ⊗ dx2),

for all t ∈ R, where µ̄, ν̄ and κ̄ are arbitrary smooth functions on R. By similar
arguments as in 1) we have ν̄(0) = κ̄(0) = 0 and also, if we consider the equiv-
ariance of ζ by B3, then we deduce that the functions ν̄ and ν̄ are even and that
the function κ is odd.
As in 1), let us define µ(t), ν(t) and κ(t) by µ(t) = µ̄(

√
t), ν(t) = t−1ν̄(

√
t) and

κ(t) = t−1/2κ̄(
√

t) for all t > 0. The functions µ, ν and κ being clearly smooth on
the set of positive real numbers, it remains to prove that they prolong to smooth
functions on R

+. But we can just apply (a) of Lemma 4 to µ̄ and ν̄ and (b) of
Lemma 4 to κ̄, and the result follows.
For m = 2, we have K+2 := K2 ∩ SO(2) = {I2,−I2}, where I2 denotes the

identity matrix in GL(2). Since every tensor in R
m∗ ⊗ R

m∗ is K+2 -invariant, all

K+2 -invariant tensors are of the form

(8) ν̄dx1 ⊗ dx1 + µ̄g0 + λ̄(dx1 ⊗ dx2 + dx2 ⊗ dx1) + τ̄(dx1 ⊗ dx2 − dx2 ⊗ dx1),

the reals µ̄, ν̄, λ̄ and τ̄ being independent. Thus, our mapping ξ is defined by

ξ(t) = ν̄(t)dx1 ⊗ dx1 + µ̄(t)g0

+ τ̄(t)(dx2 ⊗ dx1 + dx1 ⊗ dx2)

+ λ̄(t)(dx2 ⊗ dx1 − dx1 ⊗ dx2),

(9)
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for all t ∈ R, where µ̄, ν̄, λ̄ and τ̄ are arbitrary smooth functions on R. By similar
arguments as in 1) we have ν̄(0) = λ̄(0) = τ̄ (0) = 0 and also all the functions µ̄,
ν̄, λ̄ and τ̄ are even (it suffices to take the equivariance of ζ by −I2).
As in 1), let us define µ(t), ν(t), λ(t) and τ(t) by µ(t) = µ̄(

√
t), ν(t) = t−1ν̄(

√
t),

λ(t) = t−1λ̄(
√

t) and τ(t) = t−1τ̄ (
√

t) for all t > 0. The functions µ, ν, λ and τ

being clearly smooth on the set of positive real numbers, it remains to prove that
they prolong to smooth functions on R

+. But we can just apply (a) of Lemma 4
to the functions µ̄, ν̄, λ̄ and τ̄ and the result follows. �

Combining Theorems 1–3, we obtain for the non-oriented case (an analogous
result can be stated for the oriented case):

Corollary 5. Let (M, g) be a non-oriented Riemannian manifold and G be a

g-natural metric on TM . Then there are smooth functions αi, βi : R
+ → R,

i = 1, 2, 3, such that for every u, X, Y ∈ Mx, we have

(10)



































G(x,u)(X
h, Y h) = (α1 + α3)(r

2)gx(X, Y )

+(β1 + β3)(r
2)gx(X, u)gx(Y, u),

G(x,u)(X
h, Y v) = α2(r

2)gx(X, Y ) + β2(r
2)gx(X, u)gx(Y, u),

G(x,u)(X
v, Y h) = α2(r

2)gx(X, Y ) + β2(r
2)gx(X, u)gx(Y, u),

G(x,u)(X
v, Y v) = α1(r

2)gx(X, Y ) + β1(r
2)gx(X, u)gx(Y, u),

where r2 = gx(u, u).
For m = 1, the same holds with βi = 0, i = 1, 2, 3.
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