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Birkhoff’s Covariety Theorem without limitations

Jiř́ı Adámek

To my teacher and friend Věra Trnková, from whom I have

learned so much, on the occasion of her seventieth birthday.

Abstract. J. Rutten proved, for accessible endofunctors F of Set, the dual Birkhoff’s Va-
riety Theorem: a collection of F -coalgebras is presentable by coequations (= subobjects
of cofree coalgebras) iff it is closed under quotients, subcoalgebras, and coproducts. This
result is now proved to hold for all endofunctors F of Set provided that coequations are
generalized to mean subchains of the cofree-coalgebra chain. For the concept of coequa-
tion introduced by H. Porst and the author, which is a subobject of a member of the
cofree-coalgebra chain, the analogous result is false, in general. This answers negatively
the open problem of A. Kurz and J. Rosický whether every covariety can be presented
by equations w.r.t. co-operations.
In contrast, in the category of classes Birkhoff’s Covariety Theorem is proved to hold

for all endofunctors (using Rutten’s original concept of coequations).

Keywords: Birkhoff’s Theorem, covariety, coequation

Classification: 18C10

1. Introduction

Coalgebras over a set functor F represent, as demonstrated in the article of
J. Rutten [Ru], dynamical systems the type of which is presented by F . Given

a coalgebra A
α

−−→ FA, we think of A as the state set and, for a state a, the
observations we make about a are represented by α(a). For example, a determin-
istic systems with a binary input and with deadlock states is given by the functor
FX = X × X + 1: the function α:A → A × A+ 1 assigns to a state a either the
pair of next states, or, if a is a deadlock state, the unique element of 1. Another
example: labeled transition systems with a set S of actions are coalgebras of the
functor P(S × −) which is the composite of FX = S × X and the power-set
functor P.
Terminal coalgebras C of the given functor F are coalgebras of “principal

behaviors” of states of F -coalgebras. For example, a terminal coalgebra of FX =
X × X + 1 is the coalgebra C of all binary trees (finite and infinite). For every

coalgebra A the unique homomorphism f#:A → C assigns to every state the
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binary tree f#(a) of unfolding a in the deterministic system (e.g., f#(a) is the

singleton tree if a is a deadlock state, f#(a) is the complete binary tree if no
deadlock can be reached from a, etc.). More generally, for a set K of colors,
a cofree coalgebra C(K) on K is a coalgebra of “principal behaviors” of states
of F -coalgebras colored in K. For any coloring f :A → K the corresponding
homomorphism f#:A → C(K) assigns to every state a the behavior f#(a),
assuming the colors of states are observable. Example: for F = X × X + 1 we
have the coalgebra C(K) of all K-colored binary trees. An endofunctor is called a
covarietor if for every objectK a cofree coalgebra exists — this dualizes varietors,
see [AT].

J. Rutten proposed in [Ru] to study presentations of collections of coalgebras
by subobjects m:M →֒ C(K) of cofree coalgebras (dual to the usual equational
presentation of algebras: a system of equations can be substituted by a quotient
object of a free algebra). A coalgebra A “satisfies” m provided that all homomor-

phisms f#:A → C(K) factorize through m. Now recall the famous Birkhoff’s
Variety Theorem: a collection of algebras is equationally presentable iff it is an
HSP collection, i.e., closed under “homomorphic images” (quotients), subalgebras
and products. We will, dually, speak about HSC collections of coalgebras: these
are collections closed under quotient coalgebras, subcoalgebras, and coproducts.
(Here quotient coalgebras are meant to be represented by surjective homomor-
phisms, and subcoalgebras by one-to-one homomorphisms.) The following was
proved by J. Rutten for all accessible (= bounded) functors F :Set→ Set:

Birkhoff’s Covariety Theorem: A collection of coalgebras can be presented by
subobjects of cofree coalgebras iff it is an HSC collection.

J. Rutten [Ru] assumed that F preserves weak pullbacks, but P. Gumm showed
that this assumption is not needed, see [G]. He also observed that instead of
general subobjects M →֒ C(K) we can restrict ourselves to the coatomic ones:
M = C(K) − {t} for elements t of C(K). (This is analogous to the situation
in algebra: we consider an individual equation u = v rather than systems of
equations, and this means that we form the atomic quotient of a free algebra
given by the equivalence relation with {u, v} as the only nontrivial equivalence
class.) We call these subobjects C(K)− {t} coequations and denote them by

⊠t (read: avoid t) for t ∈ C(K).

Thus, a coalgebra A satisfies a coequation ⊠t provided that for every coloring
f :A → K it avoids t in the obvious sense:

f#(a) 6= t for all a ∈ A.
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Example: for FX = X × A+ 1 the coequation

b b

b�
expresses the property that if a non-deadlock state has both next states deadlock
states, then they are equal.
The aim of our paper is to extend Birkhoff’s Covariety Theorem from accessible

endofunctors to all endofunctors. This needs some explanation since, in general,
cofree coalgebras do not exist. One way of avoiding this difficulty is to work with
classes rather than small sets. The category

Class

of classes and functions has a number of convenient properties, see [AMV], and
one of them is that every endofunctor possesses cofree coalgebras. We prove below
that the above Birkhoff’s Covariety Theorem holds for all F :Class→ Class.

Example: the power-set functor P. We can extend P to an endofunctor P∞

of Class by
P

∞X = the class of all small subsets of X .

A cofree coalgebra C(K) ofP∞ can be described as follows, see [RT]: if C′(K) is
the coalgebra of all small, rooted, non-ordered trees with nodes colored in K
(whose coalgebra structure C′(K)→ P∞C′(K) is given by forming the set of all
maximum subtrees), then

C(K) = C′(K)/∼

is the quotient coalgebra modulo the bisimilarity equivalence ∼. As usual, we
consider P-coalgebras to be graphs.
For the trivial tree t0 (the root only) the coequation

⊠t0

presents all graphs without leaves, i.e., all graphs in which every node has a
neighbor. Let Ω denote the bisimilarity class of the tree consisting of a single
path, then the coequation

⊠Ω

presents all graphs such that from every node a leaf is reachable by a path.

As the above example demonstrates, one way of presenting collections of coalge-
bras of a functor F :Set→ Set is to extend F to F∞:Class→ Class. There ex-
ists an essentially unique such extension, see [AMV]. We then use coequations ⊠t
where t are elements of cofree F∞-coalgebras.
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Another approach has been proposed by H. Porst and the present author
in [AP]: instead of working with C(K), we can stay entirely within the cate-
gory Set by forming a chain

W (K):Ordop → Set

of “approximations” of C(K) as follows:

W (K)0 = 1,

W (K)i+1 = FWi(K)× K,

W (K)j = lim
i<j

W (K)i for limit ordinals j.

This is the dual of the free algebra chain introduced by the author [A]. Let A
α

−−→
FA be a coalgebra, then for every coloring f :A → K we have a cone

f
#
i :A → W (K)i (i ∈ Ord)

“approximating” the homomorphism f#:A → C(K): this is the unique cone such
that for every ordinal i we have

f
#
i+1 ≡ A

〈Ff
#
i ·α,f〉

−−−−−−−−→ FW (K)i × K.

This makes possible to define a coequation as an expression

⊠t for t ∈ W (K)i

where K is a small set, and i is an ordinal. A coalgebra A satisfies ⊠t provided
that for every coloring f :A → K we have

f
#
i (a) 6= t for all a ∈ A.

For example, in case of P we can choose

(∅, x) ∈ P1× {x} =W
(
{x}

)
1

and we see that
⊠(∅, x)

presents, again, all graphs without leaves.
Another approach is more global: instead of choosing one element in one mem-

ber of the chain W (K), we choose a compatible collection t = (ti) where

ti ∈ W (K)i for every ordinal i
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(compatibility means that for all ordinals i ≤ j the connecting morphism from
Wj(K) to Wi(K) takes tj to ti). We call the expression

⊠t

a generalized coequation. A coalgebra A satisfies it iff for every coloring f :A → K
we have (

f#i (a)
)
i∈Ord 6= t for all a ∈ A.

That is: for every a ∈ A there exists an ordinal i with f#i (a) 6= ti. We are going
to prove that

(a) Birkhoff’s Covariety Theorem holds for every endofunctor of Set provided
that we consider presentation by generalized coequations,

(b) coequations are in general insufficient, i.e., there exists a set functor F and
an HSC-collection of coalgebras which cannot be presented by coequations.

We will also show that presentation by coequations is precisely as “powerful” as
presentation by equations between co-operations, as introduced by A. Kurz and
J. Rosický [KR]. Therefore, (b) solves negatively the open problem posed in [KR]
whether every HSC collection can be presented by equations.

Related Work. As mentioned already, [Ru] and [G] are the original sources for
Birkhoff’s Covariety Theorem, see also [AH]. Co-operations introduced by A. Kurz
and J. Rosický [KR] are a formally different approach to coalgebra — we prove
below that the expressive power is equivalent to (non-generalized) coequations.

2. Birkhoff’s Covariety Theorem in Class

2.1. We make the usual assumption about a choice of a universe Set of small
sets. Assuming the Axiom of Choice for all (not necessarily small) sets, we then
have a cardinality for every (small or large) set, and we denote by

ℵ∞

the cardinality of the universe Set — in the other words ℵ∞ is the first large
cardinal. We can (and will) identify the category Set of small sets with the
category of all sets with cardinality less than ℵ∞; the two categories are clearly
equivalent. And

Class

denotes the category of all sets of cardinality less or equal to ℵ∞. (This is justified
by the intuition that a class is a “property of small sets”, i.e., a subset of Set.
Each such subset either has the full cardinality ℵ∞, or a smaller one.)
Shortly, our foundations are ZFC with a choice of an inaccessible cardinal ℵ∞.
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2.2 Notation. Let F :Class→ Class be a functor. The category of coalgebras
is denoted by Coalg F . Its forgetful functor into Class has a right adjoint,
see [AMV], which we denote by

K 7→
(
C(K)

γK−−−→ FC(K)
)
.

Thus, C(K) is a cofree coalgebra on K, the couniversal coloring is denoted by
εK :C(K)→ K.

2.3 Remark. J. Rutten introduced in [Ru] presentation of coalgebras by a sub-
object

m:M →֒ C(K)

of a cofree coalgebra. A coalgebra A → FA satisfies m iff for every coloring
f :A → K the corresponding homomorphism f#:A → C(K), defined by f =

εKf#, factorizes through m.
Following an idea of H.P. Gumm [G], we can work, instead of with all subsets

of C(K), with the maximum subsets ⊠t = C(k)−{t}. In fact, a coalgebra satisfies
M ⊆ C(K) iff it satisfies ⊠t for all elements t of the complement ofM . This leads
to the following:

2.4 Definition. Let F be an endofunctor of Class. By a coequation is meant
an expression

⊠t

where t is an element of a cofree coalgebra C(K). A coalgebra A satisfies
the coequation provided that for every coloring f :A → K the homomorphism
f#:A → C(K) fulfils

f#(a) 6= t for all a ∈ A.

A collection of coalgebras is called a covariety if it can be presented by coequa-
tions.

2.5 Remark. For an endofunctor F of Class it is clear (from the existence of
cofree coalgebras) that epimorphisms in Coalg F are precisely the surjective ho-
momorphisms. These homomorphisms represent quotient coalgebras , i.e., quotient
objects in Coalg F .
Homomorphisms carried by monomorphisms in Class are called subcoalgebras .

2.6 Birkhoff’s Covariety Theorem in Class. For every endofunctor F of the
category of classes, covarieties are precisely the full subcategories of Coalg F
closed under quotient coalgebras, subcoalgebras, and coproducts.

Remark. (i) “Coproducts” means class-indexed coproducts, that is: all coprod-
ucts existing in Coalg F .
(ii) Every covariety can be presented by a single subobject of a cofree algebra.
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Proof: It is easy to see that every covariety is closed under the three construc-
tions above, see e.g. [Ru].
Conversely, let A be a full subcategory closed under coproducts, subcoalge-

bras, and quotient coalgebras. We observe that every homomorphism h:B → A
in Coalg F with B 6= ∅ factorizes in Class as h = me for an epimorphism
e:B → B̄ and a split monomorphism m: B̄ → A. Then Fm is a monomorphism,
thus, there exists a unique coalgebra structure on B̄ making both e and m homo-
morphisms:

B

e

��

β
// FB

Fe
��

B̄

m

��

β̄
//___ FB̄

Fm

��
A α

// FA

Now choose a proper class K and form the comma-category A/C(K) of all ho-
momorphisms from coalgebras in A into a cofree coalgebra C(K). The coproduct

B =
∐

A in Coalg F

indexed by all objects f :A → C(K) of A/C(K) exists (since Class has class-
indexed coproducts and the forgetful functor of Coalg F creates them) and we
obtain a canonical homomorphism h:B → C(K). Let us factorize it as above:
here we need B 6= ∅, but the caseB = ∅ is trivial (this would imply thatA contains
only the empty coalgebra — and this is a covariety). Since A is closed under
coproducts and quotients, we conclude that B̄ lies in A. We claim that A is
presented by the subobject

m: B̄ →֒ C(K).

Or, equivalently, by all coequations

⊠t for t ∈ C(K)− m[B̄].

In fact, every coalgebraA ∈ A clearly satisfiesm. Conversely, let D be a coalgebra
satisfying m: B̄ →֒ C(K), and let f :D → K be a monic function (which exists
because K is a proper class). The unique homomorphism

f#:D → C(K) with f = εKf#

factorizes through m:

f# = mg for some g:D → B̄.
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Since mg is a homomorphism and Fm is monic (recall our assumption B 6= ∅), it
follows that g is a homomorphism:

D

g

��

δ // FD

Fg

��
B̄

m

��

β̄
// FB̄

Fm
��

C(K)
γK

// FC(K)

Consequently, D is a subcoalgebra of B̄, thus, D ∈ A.

This proves that A is a covariety presented by m:M →֒ C(K). �

2.7 Remark. (a) In the above proof we constructed a cofree A-coalgebra B̄
on colors from K. We can perform this construction with every small set L of
colors, and obtain a cofree A-coalgebra mL: B̄L →֒ C(L) on L. Observe that for
small F -coalgebras D the following holds: D lies in A iff it satisfies mL: B̄L →֒
C(L) for every small set L. The proof is as above, except that where we used a
monomorphism f :D → K we now put L = D and f = idD.

(b) Let F :Set → Set be a covarietor. Then, again, collections of coalgebras
presented by coequations are the HSC collections. This has the same proof as
above, except the coproduct B is made small by considering the individual ele-
ments of C(K). Another proof of this result can be found in [AP, Theorem 6.2].

(c) Theorem 2.5 can also be derived from Theorem 4.1 of A. Kurz and J. Ro-
sický [KR], as we explain in the last section.

3. Birkhoff’s Covariety Theorem in Set

3.1 Remark. In algebraic specification initial algebras play a central role. Given
an endofunctor F of Set, an initial algebra need not exist, in general, but we
always have a transfinite chain V :Ord → Set “of approximations”: V0 = 0
is the initial object (empty set), Vi+1 = FVi, and for limit ordinals j we put
Vj = colimi<j Vi. This chain was introduced in [A], and the dual form

W :Ordop → Set with W0 = 1, Wi+1 = FWi, Wj = lim
i<j

Wi

was later used by M. Barr [B].

When applying this idea to the functor F (−)× K we obtain the following
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3.2 Definition. For a set functor F and a small set K (of colors), we define a
cofree-coalgebra chain

W (K):Ordop → K

to be the essentially unique chain with

W0(K) = 1, a terminal object,

Wi+1(K) = FWi(K)× K and Wi+1,j+1 = FWi,j × idK ,

Wj(K) = lim
i<j

Wi(K) for limit ordinals j.

For every coalgebra A
α

−−→ FA and every morphism f :A → K there exists a
unique cone

f#i :A → Wi(K) (i ∈ Ord)

of the above chain with

f#i+1 = A
〈f#i α,f〉

−−−−−−−→ Wi(K)× K (i ∈ Ord).

3.3 Remark. (a) Whenever a cofree coalgebra C(K) exists, then the above chain
stops at some ordinal i ∈ Ord, i.e.,Wi,i+1:FWi(K)→ Wi(K) is an isomorphism.
Then C(K) = Wi(K) and the inverse of Wi,i+1:C(K) → FC(K) × K has com-
ponents γK and εK , respectively. This was proved in [AK].

(b) Conversely, whenever the chain stops, it yields a cofree coalgebra.

(c) Homomorphisms of coalgebras h:A → B preserve the approximation cones:

given a coloring f :B → K, then the coloring g = fh:A → K fulfils g#i = f#i ·h,
see [AP, Lemma 3.13].

(d) For an arbitrary endofunctor of Class we have a cofree coalgebra C(K),
which is in general not a transfinite limit of Wi(K), i.e., the cone

(
εK

)#
i
:C(K)→ Wi(K) (i ∈ Ord)

is not necessarily a limit cone. It follows however from results of J. Worell that
that cone is collectively monic, in other words, a subcone of the limit cone, see [W].

3.4 Remark. In [AP] we defined, for an arbitrary set functor F , a coequation
to be an expression ⊠t where t is an element of Wi(K) (for some set K of colors
and some ordinal i). A coalgebra A satisfies the coequation ⊠t provided that for

every coloring f :A → K and every element a ∈ A we have f
#
i (a) 6= t. We will

prove in the next section that this concept of coequation is too weak to lead to
Birkhoff’s Covariety Theorem without limitations. We need a somewhat stronger
concept:
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3.5 Definition. Let F be an endofunctor of Set. By a generalized coequation
is meant an expression

⊠t (read: avoid t)

where, for some small set K of colors, t = (ti)i∈Ord is a compatible collection of
elements of the cofree-coalgebra chain W (K). (That is, ti ∈ Wi(K) and if j ≥ i
then ti =Wj,i(tj).)
An F -coalgebra A is said to satisfy the coequation ⊠t provided that for every

coloring f :A → K and every element a ∈ A the compatible collection f#i (a),
i ∈ Ord, is distinct from t.

3.6 Birkhoff’s Covariety Theorem in Set. Let F be an endofunctor of Set.
A full subcategory of Coalg F can be presented by generalized coequations iff it
is closed under quotient coalgebras, subcoalgebras, and coproducts.

Proof: Denote by F∞:Class → Class the essentially unique extension of F .
It preserves transfinite colimits (i.e., colimits indexed by Ord), see [AMV]. Then
Coalg F is contained in Coalg F∞. Given a full subcategory A of Coalg F
closed under (small) coproducts, sucobalgebras and quotient coalgebras, we de-
note by A∞ the closure of A under transfinite colimits in Coalg F∞. Then A∞

will be proved to be closed under class-indexed coproducts, subcoalgebras and
quotient coalgebras.

(a) Subcoalgebras: Without loss of generality we can assume that F preserves
finite intersections. In fact, as proved in [AT], by changing the value of a set
functor at ∅ we can obtain a functor preserving finite intersections — and the
change of F∅ does not change the category of F -coalgebras.
Let A = colimi∈OrdAi be an arbitrary object of A∞, where (Ai) is a chain

in A with colimit maps ci:Ai → A, i ∈ Ord. Let B be a subcoalgebra of the
coalgebra A. We can assume that the colimit cocone is formed by inclusions of
subalgebras ci:Ai →֒ A (i ∈ Ord) — if not, use epi-mono factorizations of the
colimit morphisms ci and the fact that A is closed under quotient coalgebras.
Since F preserves finite intersections, an intersection of two subcoalgebras is a
subcoalgebra. Thus, we obtain a transfinite chain of subcoalgebras B ∩ Ai of B,
and we know that B∩Ai lies in A since Ai does. Obviously, B is a colimit of this
chain, thus, B ∈ A∞.

(b) Quotient coalgebras: For A = colimAi as above, let e:A → E be a quotient
coalgebra and let

e·ci ≡ Ai

ei
։ Ei

mi
֌ E (i ∈ Ord)

be an epi-mono factorization. Then Ei ∈ A since Ai ∈ A, and we obtain a chain
(Ei)i∈Ord which is easily seen to have E as a colimit.

(c) Class-indexed coproducts: For every ordinal j ∈ Ord let

Aj = colimi∈OrdA
j
i
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be an object of A∞ expressed as a transfinite colimit of objects Aj
i in A. Form a

new transfinite chain in A

Bi =
∐

j≤i

Aj
i (i ∈ Ord)

with the obvious connecting morphisms. It is clear that this chain has a col-
imit

∐
j∈OrdAj (in Class, thus also in Coalg F∞) — consequently, the last

coproduct lies in A
∞.

By 2.6, 2.7 and 2.3 there exists a collection of coequations ⊠t for t ∈ C(L),
L a small set, presenting precisely the family of all small coalgebras of A∞. Now,
every small coalgebra of A∞ obviously lies in A, thus, the coequations ⊠t above
form a presentation of A.
The final step is the observation that each coequation ⊠t where t ∈ C(L) can

be substituted by the generalized coequation ⊠(ti)i∈Ord where for the universal
coloring (2.2) we put

ti =
(
εL

)#
i
(t) for i ∈ Ord.

In fact, this follows from Remark 3.3(d): let C̃(L) be a limit of W (L). For every

F -coalgebra A and every coloring f :A → L the cone f
#
i :A → Wi(L) yields the

unique factorization f̃ :A → C̃(L) which avoids t (i.e. f̃(a) 6= t for all a ∈ A) iff
A ∈ A∞; since A is A small, the latter means A ∈ A. Due to

f
#
i =

(
εL

)#
i
·f̃ (i ∈ Ord)

we see that, since the right-hand cone is a subcone of the limit cone, f̃ avoids t iff

(
f#i (a)

)
i∈Ord 6=

(
ti

)
i∈Ord for all a ∈ A.

�

4. A counterexample

4.1. We present an example of a category of coalgebras which is not presentable
by coequations, but is presentable by generalized coequations.

We work with the reduced power-set functor P̂ : Set→ Set defined on objects
by

P̂X = expX

and on morphisms f :X → Y by

P̂f :M 7→

{
f [M ] if f/M is monic

∅ else
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for all M ⊆ X .
There is a unique compatible family si ∈ Wi (i ∈ Ord) such that

si+1 = ∅ ∈ P̂Wi(K) (for all i ∈ Ord).

Denote by A the collection of P̂-coalgebras presented by the generalized coequa-
tion ⊠(si)i∈Ord. We will prove that A cannot be presented by coequations.

The objects ofCoalg P̂ are, as usual, considered as graphs: given α:A → P̂A,
then A is the set of all vertices, and for a vertex a the set of all neighbor vertices
is α(a).
For every small set K of colors and every color x ∈ K denote by s(x)i ∈ Wi(K)

the unique compatible family with

s(x)i+1 = (∅, x) ∈ P̂Wi(K)× K

for all i ∈ Ord. Observe that if B is a nonempty discrete graph (i.e., α:B → P̂B
is the constant function with value ∅), then for every coloring f :B → K and every
node b we have

f#i (b) = s(x)i where x = f(b) (i ∈ Ord).

In particular, B does not lie in A.
We are going to construct coalgebrasAi inA with distinguished vertices ci ∈ Ai

such that the coloring

f i:Ai → K constant with value x

fulfils (
f i

)#
i
(ci) = s(x)i (i ∈ Ord).

This proves that A is not presentable by coequations. In fact, let C be a class
of coequations presenting A. Then given ⊠t in C for t ∈ Wi(K), we know that
t 6= s(x)i for every x ∈ K (because Ai fulfils ⊠t, but it does not satisfy ⊠s(x)i).
This implies, for any discrete graph B 6= ∅, that B fulfills ⊠t. However, B /∈ A

— a contradiction.
The graphs Ai are constructed by transfinite induction on i ∈ Ord: form the

coproduct
∐

j<i Aj (i.e., the disjoint union of the already constructed graphs)

and add a new element ci /∈
∐

j<i Aj . Denote by Ci ⊆ Ai the set of all the

distinguished nodes cj (j < i) in the summands Aj of Ai plus ci:

Ci = {cj ; j ≤ i}.
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The edges of eachAj are precisely those of the graphAj , i.e., the function αi:Ai →
P̂Ai has on Aj the domain-codomain restriction αj (for all j < i). The neighbors

of ci are all the distinguished nodes:

αi(ci) = Ci.

The first graphs are as follows:

b b b b b

b

b� � � � � ��
0 
0 
1 
0 
1
2 � � �A0 A1 A2
We denote by f i:Ai → K the constant function with value x (for all i ∈ Ord).
Put (

f i
)#
k
(ci) = ri

k for all i, k ∈ Ord.

Observe that for each j < i the j-th summand Aj of Ai is a subcoalgebra. Con-

sequently, the cone (f j)
#
k
is a domain-restriction of the cone (f i)

#
k
, see 3.3(c).

This means that (
f i

)#
k
(cj) = rj

k
(independent of i).

Since every vertex of Ai is the distinguished vertex in some copy of Aj , j ≤ i
(where the copy Aj can be all of Ai, or a summand in Ai =

∐
j<i Aj + {ci}, or a

summand of a summand, etc.), we conclude that the values that (f i)#
k
takes are

just r
j
k
for j ≤ i. We are going to prove that for every ordinal k ∈ Ord

(a) the values ri
k are pairwise distinct for i ≤ k

and

(b)

ri
k =





s(x)i if k ≤ i,
({

rj
k−1

}
j≤i

, x
)

if k > i, k isolated,

(
ri
l

)
l<k

if k > i is a limit ordinal.

This implies that (f i)
#
i (c

i) = ri
i = s(x)i, as desired. It also implies that Ai ∈ A.

In fact, choose K = 1 and x the unique element of 1. Then the value of (f i)
#
i+1

at any node c ∈ Ai is equal to rj
i+1, where j is the smallest ordinal such that

c appears in a copy of Aj (embedded as Ai, or as a summand of Ai, or a summand



210 J.Adámek

of a summand, etc.) — in fact, c is the distinguished element cj of that copy,

thus, (f i)#i+1(c) = (f
i)#i+1(c

j) = rj
i+1. Therefore,

(
f i

)#
i+1(c) = rj

i+1 =
({

rt
i

}
t≤j

, x
)
6= (∅, x).

Thus, (f i)#i+1 does not take c to s(x)i+1 = (∅, x), which implies

((
f i

)#
k
(c)

)
k∈Ord

6=
(
s(x)k

)
k∈Ord.

Proof of (a) and (b). We proceed by transfinite induction on k.

First step. For k = 0 both (a) and (b) hold by default.

Isolated step. Since

(
f i

)#
k+1
=

〈
P̂

(
f i

)#
k
·αi, f i

〉

and since αi(ci) is the set of the distinguished elements cj of the copies Aj (j ≤ i)

canonically embedded to Ai, to which (f i)
#
k assigns r

j
k, we have

ri
k+1 =

{ ({
r
j
k; j ≤ i

}
, x

)
if r

j
k are pairwise distinct,

(∅, x) else.

The latter case happens for every i > k because

rk
k = s(x)k = ri

k

by (b) in the induction hypothesis. The first case happens for every i ≤ k by (a)
in the induction hypothesis. This proves (b) for k + 1. And (a) too: if i < j <

k + 1 then r
j
k+1 contains r

j
k
, while ri

k+1 does not (due to (a) in the induction

hypothesis). Also, for i < j = k + 1 we have ri
k+1 6= (∅, x) = rj

k+1.

Limit step. Since for every limit ordinal k

(
f i

)#
k
=

〈(
f i

)#
l

〉
l<k

we have
ri
k =

(
ri
l

)
l<k

.

This proves (b): if k ≤ i then ri
l = s(x)l, thus

ri
k =

(
s(x)l

)
l<k
= s(x)k

and if k > i the desired formula follows. It also proves (a): if i < j < k, then

ri
j+1 6= rj

j+1 by induction hypothesis — thus, ri
k 6= rj

k
. If i < j = k then

ri
i+1 6= s(x)i+1 = r

j
i+1, thus, r

i
k 6= r

j
k. �
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5. Equations for co-operations

5.1. The categories of coalgebras defined by Kurz and Rosický [KR] are based

on co-operations on a set A which are functions of the form σA:X
A → Y A. The

pair (X, Y ) of sets is called the arity of σ. More precisely: a coalgebraic signature
is defined to be a class Σ of “co-operations symbols” together with an “arity map”
which to every symbol σ ∈ Σ assigns a pair of small sets. We now recall the basic
concept of equation from [KR] — except that those authors called their concept
“coequation”.

5.2 Definition (see [KR]). (1) A Σ-coalgebra is a small set A together with
a function σA: [A, X ] → [A, Y ] for every (X, Y )-ary operation symbol σ ∈ Σ.
A homomorphism from A to a Σ-coalgebra B is a function f :A → B such that
σA·[f, X ] = [f, Y ]·σB , i.e., given u:B → X then σA(uf) = f ·σB(u) for every
σ ∈ Σ.
(2) The class of all Σ-terms is defined as the smallest class such that

(i) every (X, Y )-ary operation symbol is an (X, Y )-ary term,
(ii) every function u:X → Y defines an (X, Y )-ary term [u] (denoted by xu

in [KR]),
and

(iii) given an (X, Y )-ary term t and a (Y, Z)-ary term s we have an (X, Z)-ary
term s·t.

The interpretation tA: [A, X ]→ [A, Y ] of (X, Y )-ary terms in a coalgebra A is the
expected one: (i) σA is given, (ii) [u]A(−) = u·(−), and (iii) (s·t)A = sA·tA.

(3) A pair of Σ-terms is called an equation, notation: t = s. A coalgebra satisfies
the equation t = s provided that tA = sA.

(4) Given a class E of equations between Σ-terms,

Coalg (Σ, E)

denotes the category of all Σ-algebras satisfying all equations in E (and all homo-
morphisms). We say that this category is presented by the equations of E.

5.3 Remark (see [KR]). (a) For small signatures Σ the category of Σ-coalgebras
has the form Coalg F for the set functor

FA =
∏

σ∈Σ
ar σ=(X,Y )

[
[A, X ], Y

]
.

This follows from the description of a function σA: [A, X ]→ [A, Y ] via the function
A → [[A, X ], Y ] obtained by the obvious curry-uncurry map.
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(b) For every set functor F denote by

ΣF

the signature of one operation symbol σX of arity (X, FX) for every small set X .

Then every F -coalgebra A
α

−−→ FA defines a ΣF -coalgebra by

(5.1) σX
A (f) ≡ A

α
−−→ FA

Ff
−−−→ FX for all f ∈ [A, X ].

This coalgebra satisfies, for every function u:X → Y , the equation

(5.2) σY ·[u] = [Fu]·σX .

Conversely, ΣF -coalgebras satisfying the equations (5.2) form a category equiva-
lent to Coalg F .

5.4 Theorem. For every set functor F coequations are as strong as equations:
every collection of F -coalgebras presentable by equations in the signature ΣF is

also presentable by coequations.

Proof: (1) With every ΣF -term t of arity (X, Y ) we associate a function

t̃:Wi(X)→ Y where i ∈ Ord,

see 3.2, by the following structural induction: the term σX (where Y = FX) is
translated as

σ̃X ≡ W2(X) = F (F1× X)× A
outl

−−−−→ F (F1× X)
Foutr

−−−−−→ FX

and the term [u] (for u:X → Y ) as

[̃u] ≡ W1(X) = F1× X
outr

−−−−→ X
u

−−→ Y.

The translation of t·s, where s is an (X, Y )-term and t a (Y, Z)-term, is again
defined by induction on t; thus, we only need to consider

(a) the case t = σY (and Z = FY ) for which we put, given s̃:Wi(X)→ Y ,

σ̃Y ·s ≡ Wi+1(X) = FWi(X)× X
outl

−−−−→ FWi(X)
F s̃

−−−→ FY

and

(b) the case t = [u] (where u:Y → Z) with

[̃u]·s ≡ Wi(X)
s̃

−−→ Y
u

−−→ Z.
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(2) The interpretation tA of an (X, Y )-term in a coalgebra A
α

−−→ FA is given by
the following formula (w.r.t. t̃:Wi(X)→ Y above):

A

f
#
i

��

tA(f) // Y

Wi(X)
t̃

<<xxxxxxxxx

for all colorings f ∈ [A, X ]. The proof is an easy structural induction in t:

(i) If t = σX then tA(f) = Ff ·α, see (5.2.2), and

t̃·f#2 = Foutr·outl·〈Ff
#
1 ·α, f〉

= Foutr·Ff#1 ·α

= F
(
outr·〈Ff#0 ·α, f〉

)

= Ff.

(ii) If t = [u] then tA(f) = u·f , and

t̃·f#1 = u·outr·〈Ff#0 ·α, f〉 = u·f.

(iii) If t = σY ·s with s̃:Wi(X)→ Y fulfilling the above formula, then

t̃·f#i+1 = F s̃·outl·〈Ff
#
i ·α, f〉 by definition of (−)#i+1

= F s̃·Ff
#
i ·α

= F
(
sA(f)

)
·α by induction hypothesis

= σY
A

(
sA(f)

)
by definition of σY

A

=
(
σY ·s

)
A
(f).

(iv) If t = [u]·s with s̃:Wi(X)→ Y , then

t̃·f#i = [u]·s̃·f
#
i =

(
[u]·s

)
A
(f).

(3) Every equation t = s between ΣF -terms can be substituted by coequations as
follows: let t̃:Wi(X)→ Y and s̃:Wj(X)→ Y be given with, say, j ≤ i. Form an

equalizer (in Set) of t̃ and s̃·Wij :

E
�

�

// Wi(X)
t̃ //

Wij $$JJJJJJJJJ
Y

Wj(X)

s̃

<<yyyyyyyyy
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An F -coalgebraA satisfies t = s iff every coloring f :A → X fulfils t̃·f#i = tA(f) =

sA(f) = s̃·f#j = s̃·Wij ·f
#
i , i.e., iff f#i factorizes through E. Thus t = s is logically

equivalent to the conjunction of all ⊠r for r ∈ Wi(X)− E. �

5.5 Corollary. For the signature Σ
P̂
of the reduced power-set functor P̂ there

exists no equational presentation (for co-operations) of the covariety A of Sec-

tion 4.

In fact, if such a presentation would exist, then the corresponding coequa-

tions for P̂ together with those corresponding to (5.2) would yield a coequational
presentation of A.

5.6 Remark. Conversely, coequations are not actually stronger than equations:
For every set functor F define a coalgebraic signature Σ̄F extending the above

ΣF by symbols

̺X
i of arity

(
X, Wi(X)

)

for all sets X and all i ∈ Ord. Every F -coalgebra A yields a Σ̄F -coalgebra with

(̺X
i )A: [A, X ]→ [A, Wi(X)] given by f 7→ f#i . It satisfies the following equations,
where π1, π2 are the projections of Wi+1(X) = FWi(X)× X :

[π1]·̺
X
i+1 = σWi(X)·̺X

i(5.3)

[π2]·̺
X
i+1 = [idX ](5.4)

for all ordinals i, and

(5.5) [Wj,i]·̺
X
j = ̺X

i

for all limit ordinals j and all i < j. Conversely, whenever a Σ̄F -coalgebra satisfies
(5.2)–(5.5) then it stems from an F -coalgebra.
Given a coequation ⊠t where t ∈ Wi(K), let u, v:Wi(K)→ {0, 1} be functions

whose equalizer is Wi(K) − {t}. We can substitute the coequation ⊠t by the
equation

[u]·̺K
i = [v]·̺

K
i .

An F -coalgebra A represented as a Σ̄-coalgebra satisfies this equation iff for every

coloring f :A → K we have uf#i = vf#i . Or, equivalently, iff f#i factorizes
through Wi(K)− {t}. This tells us precisely that A satisfies the coequation ⊠t.
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