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Characterizations of L
1-predual

spaces by centerable subsets

Yanzheng Duan, Bor-Luh Lin

Abstract. In this note, we prove that a real or complex Banach space X is an L1-predual
space if and only if every four-point subset of X is centerable. The real case sharpens
Rao’s result in [Chebyshev centers and centerable sets, Proc. Amer. Math. Soc. 130
(2002), no. 9, 2593–2598] and the complex case is closely related to the characterizations
of L1-predual spaces by Lima [Complex Banach spaces whose duals are L1-spaces, Israel
J. Math. 24 (1976), no. 1, 59–72].
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1. Introduction

Let X be a Banach space. For a ∈ X , r > 0, let B[a, r] = {x ∈ X : ‖a−x‖ ≤ r}
and let S(X) = {x ∈ X : ‖x‖ = 1}. If A is a bounded subset of X , let

r(A, x) = sup
a∈A

‖x − a‖

and let

r(A) = inf
x∈X

r(A, x)

denote the Chebyshev radius of A. Let

δ(A) = sup{‖a− b‖ : a, b ∈ A}

denote the diameter of A. Then δ(A) ≤ 2r(A) for every bounded subset A of X .

Definition 1.1 ([4]). Let X be a Banach space and A a bounded subset of X .
If δ(A) = 2r(A), then A is said to be centerable.
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Definition 1.2 ([6]). A Banach space X whose dual X∗ is isometrically isomor-
phic to L1(µ) for some positive measure µ is called an L1-predual space.

L1-predual spaces are also called Lindenstrauss spaces. In [9], Lindenstrauss
gave several characterizations of real L1-predual spaces using intersection prop-
erties of balls. In [7], Lima gave several characterizations of complex L1-predual
spaces using intersection properties of balls.
A Banach space X is called a P1 space if X is norm-one complemented in

every Banach space Z containing X . Let X be a real or complex Banach space.
By Theorem 6.1 of [9] and Theorem 4.1 of [7], X is an L1-predual space if and
only if X∗∗ is a P1 space. By [4, p. 193], every bounded subset of a P1 space is
centerable. In 1977, W.J. Davis [2] proved that the converse is true.
In 2002, Rao [10] proved that a real Banach space X is an L1-predual space if

and only if every finite subset of X is centerable. In this note, we prove that if
every four-point subset of a real or complex Banach space X is centerable, then X

is an L1-predual space. The result for the real case sharpens Rao’s result in [10]
and our proof is different from Rao’s. The result for the complex case is a new
form of characterizations of L1-predual spaces. We also point out that it cannot
be sharpened anymore, i.e., that every three-point subset of a real or complex
Banach space X is centerable does not imply that X is an L1-predual space.

2. Main results

We first give a characterization of n-point subsets of Banach spaces to be
centerable.

Proposition 2.1. Let X be a real or complex Banach space and n ≥ 3 be an
integer. Then every n-point subset of X is centerable if and only if for every

r > 0 and every family of pairwise intersecting closed balls {B[ai, r]}
n
i=1 in X ,⋂n

i=1B[ai, r + ǫ] 6= ∅ for all ε > 0.

Proof: ⇒. Let A = {a1, a2, . . . , an}. Since {B[ai, r]}
n
i=1 are pairwise inter-

secting, ‖ai − aj‖ ≤ 2r for all i, j. Hence, 2r(A) = δ(A) ≤ 2r. So r(A) ≤ r.
Therefore, for any ε > 0, there exists x0 ∈ X such that r(A, x0) ≤ r + ε, which
implies that x0 ∈

⋂n
i=1B[ai, r + ε].

⇐. For any n-point subset A = {a1, a2, . . . , an} of X , to prove that δ(A) =

2r(A), it suffices to prove that δ(A) ≥ 2r(A). In fact, let r = 1
2δ(A). Then the

family {B[ai, r]}
n
i=1 are pairwise intersecting. Hence, for any ε > 0,

⋂n
i=1B[ai, r+

ε] 6= ∅. Let x0 ∈
⋂n

i=1B[ai, r + ε], then ‖ai − x0‖ ≤ r + ε, i = 1, 2, . . . , n, i.e.,

r(A, x0) ≤ r + ε. Hence, r(A) = infx∈X r(A, x) ≤ r = 12δ(A). �

Next theorem is due to Lindenstrauss [9].

Theorem 2.2 ([9]). Let X be a real Banach space and n ≥ 3 an integer. Then
the following statements are equivalent.

(1) For every r > 0 and every family of pairwise intersecting closed balls
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{B[ai, r]}
n
i=1 in X ,

⋂n
i=1B[ai, r + ε] 6= ∅ for all ε > 0.

(2) For every r > 0 and every family of pairwise intersecting closed balls
{B[ai, r]}

n
i=1 in X ,

⋂n
i=1B[ai, r] 6= ∅.

(3) For every family of pairwise intersecting closed balls {B[ai, ri]}
n
i=1 in X ,⋂n

i=1B[ai, ri] 6= ∅.
(4) For every family of pairwise intersecting closed balls {B[ai, ri]}

n
i=1 in X ,⋂n

i=1B[ai, ri + ε] 6= ∅ for all ε > 0.

Combining Proposition 2.1 and Theorem 2.2, we have the following theorem.

Theorem 2.3. Let X be a real Banach space and n ≥ 3 an integer. Then every
n-point subset of X is centerable if and only if one of the four conditions in

Theorem 2.2 holds.

The following theorem is a special case of Lindenstrauss’s Theorem 4.1 in [9].

Theorem 2.4 ([9]). Let X be a real Banach space and n ≥ 3 an integer. Then
the following statements are equivalent.

(1) For every family of pairwise intersecting closed balls {B[ai, ri]}
4
i=1 in X ,

⋂4
i=1B[ai, ri] 6= ∅.

(2) For every family of pairwise intersecting closed balls {B[ai, ri]}
n
i=1 in X ,⋂n

i=1B[ai, ri] 6= ∅.

Following Theorem 2.3 and Theorem 2.4, we have the following.

Theorem 2.5. Let X be a real Banach space. Then every four-point subset of

X is centerable if and only if every finite subset of X is centerable.

In [1], P. Bandyopadhyay and T.S.S.R.K. Rao proved the following result.

Theorem 2.6 ([1, Theorem 3.9]). Let X be a real or complex L1-predual space.

Then any compact subset A of X is centerable.

Now we are ready to give characterizations of real L1-predual spaces by cen-
terable subsets.

Theorem 2.7. Let X be a real Banach space. Then the following statements

are equivalent.

(1) X is an L1-predual space.

(2) Every four-point subset of X is centerable.
(3) Every finite subset of X is centerable.
(4) Every compact subset of X is centerable.

Proof: (4)⇒(3)⇒(2). Trivial. (2)⇒(1). Following Theorem 2.3, Theorem 2.5
and Theorem 6.1 in [9]. (1)⇒(4). Following Theorem 2.6. �

In order to give a similar characterization of complex L1-predual spaces by cen-
terable subsets, we need Lima’s results [7], [8] about characterizations of complex
L1-predual spaces.
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Definition 2.8 ([5]). A family of closed balls {B[ai, ri]}i∈I in a complex (real)
Banach space X is said to have the weak intersection property if for any f ∈
S(X∗),

⋂
i∈I B[f(ai), ri] 6= ∅ in C(R).

Definition 2.9 ([7]). Let n ≥ 3 be an integer. We say that a real or complex
Banach space X is an E(n)-space if for every family {B[ai, ri]}

n
i=1 of n closed

balls in X with the weak intersection property,
⋂n

i=1B[ai, ri] 6= ∅.

Theorem 2.10 ([8, Corollary 2.5]). Let X be a real or complex Banach space

and let n ≥ 3 be an integer. Then the following statements are equivalent.

(1) For every r > 0 and every family of n closed balls {B[ai, r]}
n
i=1 in X such

that any three of them have nonempty intersection,
⋂n

i=1B[ai, r + ε] 6= ∅
for all ε > 0.

(2) For every family of n closed balls {B[ai, ri]}
n
i=1 in X such that any three

of them have nonempty intersection,
⋂n

i=1B[ai, ri + ε] 6= ∅ for all ε > 0.

Theorem 2.11 ([7, Corollary 4.3]). Let X be a complex Banach space. If for

every family of 4 closed balls {B[ai, ri]}
4
i=1 in X such that any three of them

have nonempty intersection,
⋂4

i=1B[ai, ri + ε] 6= ∅ for all ε > 0, then X is an

E(n)-space for all n ≥ 3.

Theorem 2.12 ([7, Theorem 4.1]). Let X be a complex Banach space. Then

the following statements are equivalent.

(1) X is an L1-predual space.

(2) X is an E(n)-space for all n ≥ 3.

Theorem 2.13. Let X be a complex Banach space. Then the following state-

ments are equivalent.

(1) X is an L1-predual space.

(2) Every four-point subset of X is centerable.

(3) Every finite subset of X is centerable.

(4) Every compact subset of X is centerable.

Proof: (1)⇒(4). Following Theorem 2.6. (4)⇒(3)⇒(2). Trivial.

(2)⇒(1). Let r > 0 and let {B[ai, r]}
4
i=1 be a family of four closed balls such

that any three of them intersect. Since {B[ai, r]}
4
i=1 is pairwise intersecting and

{a1, a2, a3, a4} is centerable, by Theorem 2.1,
⋂4

i=1B[ai, r + ε] 6= ∅ for all ε > 0.

Hence, by Theorem 2.10, for every family of 4 closed balls {B[ai, ri]}
4
i=1 in X such

that any three of them have nonempty intersection,
⋂4

i=1B[ai, ri + ε] 6= ∅ for all
ε > 0. Following Theorem 2.11, X is an E(n)-space for all n ≥ 3. Therefore by
Theorem 2.12, X is an L1-predual space. �
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Remark 2.14. Let us show that centerability of all three-point subsets of X

does not imply that X is an L1-predual space. Consider the real or complex
space ℓ1. Since every three pairwise intersecting closed balls in R or C intersect
(see [3, p. 65]), the same holds also for ℓ1 by Theorem 4.6(c) in [9]. Hence, by
Theorem 2.3, every three-point set in ℓ1 is centerable. On the other hand, ℓ1 is
not an L1-predual space since ℓ∗1 = ℓ∞.
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