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Approximations by regular sets and

Wiener solutions in metric spaces

Anders Björn, Jana Björn

Abstract. Let X be a complete metric space equipped with a doubling Borel measure
supporting a weak Poincaré inequality. We show that open subsets of X can be approx-
imated by regular sets. This has applications in nonlinear potential theory on metric
spaces. In particular it makes it possible to define Wiener solutions of the Dirichlet prob-
lem for p-harmonic functions and to show that they coincide with three other notions of
generalized solutions.
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1. Introduction

If Ω is a nonempty bounded open set in R
n, f ∈ C(∂Ω) and p > 1, then there

exists a unique bounded p-harmonic function u with the boundary data f (in
a weak sense), see e.g. Theorem 9.25 in Heinonen–Kilpeläinen–Martio [12]. If,
moreover, Ω has sufficiently smooth boundary then

(1.1) lim
Ω∋x→x0

u(x) = f(x0) for all x0 ∈ ∂Ω.

Sets satisfying this condition for all f ∈ C(∂Ω) are called regular . By the Wiener
criterion, a nonempty bounded open set Ω ⊂ R

n is regular with 1 < p < n if and
only if for all x0 ∈ ∂Ω,

(1.2)

∫ 1

0

(

Cp(B(x0, t) \ Ω)

tn−p

)1/(p−1) dt

t
= ∞,

where Cp is the p-capacity in R
n, see Wiener [25] (p = 2), Maz’ya [19] and

Kilpeläinen–Malý [15].
In particular, this implies that Euclidean domains, whose complements have a

corkscrew (see the definition below) at every boundary point (such as balls and
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polyhedra), are regular for all p > 1. This provides us with an abundance of
regular sets in R

n and makes it possible to approximate every Euclidean domain
by regular ones. This is frequently used in potential theory, in particular when
studying p-superharmonic functions and balayage, see e.g. Chapters 7 and 8 in
Heinonen–Kilpeläinen–Martio [12]. The possibility to approximate by regular sets
is also one of the axioms in the axiomatic potential theory, see e.g. Chapter 16
in [12].

If Ω is not regular, then (1.1) fails for some f ∈ C(∂Ω), i.e. the Dirichlet
problem cannot be solved in the classical sense for general boundary data f ∈
C(∂Ω). Thus, other notions of solutions are required, which led Perron [20] and
Wiener [24] to their definitions of generalized solutions of the Dirichlet problem.
In particular, Wiener’s construction is based on approximations by regular sets.

During the last decade, potential theory and p-(super)harmonic functions have
been developed in the setting of doubling metric measure spaces supporting a p-
Poincaré inequality. This theory unifies, and has applications in, several areas of
analysis, such as weighted Sobolev spaces, calculus on Riemannian manifolds and
Carnot groups, subelliptic differential operators and potential theory on graphs.
Several results concerning solubility of the Dirichlet (boundary value) problem
for p-harmonic functions have been extended to this setting in e.g. Cheeger [10],
Shanmugalingam [22] and Björn–Björn–Shanmugalingam [5] and [6]. Conditions,
similar to (1.2), guaranteeing regularity of boundary points have also been proved,
see e.g. Björn–MacManus–Shanmugalingam [8] and J. Björn [7], but there are
hardly any concrete examples of regular sets in metric spaces. It can even happen
that a ball in a reasonable metric space is not regular, see Example 3.1. This lack
of regular sets has been one of the reasons why some traditional methods could
not be used directly in metric spaces.

In this paper, we show how open sets in metric spaces can be approximated
by bounded regular sets, i.e. we prove the following result. (See Section 2 for the
definitions.)

Theorem 1.1. Let X be a complete metric space endowed with a complete

doubling Borel measure which supports a weak p-Poincaré inequality. Let Ω ⊂ X
be nonempty and open. If X is bounded, assume moreover that Ω 6= X . Then
there exist bounded open sets Ω1 ⋐ Ω2 ⋐ · · · , regular for p-quasisuperharmonic
functions and such that Ω =

⋃∞
j=1 Ωj .

This shows that there is an abundance of regular sets, thus opening for various
applications. One of them is the definition of Wiener solutions of the Dirich-
let problem for p-harmonic functions with continuous boundary data on met-
ric measure spaces, inspired by the construction in Wiener [24]. The results in
Björn–Björn–Shanmugalingam [5], [6] provide us with three fundamentally dif-
ferent definitions of solutions to the Dirichlet problem for p-harmonic functions
with continuous boundary data. In Section 4, we show that Wiener solutions ex-
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ist, are unique and coincide with the three other types of solutions. These results
also hold for A-harmonic functions as defined on p. 57 of Heinonen–Kilpeläinen–
Martio [12] with the usual degenerate ellipticity assumptions (3.3)–(3.7) on p. 56
of [12].

Theorem 1.1 makes it also possible to apply the axiomatic potential theory to
this setting (at least in the case of Cheeger p-harmonic functions, where we have
the sheaf property), see Section 5.

Another application of Theorem 1.1 has been given recently in A. Björn [2],
where it was shown that two different types of p-superharmonic functions, used
in Kinnunen–Martio [16] and [17], coincide with the classical definition (in e.g.
Heinonen–Kilpeläinen–Martio [12]).

Note that in contrast to the Euclidean setting, where balls and polyhedra form
a universal supply of regular domains, here we do not have at hand such a general
family of regular sets. Instead, our construction of approximating regular sets
depends on the local geometry of X and Ω. Nevertheless, we have the following
consequence of Theorem 1.1.

Corollary 1.2. Let X be as in Theorem 1.1 and x ∈ X . Then there exists a basis
of neighbourhoods of x, which are regular for p-quasisuperharmonic functions.

2. Notation and preliminaries

We assume throughout the paper that X = (X, d, µ) is a complete metric space
endowed with a metric d and a complete Borel measure µ which is doubling, i.e.
there exists a constant C > 0 such that for all balls B(x0, r) := {x ∈ X :
d(x, x0) < r} in X ,

0 < µ(B(x0, 2r)) ≤ Cµ(B(x0, r)) < ∞.

In [13], Heinonen and Koskela introduced upper gradients as a substitute for
the modulus of the usual gradient. It has many useful properties similar to those
of the usual gradient.

Definition 2.1. A nonnegative Borel function g on X is an upper gradient of
an extended real-valued function u on X if for all nonconstant rectifiable curves
γ : [0, lγ ] → X , parameterized by the arc length ds,

(2.1) |u(γ(0)) − u(γ(lγ))| ≤
∫

γ
g ds

whenever both u(γ(0)) and u(γ(lγ)) are finite, and
∫

γ g ds = ∞ otherwise.

Let also 1 < p < ∞. We further assume that X supports a weak p-Poincaré
inequality, i.e. that there exist constants C > 0 and λ ≥ 1 such that for all balls
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B = B(x0, r) ⊂ X , all measurable functions u on X and all upper gradients g
of u,

(2.2)
1

µ(B)

∫

B
|u − uB| dµ ≤ C(diam B)

(

1

µ(λB)

∫

λB
gp dµ

)1/p

,

where uB := µ(B)−1
∫

B u dµ and λB = B(x0, λr).
By Keith–Zhong [14], if X supports a weak p-Poincaré inequality, then it sup-

ports a weak q-Poincaré inequality for some q < p, which was earlier a standard as-
sumption. There are many spaces satisfying our assumptions, see e.g. A. Björn [2]
for a list of examples and Haj lasz–Koskela [11] or Heinonen–Koskela [13] for more
detailed descriptions. The following Sobolev type spaces were introduced in Shan-
mugalingam [21].

Definition 2.2. The Newtonian space on X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) < ∞}/∼,

where u ∼ v if and only if ‖u − v‖N1,p(X) = 0 and

‖u‖N1,p(X) =

(
∫

X
|u|p dµ + inf

g

∫

X
gp dµ

)1/p

with the infimum taken over all upper gradients g of u.

Cheeger [10] gives a different definition of Sobolev spaces, which leads to the
same space and yields a notion of a vector-valued gradient Du, see Theorems 4.38
and 4.47 in [10]. This will be used in Section 5.

By Corollary 3.7 in Shanmugalingam [22], every u ∈ N1,p(X) has a minimal
p-weak upper gradient gu (unique up to sets of measure zero), which satisfies
(2.1) for p-almost every curve and gu ≤ g µ-a.e. for all upper gradients g of u.
(For the definition of “p-almost every curve” see e.g. Definition 2.1 in Shanmu-
galingam [21].)

From now on, Ω will always be a nonempty open set in X . We say that

f ∈ N
1,p
loc (Ω) if f ∈ N1,p(Ω′) for every open Ω′ ⋐ Ω, where by the latter we mean

that the closure of Ω′ is a compact subset of Ω. Let also

N1,p
0 (Ω) = {u|Ω : u ∈ N1,p(X) and u = 0 in X \ Ω}.

Definition 2.3. A function u ∈ N
1,p
loc (Ω) is p-harmonic in Ω if it is continuous

and minimizes the p-energy integral, i.e. it satisfies

(2.3)

∫

φ 6=0
gp
u dµ ≤

∫

φ 6=0
g
p
u+φ dµ for all φ ∈ Lipc(Ω),
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where Lipc(Ω) is the space of all Lipschitz functions with compact support in Ω.

A function u ∈ N1,p
loc (Ω) is p-quasiharmonic in Ω if it is continuous and for

some Q ≥ 1 satisfies

∫

φ 6=0
gp
u dµ ≤ Q

∫

φ 6=0
gp
u+φ dµ for all φ ∈ Lipc(Ω).

Definition 2.4. The p-capacity of a set E ⊂ X is the number

Cp(E) = inf ‖u‖p
N1,p(X)

,

where the infimum is taken over all u ∈ N1,p(X) such that u = 1 on E.

If Ω is bounded and Cp(X \ Ω) > 0, then for every f ∈ C(∂Ω), there exists a
unique bounded p-harmonic function HΩf = Hf in Ω such that

(2.4) lim
Ω∋x→x0

Hf(x) = f(x0) outside a set of p-capacity zero,

see Theorem 6.1 and Corollary 6.2 in Björn–Björn–Shanmugalingam [6] together
with Theorem 3.9 in Björn–Björn–Shanmugalingam [5].

Definition 2.5. Let Ω be bounded with Cp(X \ Ω) > 0. A point x0 ∈ ∂Ω is
regular if

lim
Ω∋x→x0

Hf(x) = f(x0) for all f ∈ C(∂Ω).

If all x0 ∈ ∂Ω are regular, then Ω is regular .

In view of the results in A. Björn [3] and J. Björn [7] we consider also the
following more general notions of regularity.

Definition 2.6. Let Ω be bounded with Cp(X \ Ω) > 0.
A point x0 ∈ ∂Ω is regular for p -quasiharmonic functions if for all f ∈ C(∂Ω)∩

N1,p(X) and all p-quasiharmonic u in Ω with u − f ∈ N
1,p
0 (Ω), we have

lim
Ω∋x→x0

u(x) = f(x0).

A point x0 ∈ ∂Ω is regular for p-(quasi)superharmonic functions if for all

f ∈ C(∂Ω)∩N1,p(X) and all p-(quasi)superharmonic u in Ω with u−f ∈ N1,p
0 (Ω),

we have
lim inf

Ω∋y→x0
u(y) ≥ f(x0).

If all x0 ∈ ∂Ω are regular for p-(quasi)(super)harmonic functions, then Ω is
regular for p-(quasi)(super)harmonic functions .
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We refer the reader to Kinnunen–Martio [17] (or A. Björn [3]) for the definition
of p-quasisuperharmonicity. When saying that a set is regular in any of the
above senses, we automatically assume that it is nonempty bounded open and
has complement with positive p-capacity.

It is immediate that regularity for p-quasisuperharmonic functions implies reg-
ularity for p -quasiharmonic functions which in turn implies regularity. It is not
known whether the converse implications hold, see A. Björn [3, Section 5], for a
discussion on the first implication and its converse. On the other hand, regularity
and regularity for p-superharmonic functions are equivalent, see Theorem 6.1 in
Björn–Björn [4].

There are several capacitary conditions sufficient for regularity of boundary
points. Theorem 5.1 in Björn–MacManus–Shanmugalingam [8] implies a condi-
tion similar to (1.2) guaranteeing regularity in linearly locally connected metric
measure spaces. See Corollary 7.3 in Björn–Björn [4] for a precise formulation.
At the same time, Theorem 2.13 and Remark 2.15 in J. Björn [7] provide us with
the following sufficient condition.

Proposition 2.7. Assume that X \Ω has a corkscrew at x0, i.e. that there exist

c > 0 and ρ0 > 0 such that for all 0 < ρ ≤ ρ0, the set B(x0, ρ) \Ω contains a ball
with radius cρ. Then x0 ∈ ∂Ω is regular for p-quasisuperharmonic functions.
Moreover, if f ∈ C(∂Ω) ∩ N1,p(X) is Hölder continuous at x0, and u is p-

quasiharmonic in Ω with u− f ∈ N
1,p
0 (Ω), then also u is Hölder continuous at x0.

The corkscrew condition is more restrictive than the condition in [8], but it
is sufficient for our purposes and does not assume that X is linearly locally con-
nected. Moreover, it applies to p-quasiharmonic functions and not only to p-
harmonic functions. In A. Björn [3], it was observed that the proof in [7] shows
that the corkscrew condition guarantees regularity for p-quasisuperharmonic func-
tions as well.

3. Approximations by regular sets

We begin this section by giving an example of a metric space satisfying our
assumptions, in which a ball needs not be regular.

Example 3.1. Consider the cone

X = {(x1, . . . , xn) ∈ R
n : xj ≥ 0 for all j = 1, . . . , n},

equipped with the Euclidean metric and the Lebesgue measure. Then X is a
complete metric space with a doubling measure and a 1-Poincaré inequality. This
can be easily verified by direct calculation (use e.g. the reflections ũ(x1, . . . , xn) :=
u(|x1|, . . . , |xn|)). Let x = (1, . . . , 1) ∈ X , r =

√
n and B = B(x, r). Then the

origin is an isolated boundary point with zero p-capacity and is not regular for
any 1 < p < n.
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This example can be iterated in the following way to obtain a sequence of
shrinking balls which are not regular: Let Tj , j = 1, 2, . . . , be the closed isosceles

triangles in R
2 with bases [2−j , 21−j ] ⊂ R and heights 21−j . Let

X = [0, 1] × [−1, 0] ∪
∞
⋃

j=1

Tj ⊂ R
2,

equipped with the Euclidean metric and 2-dimensional Lebesgue measure. It is
not difficult to verify that X is a uniform domain in R

2, i.e. there exists C > 0
such that every pair of points x, y ∈ X can be connected by a curve γ of arc
length at most C|x − y| and such that for all z ∈ γ,

dist(z, R2 \ X) ≥ C−1 min{l(γxz), l(γyz)},

where l(γxz) and l(γyz) are the arc lengths of the subcurves of γ connecting z
to x and y, respectively. Theorem 4.4 in Björn–Shanmugalingam [9] then implies
that X is doubling and supports a 1-Poincaré inequality. Now for rj = 5 · 2−j−1,
the balls B(0, rj) are not regular, since ∂B(0, rj) contains the isolated boundary

point xj = (3 · 2−j−1, 21−j).

Open problem 3.2. How many irregular balls centred at one point can there
be? Does there always exist a base of regular balls? By Example 2.16 in Björn [7],
if X is a geodesic space such that all geodesic curves are “open” in the sense that
they do not have a first and a last point, then every ball in X is regular.

In this section, we show that open sets in metric spaces can be approximated
from inside by bounded regular open sets, i.e. we prove Theorem 1.1. Our con-
struction is based on the following notion.

Definition 3.3. The inner metric on X is

d′(x, y) = inf lγ ,

where lγ is the arc length of γ and the infimum is taken over all curves γ joining
x and y in X . The distance taken with respect to the inner metric d′ will be
denoted dist′.

By Theorem 17.1 in Cheeger [10], our assumptions imply that X is quasiconvex ,
i.e. that every pair of points in X can be joined by a curve whose length does not
exceed a constant multiple of their distance. Hence

(3.1) d(x, y) ≤ d′(x, y) ≤ Ld(x, y),

where L depends only on the doubling constant of µ and the constants in the
Poincaré inequality.
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Proposition 3.4. Let Ω be bounded with nonempty complement X \ Ω. Let
δ > 0 and assume that the set

Ω′ = {x ∈ Ω : dist′(x, X \ Ω) > δ}

is nonempty. Then the complement X \ Ω′ has a corkscrew at every boundary

point. In particular, Ω′ is regular for p-quasi(super)harmonic functions (and
hence regular).

Proof: Let x0 ∈ ∂Ω′ and 0 < ρ < δ be arbitrary. Find y ∈ X \ Ω and a curve
γ : [0, lγ ] → X , parameterized by its arc length, such that γ(0) = x0, γ(lγ) = y
and lγ < δ + ρ/3. Let z = γ(2ρ/3) and L ≥ 1 be as in (3.1). We shall show
that B(z, ρ/3L) ⊂ B(x0, ρ) \ Ω′, i.e. that X \ Ω has a corkscrew at x0. Clearly,
d(x0, z) ≤ 2ρ/3, i.e. B(z, ρ/3L) ⊂ B(x0, ρ). Let x ∈ Ω′ be arbitrary. Then

Ld(x, z) ≥ d′(x, z) ≥ d′(x, y) − d′(z, y)

≥ dist′(x, X \ Ω) − (lγ − 2ρ/3) > δ − (δ + ρ/3 − 2ρ/3) = ρ/3,

i.e. B(z, ρ/3L) ∩ Ω′ is empty and B(z, ρ/3L) ⊂ B(x0, ρ) \ Ω′. �

Remark 3.5. (i) The proof of Proposition 3.4 only uses the quasiconvexity of X ,
not the Poincaré inequality or the doubling property. Thus, X\Ω′ has a corkscrew
at every boundary point even if X is only quasiconvex and does not support a
Poincaré inequality. On the other hand, the Poincaré inequality and the doubling
condition are the standard assumptions for the theory of p-harmonic functions on
metric spaces and are thus natural for Theorem 1.1.

(ii) The proof of Proposition 3.4 shows that X \Ω′ has a uniform corkscrew at
all boundary points, i.e. that the numbers c and ρ0 in the definition of corkscrew
do not depend on x0. Together with the pointwise estimates in J. Björn [7], this

shows that if f ∈ Cα(∂Ω′), then Hf ∈ Cβ(Ω
′
) for some β > 0 independent of f .

Proof of Theorem 1.1: If Ω is bounded, then the theorem follows from Propo-
sition 3.4 by taking δ = 1/j, j = 1, 2, . . . . If Ω is unbounded, fix z0 ∈ Ω and
let

Ω′
j = {x ∈ Ω : d′(x, z0) < j} and Ωj = {x ∈ Ω′

j : dist′(x, X \ Ω′
j) > 1/j}.

Then Ωj ⋐ Ω′
j ⋐ Ωj+1, j = 2, 3 . . . , and Proposition 3.4 implies that each Ωj is

regular, which concludes the proof. �

Proof of Corollary 1.2: Let Bj = B(x, 1/j), j = 1, 2, . . . . Using Proposi-
tion 3.4, we can find open sets Uj , regular for p -quasisuperharmonic functions, so
that Bj+1 ⊂ Uj ⊂ Bj . �
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4. Wiener solutions

Assume in this section that Ω is a nonempty bounded open set with Cp(X\Ω) >
0. As mentioned in the introduction, if Ω is not regular, then the Dirichlet problem
cannot be solved in the classical sense for a general continuous boundary function
f ∈ C(∂Ω). (Classical in the sense that the boundary values are really attained
at all boundary points. We still consider weak solutions of the equation when our
minimization problem corresponds to a partial differential equation.)

Omitting most details let us here just mention that on metric spaces the first
type of generalized solution of the Dirichlet problem (for arbitrary f ∈ C(∂Ω)) was
given by Definition 3.6 in Björn–Björn–Shanmugalingam [5]. A second alternative,
Perron solutions, was given in Björn–Björn–Shanmugalingam [6, Definition 3.11],
where it was also shown that these two types of generalized solutions always
coincide with Hf , defined by (2.4), see Theorem 6.1 and Corollary 6.2 in [6] and
Theorem 3.9 in [5].

Theorem 1.1 gives us yet another possibility of defining generalized solutions
to the Dirichlet problem.

Definition 4.1. Let f ∈ C(∂Ω). A Wiener solution u of the Dirichlet problem
in Ω with boundary values f is obtained by the following construction: Extend f
in any way to a continuous function (also called f) on Ω, let Ω1 ⋐ Ω2 ⋐ . . . ⋐ Ω
be regular sets such that Ω =

⋃∞
j=1 Ωj , and let

u = lim
j→∞

HΩj
f.

Observe that since Ωj is regular, the solutions HΩj
f are classical solutions of

the corresponding boundary value problems.

Theorem 4.2. Let f ∈ C(∂Ω). Then there exists a Wiener solution of the
Dirichlet problem in Ω with boundary values f , and moreover all Wiener solutions
of the Dirichlet problem in Ω with boundary values f coincide.

Proof: Let us first look at existence. The first step, the extension of f , is directly
obtained by Tietze’s extension theorem. The next step is to approximate Ω by
regular sets, which is obtained by Theorem 1.1. Finally one needs to show that
the limit limj→∞ HΩj

f exists everywhere in Ω. We combine the existence and
uniqueness parts of the proof and make it into a theorem of its own below. �

Theorem 4.3. Let Ω1 ⊂ Ω2 ⊂ . . . ⊂ Ω =
⋃∞

j=1 Ωj be open sets and let f ∈
C(Ω). Then

lim
j→∞

HΩj
f = Hf.

Proof: To show this we will use the fact that

(4.1) Hf(x) = inf
u∈Uf

u(x), x ∈ Ω,
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where Uf = Uf (Ω) is the set of all p-superharmonic functions u on Ω bounded
below such that

lim inf
Ω∋y→x

u(y) ≥ f(x) for all x ∈ ∂Ω,

which is part of the definition of Perron solutions. We refer the reader to Björn–
Björn–Shanmugalingam [6, Definition 3.10], (or A. Björn [2]) for the definition
of p-superharmonic functions; here it is enough to know that p-superharmonic
functions are lower semicontinuous.

Let u ∈ Uf and ε > 0. Extend u to Ω, by letting

u(x) = lim inf
Ω∋y→x

u(y), x ∈ ∂Ω,

which makes u lower semicontinuous on Ω. Let further

A = {x ∈ Ω : u(x) + ε > f(x)},

which is an open set (in the relative topology), by the lower semicontinuity of
u − f . The set A contains ∂Ω by assumption. By compactness, there is some k
such that A ∪ Ωk = Ω, and hence ∂Ωk ⊂ A. It follows that

(u + ε)|Ωj
∈ Uf (Ωj) for j ≥ k,

and thus that lim supj→∞ HΩj
f ≤ u + ε. Letting ε → 0 and taking infimum over

all u ∈ Uf , shows that
lim sup
j→∞

HΩj
f ≤ Hf.

Applying this also to −f we obtain

Hf = −H(−f) ≤ − lim sup
j→∞

HΩj
(−f) = lim inf

j→∞
HΩj

f ≤ lim sup
j→∞

HΩj
f ≤ Hf. �

Theorem 4.3 shows that one could define Wiener solutions also with respect
to nonregular exhaustions of Ω. However, that would defy the purpose of Wiener
solutions, that to define Wiener solutions we only need to use classical solutions
of boundary value problems. Nevertheless, Theorem 4.3 is an interesting stability
result.

5. Applications in axiomatic potential theory

Linear axiomatic theory for harmonic functions dates back to the middle of
the last century, see e.g. Bauer [1]. Nonlinear axiomatic theory for p-harmonic
functions has been developed in Lehtola [18]. Here, we follow the presentation
from Chapter 16 in Heinonen–Kilpeläinen–Martio [12].
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Let X be as before and assume, moreover, that it is unbounded. Then the
following hold.

(a) For every nonempty open Ω ⊂ X and every compact K ⊂ Ω, there exists a
regular set Ω′ such that K ⊂ Ω′ ⋐ Ω. This follows from our Theorem 1.1.

Then for every f ∈ C(∂Ω′), there exists a unique function Hf ∈ C(Ω
′
)

which is p-harmonic in Ω′ and such that Hf = f on ∂Ω′. Moreover, if
f1, f2 ∈ C(∂Ω′) and f1 ≤ f2, then Hf1 ≤ Hf2 in Ω′. This follows directly
from (4.1).

(b) If u1 ≤ u2 ≤ · · · , is a sequence of p-harmonic functions in a domain Ω and
uj(x) ≤ M for all j and some x ∈ Ω, then the function u = limj→∞ uj is
p-harmonic in Ω. This is Proposition 5.1 from Shanmugalingam [23].

(c) If u is p-harmonic in Ω and λ ∈ R
n, then both λu and u+λ are p-harmonic

in Ω.

This means that Axioms A–C in Chapter 16 in Heinonen–Kilpeläinen–
Martio [12] are satisfied for p-harmonic functions in complete unbounded met-
ric spaces with a doubling Borel measure and a weak p-Poincaré inequality.

However, to be able to apply the nonlinear axiomatic theory from [12], we also
need the following sheaf property: If Ωj ⊂ X , j = 1, 2, . . . , are open and u is
p-harmonic in each Ωj , then u is p-harmonic in

⋃∞
j=1 Ωj . Unfortunately in our

setting, it is not known whether the sheaf property holds for p-harmonic functions
which are obtained by minimizing the p-energy integral in (2.3).

The situation is more promising for Cheeger p-harmonic functions, i.e. for
continuous minimizers of the integral

∫

|Du|p dµ in the sense of Definition 2.3
(with gu replaced by |Du|), where Du is the vector-valued Cheeger gradient of u,
see Theorems 4.38 and 4.47 in Cheeger [10]. An equivalent definition of Cheeger

p-harmonic functions is that u ∈ N
1,p
loc (Ω) is continuous and satisfies the integral

identity
∫

Ω
|Du|p−2Du · Dφdµ = 0 for all φ ∈ Lipc(Ω).

All the theory of p -harmonic functions goes through for Cheeger p-harmonic
functions as well (simply by replacing gu by |Du| in the proofs). Observe that if
u is Cheeger p-harmonic in Ωj ⊂ X , j = 1, 2 . . . , Ω =

⋃∞
j=1 Ωj and φ ∈ Lipc(Ω),

then
∫

Ω
|Du|p−2Du · Dφdµ =

∞
∑

j=1

∫

Ωj

|Du|p−2Du · D(φηj) dµ = 0,

where {ηj}∞j=1 is a Lipschitz partition of unity subordinate to the sets Ωj , j =

1, 2, . . . . Hence, u is Cheeger p-harmonic in Ω and the sheaf property holds. This
makes it possible to apply the axiomatic potential theory to Cheeger p-harmonic
functions. Most of the conclusions in Chapter 16 in Heinonen–Kilpeläinen–
Martio [12] have already been proved for Cheeger p-harmonic functions (and also
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for p-harmonic functions obtained from upper gradients) without the use of the
axiomatic potential theory. Nevertheless, the following result seems to be new in
the setting of metric measure spaces.

Theorem 5.1 (Theorem 16.24 in [12]). Let u : Ω → (−∞,∞] be a lower semi-
continuous function which is not identically ∞ in any component of Ω. Then u
is Cheeger p-superharmonic if and only if for every regular set Ω′ ⋐ Ω and each
f ∈ C(∂Ω′), the condition u ≥ f on ∂Ω′ implies u ≥ HΩ′f in Ω′, where HΩ′f is
the Cheeger p-harmonic function in Ω′ with boundary values f .

In A. Björn [2], other characterizations and equivalent definitions of p-super-
harmonic functions on metric spaces are given, some of them employing Theo-
rem 1.1.
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[9] Björn J., Shanmugalingam N., Poincaré inequalities, uniform domains and extension prop-
erties for Newton-Sobolev functions in metric spaces, to appear in J. Math. Anal. Appl.

[10] Cheeger J., Differentiability of Lipschitz functions on metric spaces, Geom. Funct. Anal.
9 (1999), 428–517.

[11] Haj lasz, P., Koskela P., Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000).
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