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1974 — ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS
FACULTAS RERUM NATURALIUM — TOM 45

QUADRATIC FUNCTIONALS WITH EULER’'S EQUATION
(pyY +qr=0

by JAROSLAV KRBILA
( Received June 26th, 1973)

1. Intreduction.

This paper is concerned with studying a quadratic functional of the form

F(us 0, b) f [p(0)u” — g(1)u?] ds, o

wherathe integral is defined in the sense of Riemann, making use of central?iispersions
defined analogous to O. Borlivka. With the results obtained we then further investig-
ate the disconjugacy and the definiteness of selfadjoint linear differential equations
of the second order, whose Coefficients are the complex functions of a real argument.

By Euler’s differential equation of the functional (f) is meant a selfadjoint linear
differential equation of the second order:

(rPq) (p(t) y') + q(1)y = 0.

The symbol C,(M) is used to indicate a set of all real functions which are contin-
uous even with the derivatives up to and including the order k on the set M. (k is a
non-negative integer).

Throughout this article we assume that
1° the functions p(t), q(t) € Cy(j),
2° for every solution y of equation (pq) there holds y € C,(i) py’" € C,(j),
3° the functions p(¢) # O for all ¢ € j, where j is an interval.

Assuming the properties 1°, 2°, and 3° to be satisfied, we can simplify our writing
as: p, g€ v(j) or p, g € v(j > {a, b)) when the interval j contains a bounded, closed
interval <{a, b).
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The nontrivial solution of equation (pq) is called the extremal of (f). The symbol
(pq) will be also used to denote the set of all extremals of (f).

The function u(¢) possessing the property ue Ci({a, b)), u # 0 on the interval
{a, b) is called the admissible function of (f).

Evidently every v € (pg) is an admissible function of the functional (f).

The functional (f) is said to be positive definite or negative definite on the set of
admissible functions, which have a certain property, according as f(u; a, b)) > 0 or
f(u; a, b) < 0 holds for all these admissible functions u. Both the positive definite
and negative definite functionals are called definite functionals. '

Similarly we can define the non-negativeness and non-positiveness of (f) by the
inequalities f(u; a, b) = 0 and f(u; a, b) £ 0, respectively.

2. The interpretation of some values of (f) by means of 2n extremal. )
Let y € (pq) be arbitrary but fixed chosen extremal of (f). The symbol M, will
stand for a set of all admissible functions of (f) which have on <a, b) at least those
zeroes as the extremal y has. We introduce now the interpretation of () which will
be of need in the sequel. '

Lemma 1. Let p, g € v({a, b)), y € (pq), u € M-; then
b

f(usa, b) =[pu*y'[y]s + fp[y(u/y)’]2 dr. | (1

a

Proof. Under the assumptions of the theorem, let for ¢, € {a, b> be y(f,) # O-
Then for the integrated function of (f) in ¢, :

pu'? — qu? = [py'[y] + p[y@/y)]*. -' @

If y(¢;) = 0 is for t; €<a, b), then also u(t;) = 0 for ue M-. From the property
of the solution of (pq) and from the definition of the extremal it follows that y'(#;) 5 0.
It is now easy to see that there exists a finite limit of the function u/y with ¢t — ¢, |
or a one-sided limit when ¢, represents the end point of <a, b). Let us define the
value of u/y at the point ¢; by this limit. Then the function u/y € C;(<a, b)). The
relation (2) is thus an identity on <{a, b) and our interpretation (1) becomes true.

3. The non-negativeness of the functional (f).

Theorem 1. Let p, g€ v({a, b)), p > 0. If it holds

1. y(@ =y(b) =0 or 2. y(a@) =y'(b)=0 _gr
3)y@=y®)=0 or 4Yy@=y®)=0

s
.
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for y € (pq), then the functional (f) on the admissible functions u e M, which are
satisfying the boundary conditions

1. u(@) =ub) =0, 2. u(@) =u'h) =0,

3. W'(a) = u(b) =0, 4. u'(a)

Il

u'(b) =0,

respectively, is non-negative and sthe vanishing extreme-minimum is realized just
on the admissible functions u = ky, where k # 0 is a constant.

Proof. We express the functional (f) in the form of (1). In all four cases is
[pu?y’[y]% = 0; hence it holds
b

f(usa,b) = f pDy(wiy)T d, )

a

whence it follows that f(u; a, b)) = 0 and the extreme f(u; a, b) = 0 is realized on
ue M, if and only if u = ky, where k # 0 is a constant.

Remark. If p < 0 were true in the assumption of the theorem, we should obtain
the statement on the non-positiveness of the functional (f).

4. Conjugate numbers.

By analogy with [1], L., §3 we now define the conjugate numbers with respect
to (pq).

Let yy, v, €(pq) and let y,(t) = 0, y5(¢) = O for tej. The number xej, x # ¢
is called conjugate to the number ¢ of the first, second, third, fourth kinds, if y,(x) = 0,
Y3(x) = 0, y,(x) = 0, y,(x) = 0 hold, respectively.

If t < x(¢t > x), we speak of conjugate numbers on the right (on the left). We let
@), V(1) x,(1), w,(t) denote the a-th (n = 1) conjugate number on the right to the
number ¢ of the first, second, third, fourth kinds, respectively. We write ¢,(f) =
=1, Yo(t) = t. The first conjugate numbers on the right are customary written
without index. '

If two solutions of (pg) or their derivatives have a common zero, then they are
linearly independent and have therefore all zeroes in common including the zeroes
of their derivatives. Consequently the conjugate numbers are independent of the
choice of y, y, € (pq).

Between two neighbouring zeroes of any solution of (pq) lies at least one zero of
the derivative of the respective solution. In such instances when there lies exactly
one zero, it is possible to define the functions—the central dispersions of the first,
second, third, and fourth kinds with the aid of conjugate numbers, completely

analogous to [1], II. § 12. We denote them similarly as the conjugate numbers.

’ “ ‘ .
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Provided that the central dispersions are defined, the following inequalities hold
for any tej:
1< xa(t) < @(1) < x2)1) < o) < ...
4

t < w(t) <y, (t) < w(t) < Yo(r) < ...

A sufficient condition that exactly one zero of the derivative y be lying between
two neighbouring zeroes of the solution y(pq) is given by

Lemma 2. Let p, g € v(j) and q # O for all t € j. If for 1, € j we have t, = ¢(t,) €,
then there exists exactly one number 5 € (f;, t,) for which »'(t;) = 0 holds with
» € (pq) having the property y(t,) = 0.

Proof. For y € (pg) for which y(t;) = Owe have y # Oforall t e (¢, t,), y(t;) = 0.
The existence of the number 5 is thus obvious and we argue the uniqueness by contra-
diction. Let y'(t3) = y'(t,) = 0 hold for t; # t,, t5, t,€(t;, t;). By integrating
(pq) for the y in question, we obtain

t4
fqydt =0
13

which is a contradiction, since gy # 0 for all fe(¢,¢,).

Remark. It becomes readily apparent from the form of the functional (f) that if
(sgn p) (sgn g) = —1 on the interval <a, b), then (f) is positive definite or negative
definite on the set of all admissible functions according assgnp = l orsgnp = —1
on the interval <a, b). X

From this remark and from the statement of Lemma 3 now follows that supposing
sgn p = sgn q # 0 on the interval {a, b), we can apply conjugate numbers or central
dispersions of the second, third, and fourth kinds to the investigation of the defin-
iteness of (f).

5. Sufficient conditions for the positive definiteness of the functional (f).

Theorem 2. Let p, ge v(j> {a, b)), p > 0 and let b e (¢,_,(a), ¢,(a)), n = 1.
Then the functional (f) is positive definite on the admissible functions u that satisfy
the conditions u [@a) = u(b) =0,i=0,1,...,n — 1.

Proof. Let us take y € (pq) satisfying the condition y(a) = 0. Then u e M, holds
for arbitrary admissible function u, for which u[pa)=0,i=0,1,..., n —1].
Hence the functional (f) may be expressed by the relation (1), from which we obtain
the interpretation (3) with respect to the boundary conditions u(a) = u(b) = 0. The
possibility f(u; a, b) gives us u = ky, where k # 0 is a constant. Yet the condition
u(b) = 0yields b = @,(a) which is a contradiction and from (3) we arrive to f(u; a, b) 0.

Theorem 3. Let p, gev(j> <a, b)), sgnp = sgnq = 1. If be(¢,_,(a), 1.(a),
n 2 1 or be<{@,_1(a); x,(a)), n > 1, then the functional (f) is positive definite on the
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admissible functions u that satisfy the conditions u[¢(a)] = v'()) = 0,i =0, 1, ...,
n— 1 )
Proof. Let us take y € (pq) so that y(a) = 0. We examine first the case of be
€ (¢,-1(a), x.,(a)). This evidently implies that y # 0 and sgny = sgn y’for all
te(p,—(a), b). Lemma 1 with respect to the assumption sgnp = 1 if u(b) # 0
gives
f(u; a,b) 2 [pu?y'|y], = p(b) u*(b) y'(b)[y(b) > 0. -

If u(b) = 0, then the functional (f) takes the form of (3) from which we observe that
f(; a, b) = 0. An immediate consequence of the possibility f(u; @, b)) =0 is u = ky
forall ¢ € {a, b), where k # 0is a constant. However, this would imply that y'(b) = 0,
i.e. b = y,(a) contrary to assumption and therefore f(u; a, b) > 0.

Similarly will be shown in case of n > 1 when b¢,_,(a) that f(u;a,b) =0
impossible since it would have to hold ¢,_,(a) = g,(a) in contradiction to the in-
equality (4) and the proof is thus complete.

Since the proofs regarding the statements of further theorems would be very much
like that of the foregoing, only their main idea will be given here.

Theorem 4. Let p, ge v(j> {a, b)), sgnp =sgnq=1. If be Y,_,(a), w,(a))
n = 1, then the functional (f) is positive definite on the admissible functions u that
satisfy the conditions u'(a) = u[wa)] = u®) =0,i=1,2,...,n—1,forn>1,
forn = 1u'(a) = u(b) = 0.
Proof. Let us take y € (pg) for which y’(a) = 0. From Lemma 1 we have the
interpretation (3) and f(u; a, b) = 0 leads to a contradiction. Consequently f(u; a, b) >
> 0.

Theorem 5. Let p, gev(j> (a, b)), sgnp =sgnq = 1. If be(w,(a), ¥,.(a)),
a > 1, then the functional (f) is positive definite on the admissible functions u that
satisfy the conditions #'(a) = u[wa)] = u(p) =0,i=1,2,...,n.

Proof. The proof for b € (w,(a), ¥,(a)) will be carried out analogous to that of
Theorem 4. Since the case f(u; a, b) = 0 for b = ,(a) reduces to a contradiction to
the inequalities (4), it holds f(u; a, b) > 0. )

Theorem 6. Let p, gev(i > {a, b)), sgnp =sgnq = 1. If be (w,(a), ¥,(a),
n = 1, then the functional (f) is positive definite on the admissible functions u that
satisfy the conditions u'(a) = u[w;(@)] = w'(b) =0,i=1,2,..., n.

Proof. Let for y € (pg) be y'(a) = 0. Let us next from arbitrary admissible function
u satisfying the conditions u'(a) = u[w,(a)] = w'() = 0,i = 1, 2, ..., n form partial
functions u; and u, defined on the interval <{a, w,(@))> and {w,(a), b), respectively.
Evidently f(u; a,b) = f(u,; a, v,(a)) + f(u,; w,(a), b). By the statement of the
third part of Theorem 1 it holds f(u; @, w,(a)) Z 0. Because of Y,(a) = y[w,(a)],
for b € (w,(a), x[w,(a@)]), we obtain from Theorem 3 f(u,; w,(a), b) > 0 and thus
f(u; a, b) > 0 which was to be demonstrated.

.
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6. Necessary and sufficient conditions for the positive definiteness of the functional (f).

Theorem 7. Let p,qev(i> {a b)), p > 0. The functional f on the admissible
functions u that satisfy the conditions u[¢(@] =u®)=0,i=0,1,...,n =1 is
positive definite if and only if the interval {¢,_,(a), b) does not contain any conjugate
number of the first kind to the number ¢,_;(a).

Proof. 1. If the interval {¢,_,(a), b), n = 1 does not contain any conjugate
number to the number ¢, _,(a) of the first kind, then b € (¢,_,(a}, ¢,(a)) and by the
statement of Theorem 2 the functional (f) is positive definite on the admissible func-
tions u that satisfy the conditions u[p@)] = u(®) =0,i=0,1,...,n — L.

2. If the interval {¢,_,(a), by, n = 1 contains a conjugate number of the first
kind to the number ¢,_,(a), e.g. let b = ¢,(a), then by the first part of Theorem 1,
we have f(y; a, b) = 0 for y € (pq) for which y(a) = 0. In other words, the functional
(f) is not positive definite on the admissible functions that satisfy the conditions
ulpa)] =ud)=0,i=0,1,....,n = 1.

Another way of proving the statement of Theorem 7 for n = 1 has been shown
in[2}, V., §22.

Theorem 8. Let p, gev(j> <a, b)), sgn p = sgn q = 1. The functional (f) on the
admissible functions u that satisfy the conditions u'(a) = u[w,(a)] = u(d) = 0,
i=1,2,...,n, n =1, is positive definite if and only if the interval {w,(a), b> does
not contain any conjugate number of the first kind to the number w,(a).

Proof. If the interval {w,(a), b>, n = 1, does not contain any conjugate number
of the first kind to the number w,(a), then b € (w,(a), ¥,(a)), or b € (Y,(a), w, . ,(a))
and by the statements of Theorems 5 and 4 the functional (f) is positive definite on
the admissible functions u that satisfy the conditions u'(a) = u[w,(a)] = u(b) = 0,

=1,2,.

2. If the mterval {w,(@), b), n = 1, contains a conjugate number of the first kind
number w,(a), let b = p[w,(a)}i.e. b= w, +1(@), then by the third part of Theorem 1
f(y; a, b) = 0 holds for y € (pq) for which y'(a) = 0. Hence the functional (f) is not
positive definite on the admxssnble functions that satisfy the condmons wa =
=ulo@] =ub)=0,i=12,.

7. The definiteness of the differential equation (pq).

The differential equation (pq) is said to be definite on the mtervaljo < j 1f1t hasno
y € (pq) such that y(t,) = y'(t;) = 0 for any t, # t,, t;, 1, €Jj,. '

The definiteness relations of the functional (f) and of the equation (pq) are described
by

Theorem 9. Let p,qev(i). If the functional (f) is definite on every interval
{a, b) = j on the admissible functions u that satisfy the condition u(a) = u'(b) = 0,
then the equation (pq) is definite on the interval j.
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Proof. Under the assumptions of the theorem, let the equation (pq) be indefinite
on j, which implies that there exists a y € (pq) and a # b, a, b € such that y(a) =
= y'(b) = 0. Substituting this y in (pg) and then multiplying out we obtain a relation
which integrated on the interval <{a, b) gives f(y; a, b) = 0 contrary to assumption.

From the statement of the above theorem and from the remark in § 4 we arrive to
the following

Corollary. If p, g€ v(j) and sgn p = —sgn ¢, then the differential equation (pq)
is definite on the interval j

8. The disconjugacy of the differential equation (pq). 4 ' -

The differential equation (pg) is said to be disconjugate on the interval j, < j if it
has no y € (pq) such that y(¢;) = y(¢t,) = 0 for any t, # t,, t;, 12 €J,.

It is evident from the definitions that if the differential equation (pq) is definite on
the interval j,, then it is disconjugate there as well.

Theorem 10. Let p, g€ v(j > j,) and let the central dispersion ¢(¢) be defined on
the interval j,. The differential equatien (pq) is disconjugate on the interval j, if and
only if for every closed bounded interval {a, b) < j, the functional (f) on the admis-
sible functions u that satisfy the conditions u(a) = u(b) = 0, is definite.

Proof. 1. If the equation (pq) is not disconjugate on the interval j,, then there
exists a, b = ¢(a) € j,. For y € (pq) for which y(a) = y(b) = 0 from the interpretation
of (f): : :

f(ysa,b)=[pyy'ls — j[(py')' + qy]ydt

we obtain f(y; a, b) = 0; consequently (f) is indefinite on the admissible functions u
that satisfy the conditions u(a) = u(b) = 0 whereby the interval <a, b) < j,.

2. If (pg) is disconjugate on the interval j,, then for every interval {a, b) < j, is
b € (a, ¢(a)) and for p > 0, according to theorem 2, the functional (f) on the admis-
sible functions u, for which u(a) = u(b) = 0 holds, is positive definite. Similarly to
the proof of Theorem 2 the functional (f) on the admissible functions u for which
u(a) = u(b) = 0 holds, turns out to be negative definite.

The substance of this theorem is frequently called the variational principle, the
proof of which has been given in another form in [4], XI., §6. -

9. The disconjugacy of complex differential equations.

We have a differential equation

I
o
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whose coefficients are complex functions of a real argument:
P() = Pu(0) +1Py(0), Q@) = Qi(1) +10x(0).

Here the symbols PQ, V(j) will have a similar meaning as (pq), v(j) in the real case.

The definition for the disconjugacy of (PQ) is analogous to that for the disconjugacy
of (pq) in the real case. (See § 8).

The next step is to prove the sufficient conditions for the disconjugacy of (PQ) by
comparing its coefficients with those of the disconjugate equation (pqg). Doing this
we make use of the properties of (f) and ¢(f). Here is the growth and continuity
involved which will be proved even for the equation (pq) as surely as it has been done
for the equation 3" = ¢(t)y in [1], § 13, 1.

Theorem 11. Let p, qev(j > {a, b)), p > 0 and let the function ¢(z) be defined
on the interval <{a, b). Let next P, Q € V(j). If b = ¢(a) and a real constant y exists
such that on the interval (a, b)

P, +yP, 2 p, 0, +70,<q C ‘ (5)

is true, then the differential equation (PQ) on the intervals {a, b), (a, b) is discon-
jugate.

Proof. Suppose that the equation (PQ) is not disconjugate on the above intervals.
Then there exist w = w; + i w, € (PQ) and the numbers ¢, ¢, in these intervals,
t, < t, such that it holds '

w(ty) = w(t;) = 0. ‘ ®)

After substituting first the w in question into (PQ) and then multiplying it by the
function # = w, — i w, and integrating from ¢, to ¢, we obtain the relation:
- . t2 . . .
J'(P|w’[2—Q|w|2)dt=0 B ' Y]
f . ‘ o Co
whose real and imaginary part is . e R

173 ° c an
f(Pk[ w2 = Qe lw|?)dt =0, k = 1 and 2, respectively

t

Upon multiplying out the imaginary part by y and adding the real part to it, we find
that

< f((Pl +yPy) | w|? — (2, +)’Q2)|W|2)d"_.‘0 . ' ~

~
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and with respect to the assumption (5) we arrive at the inequality

. t2 ’ .

I=j@'wf—qnwﬁMgo. L ®
t

The real functions w,, w, are admissible functions of the functional (f) and as
can be seen from (6), they satisfy the conditions w,(t,) = w(t,) = 0, k = 1, 2. From
the assumption that ¢, t, € {a, b) or (a, b), b = ¢(a) and from the property of the
function ¢(t) we note that ¢, € (¢,, ¢(¢,)). This implies that by Theorem 2 the fol-
lowing inequalities

Sw ty, 1) >0, k=12 )]

hold which upon adding give
t2 .
1=j(PiW'|2—qIW|2)dt>0 (10)
n : )

in contradiction to the relation (8).

Corollary. If at least one of the inequalities (5) sharp for all ¢ € (a, b) exists in
Theorem 11, then the differential equation (PQ) is disconjugate on the interval
{a, b).

Proof. The procedure of proving this is the same as we have used for Theorem 11,
only that we have I < 0 instead of the inequality (8), and on the basis of the first
part of Theorem 1 whena < t; < ¢, < b there hold the inequalities f(w,; ¢,, ¢,) = 0,
k = 1,2, whence instead of (10) we obtain 7 > 0 and thus also the contradiction.

The statements of Theorem 11 and of its Corollary generalize the statements of
Theorem 1 and its Corollary from [6] which we obtain when p = P = | assuming in
addition that y € (1) and w e (1Q) belong to the class C,(j).

, . .
10. The definiteness of complex differential equations.

The definition of the definiteness of the differential equation (PQ) is analogous to
that of (pg) in § 7.

From here on the writing p, g € v,(j) will be used to indicate that for. the real
functions of the real argument p, g, the following conditions are satisfied:
1° pe Cy(i): g € Cof),
2° every y € (pq) belongs to the class C,(j),
3° p # for every t €.

It is obvious that p, g € v(j) if p, g € v,(j). Now we shall derive the sufficient condi-
tions for the definiteness of the differential equation (PQ) using the property of the
functional (f) by means of the central dispersions y(f), () — of the third and fourth
kinds. Their proprerties are discussed in

\



Lemma 3. Let p, qev,(j), sgn p = sgn ¢q. Next let X, Q be arbitrary central
dispersion of the third, fourth kinds of the differential equation (pg). The functions
X, Q are in their domains of definition continuous and increasing.

Proof. We shall show the derivatives of X, Q to be positive. Since the idea of this
proof is very much like that given in [1], § 13, 3, we shall only briely demonstrate it
for the function Q.

Let u, ve(pq) be linearly independent. From the base function of ( pq) F(t, x) =
u'(1) v(x) — u(x) v'(t) for which F(z, Q(t)) = 0 holds if x = Q(t) we shall prove the
existence of the single function Q having the derivative:

oo _ Y v(Q) — u(Q)v

. AN
u'v'(Q) — u'(Q)v'
From the equation (pg) we have y" = —(p'y’ + qy)/p. A similar expression of u” and
v" produces
o4 uv(Q) — u(Q)v - (11)
P u'v'(Q) —u'(Q)v

Suppose #’' # 0. Then let us multiply numerator and denominater of the above
fraction by it and let us replace u'v(Q) by v'u(Q) in numerator. The result is

o4 u(Q) (uv' — vu')
P u(Q) — vu'u'(2)
It follows from u’ # O that likewise u(Q) # 0 and after multiplying out numerator
and denominator by it and replacing v'u(2) by «'v(Q2) we obtain
u*(Q) (uv’ — vu')
u(u(Q)v'(Q) — w'(Q) u(K))

The Wronskian of the equation (pg) is uv’ — vu’ = ¢/p. Thus we obtain

ap(Q) u*(Q)
p2 u/2

’

4
p

Q= (12)

»

If &' = 0, then likewise u(2) = 0 and from the relation (11) we arrive at

uv(Q) :

Q=94 U ‘
P —u'(Q)v - ‘

whence on multiplying out numerator and denominator by uu'(Q) we have
. 2 ' ) . ; A
. . B , u - . - .o
. _ 13)
(Q) wi(Q) TR ( )

40 _ . ) o i



In an analogous fashion, we could find for the derivative of X:

P’(X) v(X) s '

x =P w? wer o (19)
_P_ _”2_ for u =0 _
a(X) w*(X)

From (12), (13), and (14) we have the statement of our Lemma.

Remark. The above relations equally modified as in [1] will furnish formulas as
follow: ’ ' : :

P S0 o p@)a Q)
pa(X) 2 p2 s2

_ where r = ~u? + v%, s = Ju'? + v'2 and u, v are arbitrary linearly independent
solutions of (pq).
For completeness let us note that for arbitrary central dispersion of the first and
second orders

o - P(@) (@)

2 2
_ P(¥) a s(¥)
and Y = .
p r I's q(¥) 2

hold, respectively. The latter relation has been proved in [3].

Theorem 12. Let p,gev,(j> {a, b)), sgnp = sgng = 1 and let the functions
(1), w(t) be defined in the interval {a, b). Next let P, Q € V(i). If b = min (x(a), w(s)
and there is a real constant y such that the inequalities (5) are valid in (a, b), then the
differential equation (PQ) is definite on the intervals {a, b), (a, b).

Proof. Let us consider the case of b = y(a), which we are going to argue by
contradiction. Suppose now that there exist w € (PQ) and any ¢,, t, in each of the
intervals stated above, #; < ¢, such that

Yow) =w()=0 .. (6)

is true.

By analogy with the proof of Theorem 11 we now obtain the relations (7) and (8).

From (6') it is clear that w,(f;) = wi(t,) =0, k=1,2. If a<t; <1, <b
[a<t, <t, £b],thent,e(t;b) = (1, x(t))) t, €(ty, b = (¢,x(¢,)), since from a < t;
bz Lemma 3 there is y (@) < x(¢;), and by Theorem 3 the inequalities (9) are valid,
whence we finally get the inequality (10) and thus a contradiction.

Suppose next that there exist w € (PQ) and any #,, ¢, in each of the stated intervals,
t; < t, such that
> o wi(ty = w(t) =0 Cke ce o (67

e . .
holds. Hence it follows w,(f,) = w,(t;) = 0, k = 1, 2. In analogy with the preceding
. part of the proof we obtain the inequality (8). It can be proved without difficulty that
" in bothcases a < t; < t, <band a <t <t, < b thereis t, € (t;, w(t,)) and by



the statement of Theorem 4 we arrive at the inequality (9), whence also at the in-
equality (10) and thus at the contradiction.
The proof for b = w(a) is similar to the foregoing. This completes the proof.

Corollary. If, under the assumptions of Theorem 12, at least one of the in-
equalities (5) is sharp on the interval (g, b), then the differential equation (PQ) is
definite on the interval {a, b).

Proof. The idea is exactly the same as in proving Theorem 12 only that we have
I < 0 instead of the inequality (8) and in case of @ < ¢, < t, < b we obtain respect-
ively from the second and third part of Theorem 1 the inequality / = 0, in analogy
with the proof of the Corollary of Theorem 11.

It should be noted here, too, that if p = P = 1 on the interval j, then we arrive at
the results of [5].

! REFERENCES

[1]1 O. Borivka: Lineare Differentialtransformationen 2. Ordnung, VEB Deutscher Verlag der
Wissenschaften, Berlin 1967.

[2] H. M. I'eavgpano, C. B. Pomun: BapnaunonHoe ucyucnenue, l'ocyn. usn. ®.—M. nutepartypsl,
Mockga, 1961.

[3] M. Gregus: O niektorych novych vlastnostiach rieseni diferencidlnej rovnice y” + Qy' + Q'y =0,
Spisy ptirodovédecké fakulty Masarykovy university, Brno, 362 (1955), 237—252.

[4] Ph. Hartman: Ordinary differential equations (rusky preklad), U3a. Mup, Mocksa, 1970.

[5] J. Krbila: Sufficient condition for definiteness of linear difterential equation of the second order.
Sbornik praci VSD a VUD, NADAS, Praha (v tladi).

[6] R. Zimka: Diskonjugovanost a nekritiénost komplexnych diferencidlnych rovnic. Matem.
&asopis SAV 23 (1973), No. 1, 64—68.

Adresa autora: 01088 Zilina, Marxa-Engelsa 25, (Katedra matematiky fakulty SET VSD).
Sbornik praci VSD a VUD, NADAS, Praha (v tlagi).

Resumé

KVADRATICKE FUNKCIONALY S EULEROVOU
ROVNICOU
"y +qy=0
JAROSLAV KRBILA, ZILINA N

V praci sa vysetruju kvadratické funkcionaly tvaru:

;
f(u;a,b)=j(pu’2—qu2)dt. ey SR )N
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Dokazuj sa postatujice podmienky pre nezidpornost a kladnu definitnost funkco-
nal (f) na pripustnych funkciach u, ktoré spliiuju niektortt z podmienok:

uloa)] = u(b) =0, u[pa)] =uw®)=0, i=0,1,....,n—1
u'(@) = u[ofa)] = ud) =0, @) =uw@]=u®d)=0 i=12..,n,

n prirodzené &islo, pri¢om sa pouZivajii konjugované &isla, resp. centrdlne gisperzie
@i, Vi, Xi, 0;, zavedené O. Borivkom.

Odvadzaju sa tieZ nutné a postadujice podmienky pre kladnt definitnost funkcio-
naly (f).

Dalej sa vysetruje vzfah diskonjugovanosti a definitnosti rovnice (py’)’ + gy = 0
s definitnostou funkcionaly (f).

Vlastnosti funkciondl (f) a centralnych disperzii sa vyuZivaja pri dokazoch posta-
&yjucich podmienok pre diskonjugovanost a definitnost rovnice (Pw') + Ow = 0,
ktorej koeficienty si komplexné funkcie redlneho argumentu.

KBAJIIPATUUYECKUE ®VHKLIMOHAJIBI C VPABHEHUEM DMJIEPA
() +qy=0

APOCJIAB KPBUIJIA, XKUJINHA

B HacTrosieit pabore uccienyloTCss KBaapaTuieckue HyHKIIHOHAIBI BHIA

&

fwia,n) = [ (" = au?yat o

Jloka3bpIBalOTCS AOCTATOYHBIE YCIOBUS HEOTPHULATENHBHOCTH U ITOJIOXKHUTENILHOM
onpeaeNeHHoCcTH (yHkuroHana (f) Ha Jonyckaembix GYHKUMSX 4, KOTOPBIE YAOBIe-
TBOPSIOT HEKOTOPMY U3 YCJIOBHH:

ulpi(@] = ub) = 0, Y[p@)] =uw@®) =0,i=0,1,....,n — 1
u'(a) = u[wy(@)] = u®) = 0, u'(a) = u[w,(@)] = u'(b) =0, '

i=1,2,...,n, u HaTypaJIbHOE YMCJIO, MPHYEM HCIOJIb3YFOTCSI CONPSKEHHBIE YHUCIA
HJIM LIEHTPaJIbHbIE JUCHEPCHU @;, Vi, X;, w; BBeneHuble O. BopyBKoii.

JI0Xa3BIBAIOTCA TAKXKe HEOOXOIMMBIE . JOCTATOYHBIE YCTOBH sl ISl MOJIOKUTE b~
HOM omnpenenaeHHOCTH yukuuoHana (f).

Janee paccMaTpUBAarOTCS COOTHTLUEHHE HECOMPSIKEHHOCTH M OINpPENEeIeHHOCTH
ypasrenus (py’)’ + qy = 0 ¢ onpeneseHHOCTbIO PyHKHIOHANA (f).

CsoiictBa QyHkuMoHana (f) M UEHTPANbHBIX TUCHEPCHI HCIIONB3YIOTCS IIPU
NOKa3aTeNbCTBE NOCTATOYHBIX YCIOBMH IJIf HECONPSIKEHHOCTH M ONPONEJIEHHOCTH -
ypasuenust (Pw’) + Ow = 0, k03 PUILHEHTH! KOTOPOro ABISIFOTCA KOMIUIEKCHBIMH
yHRUMAMHE OEHCTBHTENLHOIO apryMeHTa.
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