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1974 — ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS 
FACULTAS RERUM NATURALШM — TOM 45 

QUADRATIC FUNCTIONALS WITH EULERS EQUATION 

(py'Y + qy = o 

by JAROSLAV K R B I L A 

(Received June 26th, 1973) 

1. Introduction. 

This paper is concerned with studying a quadratic functional of the form 

b 

f(u;a,b)= ![p(t)u'2-q(t)u2]dt, (f) 

a 

\ 
wherqjthe integral is defined in the sense of Riemann, making use of central dispersions 
defined analogous to O. Boruvka. With the results obtained we then further investig­
ate the disconjugacy and the definiteness of selfadjoint linear differential equations 
of the second order, whose coefficients are the complex functions of a real argument. 

By Euler's differential equation of the functional (/) is meant a selfadjoint linear 
differential equation of the second order: 
(pq) 0 ( 0 yT + q(t)y = o. 

The symbol C*(M) is used to indicate a set of all real functions which are contin­
uous even with the derivatives up to and including the order k on the set M. (k is a 
non-negative integer). 

Throughout this article we assume that 
1 ° the functions p(t), q(t) e C0(j), 
2° for every solution y of equation (pq) there holds y e Cx(\) py' e C^j), 
3° the functions p(t) ^ 0 for all t ej\ where j is an interval. 

Assuming the properties 1°, 2°, and 3° to be satisfied, we can simplify our writing 
as: p, q e v(j) or p, q e v(j => <a, b» when the interval j contains a bounded, closed 
interval <a, b>. 
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The nontrivial solution of equation (pq) is called the extremal of (/). The symbol 
(pq) will be also used to denote the set of all extremals of (/). 

The function u(t) possessing the property u e Ci«a, b», u 7= 0 on the interval 
<a, b> is called the admissible function of (/). 

Evidently every v e (pq) is an admissible function of the functional (/). 
The functional (f) is said to be positive definite or negative definite on the set of 

admissible functions, which have a certain property, according as f(u; a, b) > 0 or 
f(u; a, b) < 0 holds for all these admissible functions u. Both the positive definite 
and negative definite functional are called definite functionals. 

Similarly we can define the non-negativeness and non-positiveness of (/) by the 
inequalities f(u; a, b) ^ 0 arid f(u; a, b) ^ 0, respectively. 

2. The interpretation of some values of (f) by means of an extremal. 

Let y e (pq) be arbitrary but fixed chosen extremal of (/). The symbol My will 
stand for a set of all admissible functions of (/) which have on <a, b> at least those 
zeroes as the extremal y has. We introduce now the interpretation of (f) which will 
be of need in the sequel. 

Lemma 1. Let p, q e v«a, b», y e (pq), ue M-; then 

b 

f(u ;a,b) = [pu2y'jy?a + j p{y(ujy)'f df. (1) 
a 

Proof. Under the assumptions of the theorem, let for t0 e <a, b> be y(t0) ?= 0-
Then for the integrated function of (/) in t0 

pu'2 - qu2 = [Puy/y] ' + p[y(uly)'Y. (2) 

If y(h) = 0 is for tx e <a, b>, then also u(tr) = 0 for u e M-. From the property 
of the solution of (pq) and from the definition of the extremal it follows t h a t / d ) ?= 0. 
It is now easy to see that there exists a finite limit of the function u/.y with t -> t{, 
or a one-sided limit when tx represents the end point of <a, b>. Let us define the 
value of u/y at the point t1 by this limit. Then the function u\y e C!«a, b». The 
relation (2) is thus an identity on <a, b> and our interpretation (1) becomes true. 

3. The non-negativeness of the functional (f). 

Theorem 1. Let p, q e v((a, b}), p > 0. If it holds 

1. y(a) = y(b) = 0 or 2. y(a) = y'(b) = 0 or 

3. y'(a) = y(b) = 0 or 4. y'(a) = y'(b) = 0 

32 



for y e (pq), then the functional (f) on the admissible functions u e My which are 
satisfying the boundary conditions 

1. u(a) = u(b) = 0, 2. u(a) = u\b) = 0, 

3. u'(a) = u(b) = 0, 4. u'(a) = u'(b) = 0, 

respectively, is non-negative and<he vanishing extreme-minimum is realized just 
on the admissible functions u = ky, where k ^ 0 is a constant. 

Proof. We express the functional (f) in the form of (1). In,all four cases is 

[pu2y'/y]a = 0; hence it holds 
b 

f(u;a,b)= fplXu//)]ad*, O) 

whence it follows that f(u; a, b) ^ 0 and the extreme f(u; a, b) = 0 is realized on 
u e My if and only if u = ky, where k =£ 0 is a constant. 

Remark. Ifp < 0 were true in the assumption of the theorem, we should obtain 
the statement on the non-positweness of the functional (f). 

4. Conjugate numbers. 

By analogy with [1], I., § 3 we now define the conjugate numbers with respect 
to (pq). 

Let yi, y2 e(pq) and let yi(t) = 0, y'2(t) = 0 for tej. The number xej, x =£ t 
is called conjugate to the number t of the first, second, third, fourth kinds, if yi(x) = 0, 
y2(x) = 0, yi(x) = 0, y2(x) = 0 hold, respectively. 

If t < x(t > x), we speak of conjugate numbers on the right (on the left). We let 
Wn(t)i WO* Xn(0, coA(t) denote the n-th («'_• 1) conjugate number on the right to the 
number t of the first, second, third, fourth kinds, respectively. We write cp0(t) = 
= t, \j/0(t) = t. The first conjugate numbers on the right are customary written 
without index. 

If two solutions of (pq) or their derivatives have a common zero, then they are 
linearly independent and have therefore all zeroes in common including the zeroes 
of their derivatives. Consequently the conjugate numbers are independent of the 
choice of yi, y2 e (pq). 

Between two neighbouring zeroes of any solution of (pq) lies at least one zero of 
the derivative of the respective solution. In such instances when there lies exactly 
one zero, it is possible to define the functions —the central dispersions of the first, 
second, third, and fourth kinds with the aid of conjugate numbers, completely 
analogous to [1], II. § 12. We denote them similarly as the conjugate numbers. 
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Provided that the central dispersions are defined, the following inequalities hold 
for any t e j : 

t < X2(t) < (Pi(t) < Xi)t) < (p2(t) < ... 
(4) 

t < co^t) < iAi(0 < ^2(0 < ^ ( 0 < ... 

A sufficient condition that exactly one zero of the derivative y be lying between 
two neighbouring zeroes of the solution y(pq) is given by 

Lemma 2. Letp, q e v(j) and q # 0 for all t ej. If for tx ej we have t2 = (p(t{) ej, 
then there exists exactly one number t3 e (lx, t2) for which y'(t3) = 0 holds with 
y e (pq) having the property y(tt) = 0. 

Proof. F o r j e (pq) for whichy(tx) = 0 we havey 7- 0 for all te(tl9 t2), y(t2) = 0. 
The existence of the number t3 is thus obvious and we argue the uniqueness by contra­
diction. Let y'(t3) = y'(t4) = 0 hold for t3 7- l4, t3i t4e(t1, t2). By integrating 
(pq) for the y in question, we obtain 

Í4 

Í qyát = 0 

which is a contradiction, since qy ^ 0 for all te(txt2). 
Remark. It becomes readily apparent from the form of the functional (/) that if 

(sgn p) (sgn q) = — 1 on the interval <a, b>, then ( /) is positive definite or negative 
definite on the set of all admissible functions according as sgn p = 1 or sgn p = — 1 
on the interval <a, b>. 

From this remark and from the statement of Lemma 3 now follows that supposing 
sgnp = sgn q 7- 0 on the interval <a, b>, we can apply conjugate numbers or central 
dispersions of the second, third, and fourth kinds to the investigation of the defin-
iteness of (/). 

5. Sufficient conditions for the positive definiteness of the functional (f). 

Theorem 2. Letp , qev(j^ <a, b», p > 0 and let be((pn_1(a), (pn(a)), n ^ 1. 
Then the functional (/) is positive definite on the admissible functions u that satisfy 
the conditions u \_(pt(a) = w(b) = 0, i — 0, 1, ... , n — 1. 

Proof. Let us take y e (pq) satisfying the condition y(a) = 0. Then u e My holds 
for arbitrary admissible function u, for which u[cpt(a) = 0, 1 = 0, V ..., n — ]]. 
Hence the functional (/) may be expressed by the relation (1), from which we obtain 
the interpretation (3) with respect to the boundary conditions u(a) = u(b) = 0. The 
possibility f(w; a, b) gives us u = ky, where k 7- 0 is a constant. Yet the condition 
u(b) = 0 yields b = (pn(a) which is a contradiction and from (3) we arrive to/(w; a, b) 0. 

Theorem 3. Let p, qev(jz> <a, b», sgnp = sgnq = 1. If be(q>n_1(a\ /n(a)), 
« _t 1 or b e <<?„_ -(a), xn(a)), n > 1, then the functional (/) is positive definite on the 
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admissible functions u that satisfy the conditions u[c^(a)] = u'(b) = 0, i = 0, 1, ..., 
i f - 1. 

Proof. Let us take ye(pq) so that y(a) = 0. We examine first the case of be 
e(^n-i( f l)> Xn(a))- This evidently implies that y ?- 0 and sgny = sgnjy'for a l l 
te(q>n^1(a), b >. Lemma 1 with respect to the assumption sgnp = 1 if u(b) ^ 0 
gives 

f(u; a, b) = [pu2y'/y]a = PQ>) u\b)y'(b)ly(b) > 0. 

If u(b) = 0, then the functional ( /) takes the form of (3) from which we observe that 
f(u; a, b) ^ 0. An immediate consequence of the possibility f(u; a, b) = 0 is u = ky 
for all t e <a, b>, where k ^ 0 is a constant. However, this would imply that y'(b) = 0, 
i.e. b = Xn(a) contrary to assumption and the re fo re f(u; a, b) > 0. 

Similarly will be shown in case of n > 1 when bcpn_ x(a) t h a t f(u; a, b) = 0 
impossible since it would have to hold (£,,_!(a) = xn(

a) m contradiction to the in­
equality (4) and the proof is thus complete. 

Since the proofs regarding the statements of further theorems would be very much 
like that of the foregoing, only their main idea will be given here. 

Theorem 4. Let p, q e v(j ID <a, b», sgnp = sgn q = 1. If b e 0An_i(a), con(a)) 
n ^ 1, then the functional (/) is positive definite on the admissible functions u that 
satisfy the conditions u'(a) = u[co£(a)] = u(b) = 0, i = 1, 2, ..., n — 1, for n > 1, 
for n = 1 u'(a) = u(b) = 0. 

Proof. Let us take ye(pq) for which y'(a) = 0. From Lemma 1 we have the 
interpretation (3) and/(u ; a, b) = 0 leads to a contradiction. Consequently/(u; a, b) > 
> 0 . 

Theorem 5. Let p, qev(j^> <a, b», sgnp = sgn q = 1. If be(con(a), il/n(a)}, 
n}£ I, then the functional (/) is positive definite on the admissible functions u that 
satisfy the conditions u'(a) = u\_coi(a)'] = u(b) = 0, i = 1, 2, ..., n. 

Proof. The proof for b e (con(a), \j/n(a)) will be carried out analogous to that of 
Theorem 4. Since the case/(u; a, b) = 0 for b = \l/n(a) reduces to a contradiction to 
the inequalities (4), it holds/(u ; a, b) > 0. 

Theorem 6. Let p, qev(izD <a, b», sgnp = sgn q = 1. If be(con(a), \\fn(a)), 
n = 1, then the functional (/) is positive definite on the admissible functions u that 
satisfy the conditions u'(a) = u[co,;(a)] = u'(b) = 0, i = 1, 2, ..., n. 

Proof . Let for y e (pq) be y'(a) = 0. Let us next from arbitrary admissible function 
u satisfying the conditions u'(a) = u[cDj(a)] = u'(b) = 0, i = 1, 2, ... , n form partial 
functions ux and u2 defined on the interval <a, con(a)} and (con(a), b>, respectively. 
Evidently f(u; a, b) = / ( u x ; a, con(a)) + / ( u 2 ; con(a), b). By the statement of the 
third part of Theorem 1 it holds f(u; a, con(a)) = 0. Because of \\/n(a) = x[con(a)], 
for b 6 (con(a), x[con(a)]), we obtain from Theorem 3 / ( u 2 ; con(a), b) > 0 and thus 
f(u; a, b) > 0 which was to be demonstrated. 
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6. Necessary and sufficient conditions for the positive definiteness of the functional (f). 

Theorem 7. Let p,qev(i =D <a b», p > 0. The functional / on the admissible 
functions u that satisfy the conditions u[<P.(tf)] = u(b) = 0, i = 0, 1, ..., n = 1 is 
positive definite if and only if the interval (<Pn-i(a), b> does not contain any conjugate 
number of the first kind to the number (pn-i(a). 

Proof. 1. If the interval <<p„_i(a), b>, n = 1 does not contain any conjugate 
number to the number (pn_i(a) of the first kind, then b e (<p„_i(a), (pn(a)) and by the 
statement of Theorem 2 the functional (f) is positive definite on the admissible func­
tions u that satisfy the conditions u[(Pi(a)\ = u(b) = 0, / = 0, 1 , . . . , n — 1. 

2. If the interval <^n_x(a), b>, n = 1 contains a conjugate number of the first 
kind to the number (pn-i(a), e.g. let b = (pn(a), then by the first part of Theorem 1, 
we have/(y; a, b) = 0 for y e (pq) for which y(a) = 0. In other words, the functional 
(/) is not positive definite on the admissible functions that satisfy the conditions 
"!>.(*)] = "(*) = 0, i = 0, 1, ..., n - 1. 

Another way of proving the statement of Theorem 7 for n = 1 has been shown 
in [2}, V., §22. 

Theorem 8. Letp, q ev(j=> <a, b», sgnp = sgn q=\. The functional (/) on the 
admissible functions u that satisfy the conditions u'(a) = u[cot(a)] = u(b) = 0, 
i = 1, 2, ..., n, n = 1, is positive definite if and only if the interval (ojn(a), b> does 
not contain any conjugate number of the first kind to the number ojn(a). 

Proof. If the interval (o)n(a), b>, n = \, does not contain any conjugate number 
of the first, kind to the number oon(a), then b e (o)n(a), \l/n(a)), or b e (i/>„(a), (Dn + i(a)) 
and by the statements of Theorems 5 and 4 the functional (/) is positive definite on 
the admissible functions u that satisfy the conditions u'(a) = u^co^a)] = u(b) = 0, 
/ = \,2, ..., n. 

2. If the interval (o)n(a), b>, n = 1, contains a conjugate number of the first kind 
number ojn(a), let b = (p\o)n(a)] i.e. b = Oj., + i(fl), then by the third part of Theorem 1 
f(y; a, b) = 0 holds for y e (pq) for which y'(a) = 0. Hence the functional (/) is not 
positive definite on the admissible functions that satisfy the conditions u'(a) = 
= u[cD.(a)] = u(b) = 0, / == 1, 2 , . . . , n. 

7. The definiteness of the differential equation (pq). 

The differential equation (pq) is said to be definite on the interval j 0 c j if it has no 
y e (pq) such that y(tt) = y'(t2) = 0 for any tl ^ t2, tt,t2 ej0. 

The definiteness relations of the functional (J) and of the equation (pq) are described 
by 

Theorem 9. Let p, q e v(i). If the functional (f) is definite on every interval 
<a, b> c j on the admissible functions u that satisfy the condition u(a) = u'(b) = 0, 
then the equation (pq) is definite on the interval j . 
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Proof. Under the assumptions of the theorem, let the equation (pq) be indefinite 
on j , which implies that there exists aye (pq) and a T-" b, a, b ej such that y(a) = 
= y'Q>) = 0. Substituting this y in (pq) and then multiplying out we obtain a relation 
which integrated on the interval <a, b> gives f(y; a, b) = 0 contrary to assumption. 

From the statement of the above theorem and from the remark in § 4 we arrive to 
the following 

Corollary. If p, q e v(j) and sgnp = -sgn q, then the differential equation (pq) 
is definite on the interval j 

8. The disconjugacy of the differential equation (pq). 

The differential equation (pq) is said to be disconjugate on the interval j0 c j if it 
has no y e (pq) such that y(tt) = y(t2) = 0 for any tx ^ t29 tl912 ej0. 

It is evident from the definitions that if the differential equation (pq) is definite on 
the interval j 0 , then it is disconjugate there as well. 

Theorem 10. Let p, q e v(j =) j0) and let the central dispersion cp(t) be defined on 
the interval j 0 . The differential equaticn (pq) is disconjugate on the interval f0 if and 
only if for every closed bounded interval <a, b> c j 0 the functional (f) on the admis­
sible functions u that satisfy the conditions u(a) = u(b) = 0, is definite. 

Proof. 1. If the equation (pq) is not disconjugate on the interval j 0 , then there 
exists a, b = cp(a) ej0. For y e (pq) for which y(a) = y(b) = 0 from the interpretation 
of(f): 

f(y;a,b) = [pyy']l - í(pyj + qy] y dt 

we obtain f(y; a, b) = 0; consequently (f) is indefinite on the admissible functions u 
that satisfy the conditions u(a) = u(b) = 0 whereby the interval <a, b> czf0. 

2. If (pq) is disconjugate on the interval j 0 , then for every interval <a, b> c j0 is 
b G (a, (p(a)) and for p > 0, according to theorem 2, the functional (f) on the admis­
sible functions u, for which u(a) = u(b) = 0 holds, is positive definite. Similarly to 
the proof of Theorem 2 the functional (f) on the admissible functions u for which 
u(a) = u(b) = 0 holds, turns out to be negative definite. 

The substance of this theorem is frequently called the variational principle, the 
proof of which has been given in another form in [4], XL, § 6. 

9. The disconjugacy of complex differential equations. 

We have a differential equation 

(P(t)w')' + Q(t)w = 0 (PQ) 
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whose coefficients are complex functions of a real argument: 

P(t) = P,(t) + i P2(t), Q(t) = Q,(t) + i Q2(0-

Here the symbols PQ, V(j) will have a similar meaning as (pq), v(j) in the real case. 

The definition for the disconjugacy of (PQ) is analogous to that for the disconjugacy 

°f (Pq) in the real case. (See § 8). 

The next step is to prove the sufficient conditions for the disconjugacy of (PQ) by 
comparing its coefficients with those of the disconjugate equation (pq). Doing this 
we make use of the properties of (/) and cp(t). Here is the growth and continuity 
involved which will be proved even for the equation (pq) as surely as it has been done 
for the equation y" = q(t)y in [1], § 13, 1. 

Theorem I I. Let p, q e v(j ID <a, b», p > 0 and let the function q>(t) be defined 
on the interval <a, b). Let next P, Q e V(j). If b = cp(a) and a real constant y exists 
such that on the interval (a, b) 

Pt + yP2 =P, Qi + 1Q2 = q (5) 

is true, then the differential equation (PQ) on the intervals <a, b), (a, b> is discon­
jugate. 

Proof. Suppose that the equation (PQ) is not disconjugate on the above intervals. 
Then there exist w = w{ + iw2 e(PQ) and the numbers ti912 in these intervals, 
tx < t2 such that it holds 

>K>i) = *<l2) - 0. (6) 

After substituting first the w in question into (PQ) and then multiplying it by the 
function w = wx — iw2 and integrating from ti to t2 we obtain the relation: 

tг 

(P\wf\2 -Q\w\2)dt = 0 (7) 

whose real and imaginary part is 

(^k I w ' I2 - Qk I w | 2 ) dt = 0, k = 1 and 2, respectively í< 
Upon multiplying out the imaginary part by y and adding the real part to it, we find 
that 

Г : 

Í ((Рi + yPi) I w'|2 - (Є, + УQ2) I w | 2 )d< = 0 
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and with respect to the assumption (5) we arrive at the inequality 

tz 

/ = \(p\w'\
2-q\w\

2)dt^0. (8) 

ri 

The real functions wx,w2 are admissible functions of the functional (f) and as 
can be seen from (6), they satisfy the conditions wk(t{) = wk(t2) = 0, k = V 2. From 
the assumption that tx, t2 e <a, b) or (a, b>, b = <p(a) and from the property of the 
function <p(t) we note that t2 e (tt, (p(t^)). This implies that by Theorem 2 the fol­
lowing inequalities 

/(*>*; ti,>2)>0, A: = 1 , 2 (9) 

hold which upon adding give 

I (p\w'\2 - a | w | 2 ) d ř > 0 (10) 

in contradiction to the relation (8). 

Corollary. If at least one of the inequalities (5) sharp for all t e (a, b) exists in 
Theorem 11, then the differential equation (PQ) is disconjugate on the interval 
<a,b). 

Proof. The procedure of proving this is the same as we have used for Theorem 11, 
only that we have I < 0 instead of the inequality (8), and on the basis of the first 
part of Theorem 1 when a = tx < t2 = b there hold the inequalitiesf(wfc; tx, t2) = 0, 
k = V 2, whence instead of (10) we obtain I = 0 and thus also the contradiction. 

The statements of Theorem 11 and of its Corollary generalize the statements of 
Theorem 1 and its Corollary from [6] which we obtain when p .= P = 1 assuming in 
addition that y e (la) and w e (1Q) belong to the class C2(j). 

/ 
10. The definiteness of complex differential equations. 

The definition of the definiteness of the differential equation (PQ) is analogous to 
that of (pq) in § 7. 

From here on the writing p, qe vt(j) will be used to indicate that for* the real 
functions of the real argument p, q, the following conditions are satisfied: 
V peC^jl qeC0(j), 
2° every ye (pa) belongs to the class C2(j), 
3° p ^ for every tef 

It is obvious thatp, q e v(j) ifp, q e v^j). Now we shall derive the sufficient condi­
tions for the definiteness of the differential equation (PQ) using the property of the 
functional (f) by means of the central dispersions %(l), co(t) — of the third and fourth 
kinds. Their proprerties are discussed in 
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Lemma 3. Let p, qe vt(j), sgn p = sgn q. Next let X, Q be arbitrary central 

dispersion of the third, fourth kinds of the differential equation (pq). The functions 

X, Q are in their domains of definition continuous and increasing. 

Proof. We shall show the derivatives of X, Q to be positive. Since the idea of this 

proof is very much like that given in [1], § 13, 3, we shall only briely demonstrate it 

for the function Q. 

Let u, v e (pq) be linearly independent. From the base function of (pq): F(l, x) = 

u'(t) v(x) - u(x) v'(t) for which F(t, Q(t)) = 0 holds if x = Q(t) we shall prove the 

existence of the single function Q having the derivative: 

, _ _ u"v(Q) - u(Q)v" 

u'v'(Q) - u'(Q)v' ' 

From the equation (pq) we have y" = -(p'y' + qy)/p. A similar expression of u" and 
v" produces 

Q, __ q uv(Q) - u(Q) v 

P u'v\Q)-u'(Q)v' ' 

Suppose u' # 0. Then let us multiply numerator and denominator of the above 

fraction by it and let us replace u'v(Q) by v'u(Q) in numerator. The result is 

, _ q_ u(Q)(uv - vu) 

P u'2v'(Q) - v'u'u'(Q) 

It follows from u' ^ 0 that likewise u(Q) 7- 0 and after multiplying out numerator 

and denominator by it and replacing v'u(Q) by u'v(Q) we obtain 

,•_ q u2(Q)(uv' - vu') 

P u'2(u(Q)v'(Q) - u'(Q)v(Q)) ' 

The Wronskian of the equation (pq) is uv' — vu' = c/p. Thus we obtain 

0' = ШЏШ (12) 
P и' 

If u' = 0, then likewise u(Q) = 0 and from the relation (11) we arrive at 

, = q_ uv(Q) 

P -u'(Q)v' 

whence on multiplying out numerator and denominator by uu'(Q) we have 

a'=ik^w <l3) 
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In an analogous fashion, we could find for the derivative of X: 

K g ^ for« + 0 
x,\m{x) „- (14) 

P " 2 for u = 0 

U(X) u2(X) 
From (12), (13), and (14) we have the statement of our Lemma. 

Remark. The above relations equally modified as in [1] will furnish formulas as 
follow: 

_ p2(X) s2(X) p(Q)q r2(Q) 
A ~ pq(X) r - ' " f s* ' 

where r = v u 2 + v2, s = V u'2 + v'2 and u, v are arbitrary linearly independent 
solutions of (pq). 

For completeness let us note that for arbitrary central dispersion of the first and 
second orders 

r_mm and 9._jm^m 
P r2 p2 q(V) s2 

hold, respectively. The latter relation has been proved in [3] . 

Theorem 12. Let p, a e VX(JZD <a, b», sgnp = sgn q = 1 and let the functions 
X(t), co(t) be defined in the interval <a, b>. Next let P, Q e V(i). If b = min (/(a), co(s) 
and there is a real constant y such that the inequalities (5) are valid in (a, b), then the 
differential equation (PQ) is definite on the intervals <a, b), (a, b>. 

Proof. Let us consider the case of b = #(a), which we are going to argue by 
contradiction. Suppose now that there exist w e (PQ) and any t_, t2 in each of the 
intervals stated above, tx < t2 such that 

w(tx) = wf(t2) = 0 (6') 
is true. 

By analogy with the proof of Theorem 11 we now obtain the relations (7) and (8). 
From (6') it is clear that wk(tx) = wk(t2) = 0, k = 1, 2. If a __ tx < t2 < b 

[a < tl < t2 __ b], then t2 e (txb) a (tx, ;/(*_)) t2 e (t_, b> c (txx(tx)), since from a < tx 

bz Lemma 3 there is x (a) < x(ti)> a n ( l by Theorem 3 the inequalities (9) are valid, 
whence we finally get the inequality (10) and thus a contradiction. 

Suppose next that there exist w e (PQ) and any t_, t2 in each of the stated intervals, 
t _ < t2 such that 

w'(tx = w(t2) = 0 (6") 

holds. Hence it follows wk(tx) = wk(t2) = 0, k = 1, 2. In analogy with the preceding 
part of the proof we obtain the inequality (8). It can be proved without difficulty that 
in both cases a _§ tx < t2 < b and a < tx < t2 5_ b there is t2 e (tx, co(tx)) and by 

• 
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the statement of Theorem 4 we arrive at the inequality (9), whence also at the in­

equality (10) and thus at the contradiction. 

The proof for b = co(a) is similar to the foregoing. This completes the proof. 

Corollary. If, under the assumptions of Theorem 12, at least one of the in­

equalities (5) is sharp on the interval (a, b), then the differential equation (PQ) is 

definite on the interval <a, b>. 

Proof. The idea is exactly the same as in proving Theorem 12 only that we have 

I < 0 instead of the inequality (8) and in case of a = ti < t2 = b we obtain respect­

ively from the second and third part of Theorem 1 the inequality I = 0, in analogy 

with the proof of the Corollary of Theorem 11. 

It should be noted here, too, that if p = P = 1 on the interval j, then we arrive at 

the results of [5]. 
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Resumé 

KVADRATICKÉ FUNKCIONÁLY S EULEROVOU 
ROVNICOU 

(p/y + qy = 0 

JAROSLAV KRBILA, ŽÍLINA 

V práci sa vyšetřujú kvadratické funkcionály tvaru: 
b 

f(u; a, b) = !(pu'2 - qu2) àt. , (f) 
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Dokazujú sa postačujúce podmienky pre nezápornost' a kladnu definitnosť funkco-
nál (/) na přípustných funkciách u, ktoré splňujú niektorů z podmienok: 

«!>,{*)] = u(b) = 0, u[_q>i(a)\ = u'(b) = 0, i = 0, V ..., n - 1 

u'(a) = u[a)j(a)] = u(b) = 0, u'(a) = u[Ojj(«)] = u'(b) = 0, i = 1, 2, ..., n, 

/i prirodzené číslo, pričom sa používajú konjugované čísla, resp. centrálně ^isperzie 
ViiýiiXii &>.> zavedené O. Borůvkom. 

Odvádzajú sa tiež nutné a postačujúce podmienky pre kladnu definitnosť funkcio-
nály(f). 

Ďalej sa vyšetřuje vztah diskonjugovanosti a definitnosti rovnice (pyr)' + qy = 0 
s definitnosťou funkcionály (f). 

Vlastnosti funkcionál (f) a centrálnych disperzií sa využívajú pri dókazoch posta-
čujúcich podmienok pre diskonjugovanosť a definitnosť rovnice (Pw')r + Qw = 0, 
Jctorej koeficienty sú komplexné funkcie reálného argumentu. 

КВАДРАТИЧЕСКИЕ ФУНКЦИОНАЛЫ С УРАВНЕНИЕМ ЭЙЛЕРА 

(РУ)' + <1У = 0 

ЯРОСЛАВ КРБИЛА, ЖИЛИНА 

В настоящей работе исследуются квадратические функционалы вида 

ь 

/(и;<1,Ь)= \(ри'2-Чи2)<11. (/) 

а 

Доказываются достаточные условия неотрицательности и положительной 

определенности функционала (/) на допускаемых функциях и, которые удовле­

творяют некоторму из условий: 

и[<рк(а)] = и(Ъ) = 0, и\ср{(а)] = и'(Ь) = 0, I = 0, 1, . . . , п - 1 

и'(а) = и[соХс1)] = и(Ь) = 0, и'(а) = и\а){(а)] = и'(Ь) = 0, 

I = 1, 2 , . . . , п, и натуральное число, причем используются сопряженные числа 

или центральные дисперсии ср{, ф{9 %и <̂ . введенные О. Борувкой. 

Доказываются также необходимые и достаточные условия для положитель­

ной определенности функционала (/). 

Далее рассматриваются соотнтшение несопряженности и определенности 

уравнения (ру'У + ^у = 0 с определенностью функицонала (/). 

Свойства функционала (/) и центральных дисперсий используются при 

доказательстве достаточных условий для несопряженности и определенности 

уравнения (IV) ' + ^\V = 0, коэффициенты которого являются комплексными 

функциями действительного аргумента. 
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