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ON L I M I T PROPERTIES OF THE REWARD 
FROM A MARKOV REPLACEMENT PROCESS 

PAVLA K U N D E R O V Á 
(Received March 31st, 1980) 

This paper is a close continuation of [7] and extends the validity of assertions 
proved there on replacement processes. 

1. BASIC D E F I N I T I O N S AND NOTATIONS 

Let a homogeneous Markov process with rewards {Xt9 t ^ 0} describing the 
evolution of a system in a state space I = {1, ..., r} be defined by exit intensities 
(JU(1), ..., p(r)),0 < fi(j) g oo, j = 1, ..., r and by a matrix P = \\p(i9j) \\r

iJ=1 of 
transition probabilities in the moment of exit. Let us denote by M = || p(i,j) ll/,y=i 
the matrix of transition intensities of the process, where 

tihj) = KOPQJ) f o r f ^j\p(ij) = -p(i) = - I X ' J ) . 

Consider a situation, where the development of the process may be influenced 
by an action called replacement. According to [5] we mean under a replacement of 
type (/, +j) the instantaneous shift of the system f om state / into statef. The complete 
history of this process is given by the following sequence 

&> = V0> to> ^0> l\f tl J ^ 1 J ••*? lni tm Vn> •••JJ 

where i0, ii9 ...,/„, ... are the states visited, t0, tlf . . . ,/„, ... the corresponding 
sojourn times and <50, di9 ..., dn9 ... is the sequence of zeros and units, where 8n = 0 
in case of in -> /B + 1 without interference and 5n = 1 in case of /„ -> in + 1 being the 
replacement. We use in accordance with [5] the notation 

ton ~ V0> • - J / n - l 5 ^ - l J ^ n - l 5 *n} 

for the history up to the n-th state change. 
A replacement policy (see [5]) is a decision for all possible sequences con for how 

long time the system will be left in /„ without shifting (maximal sojourn time) and 
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in what state it is to be shifted. Since we do not to exclude the random choice of 
these quantities, we identify a replacement policy with a sequence of functions 

F = {nFk(t/con)}, k= 1, ...,r;n = 1,2,... 

where nFk(t/(on) is a probability that the maximal sojourn time in in will be less than t 
and the eventual shift will be into k # /„. 

Assumption 1. 
Consider such replacement policies F only, where 
a) there exists only a finite number of replacements in every finite interval, 
b) there are neither two or more replacements in the same moment, with probability 1. 
According to Assumption 1 there is assigned a trajectory {Yt, t = 0} not left 

continuous at the time of transition and not right continuous at the time of replace
ment to almost every co. 

In what follows we denote by 
<r0 = 0, (T1, G2, ... such moments in which the trajectory is discontinuous, 

Y; = Y,_, t > 0; Y0 = Y0; Yt
+ = Yt+,t^0; 

3§t = oa {(Ys = j),j e I,se <0, t}; events of zero probability}, 

at =f]^s, 
s>t 

EF a mathematical expectation in a replacement process under the replacement 
policy F, 
D a set of couples (/, +j) meaning admissible replacements, 

Di = {f.(i,+j)eD}. 

The reward from the process is defined by the following sets of numbers: 
g(i), i e I, the reward per a time unit in state i, 
r(iJ)> i>JeL the reward from the transition (i,j); we set r(i, i) = 0, 
v(ij\ ij e I, the reward from the replacement (i, +j); we set v(i, i) = 0. 
A stationary replacement policy f is given by a function f(j) defined on a subset 

If c I and taking values in I such thatfO') e Dj for j e If,f(j) ^ j . The replacement 
policy f is the prescription to realize instantaneously the replacement J->fO) 
whenever there occurs a transition in stated. No replacements occur in statesf^ / / . 

Assumption 2. 
(/, +j) e D, (j, +k) G D =-> (/, +k) e D or i = k, 

v(ij) + v(j,k)£v(i9k). 

Let RT be a reward from the process up to the time T. In accordance with our previous 
definitions 

RT = JQ(Yt)dt + X [r(Y;„, YJ + v(Yffn> y+)], aN < T < as+1. 
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2. LIMIT PROPERTIES OF A REWARD 

We demonstrate first some auxiliary assertions. 

Lemma 1. 
Let g(i, k) be a function defined on Ixl, g(i, i) = 0, i e I. Let 

G r = E g ( y ; B , U aN^T<aN+l, 
« = i 

introduce 
y(i) = £ /.(,, fc) g(i, k), y2(i) = £ ,.(., fc) (g(i, k))2. 

k±i k*i 

Then it holds under an arbitrary replacement policy F for 0 ^ t g T 

£F{Gr - G,/^(
+} = £F{J7(YS)ds/^,+ }, (1) 

t 

EF{(GT -G,-}y(Y) d s ) W } = £F{j y2(Y) ds/^,+ }. (2) 

Proof: a) Since the conditional distribution describes a Markov replacement 
process under common replacement policy, the proof of (1) reduces to the verification 
of 

EF'(GT) = EF,{$y(Ys)ds}, T £ 0, 
0 

for an arbitrary initial probability distribution and an arbitrary policy F'. 
The proof of the above assertion proceeds similarly to that of Lemma 1 in [6], 
b) Taking instead of g(i, k) the function g2(i, k) throughout the proof of (1) we 

show that 

EF'(£ g2(YJ YJ) = EF'{\72(YS)ds), aNST< aN+). 
n=l 0 

Then (2) will be established by proving 

EF\GT - ]y(Ys)ds)2 = EFxi g2(Y;„, YJ), 
0 n = l 

under an arbitrary policy F' and an arbitrary initial distribution. The proof proceeds 
analogous to that of Corollary 1 in [6]. 

Lemma 2. 
There exist constants KmT such that 

EF | GT |- is K,„T[max (| g(i, j) |)]m, m = 1, 2, ..., (3) 

for an arbitrary replacement policy F. 
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Proof: We denote by fi = max (/*(!),..., l*(r)), an the moment of the n-th 
transition (the n-the left discontinuity of the trajectory). We prove by induction 

PF(a'n gt)£ H(">(t), (4) 

where H(n)(t) is the H-multiple convolution H(1)(l) = 1 — e~HK We denote by NT 

the number of transitions in <0, F>. According to (4) it holds 

E\NT)m = t nm{PF« £ T) - P\a'n+1 g T)] <£ 
n = l 

00 00 1 ,UT 

^ £ („m - (n - i)*)fl<">(D = E («'" - (» - D™)?-—rv K _ 1 e'Xdx = 
11=1 n = l V" "" i)i 0 

= f „ » W ^ = xB r . 
Thus 

EFI GT r =- £F(I £ g(r;B, YJ I") = EF(| £ i(Y-a], Y-) \m) ̂  
« = 1 j=l ^ ' 

^ £F[(/Vr)m(max {| g(i, k) |})m] g (max {| g(i, k) \})m . KmT.U 
i,kel i,kel 

Letfbe a fixed chosen stationary replacement policy such that under it exists one 
recurrent class and eventually a transient class only. Let the constant 0, w(l), ..., w(r) 
be defined by the following equations 

v(/,f(0) + w(f(i)) - w(i) = 0, ie If, (5) 

Q(I) + £ Kh k) [rft k) + w(k) - w(0] - 0 = 0, i 11,. 
fc?-i 

According to [2] the system (5) uniquely determines the number 0 (0 is the mean 
reward per a time unit from the process in using the replacement policy f), 
w(l), ..., w(r) except for adding an arbitrary constant. 

Denote for i e I 

<K0 = Q(i) + Z tih k) {r(i, k) + w(k) - w(0] - 0, 
k*i 

*i(0 = E /Xi, fc) [Ki, fc) + w(fc) - w(0], 
k*i 

MO - E Ki, ^ [Ki, ^ + w(fc) - w(0Y. 

Let us introduce an auxiliary random process (see [3]) 

T 

MT = RT - 0T + w(Y}) - w(Y0) - J <?)(Yf) dr -
o 

- E [>a n , O + w(Y;„) - w(Yff„)], TZ0,aN£T<ffN+1. 
n = 0 
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Lemma 3. 
{Mr, T = 0} is a martingale with respect to {£% +, T = 0} under an arbitrary policy F. 

It holds for 0 ^t^T 
T 

EF{(MT - Mt)
2l@+} = EF{ J iA2(ys)ds/^+} F-a/mos* everywhere. 

N 

Proof: By substituting instead of Kr and w(YT) - w(Y0) = ^jlw(Y(Tn)-
n = 0 

- W(YD + w(F+
n) - w(YaJ], aN = T < (7N+lj into the expression for Mr we obtain 

MT = -J <h(y,)d* + £ [r(y;n, y j + w(yj - wTO]. 
0 n = 0 

The substitution of g(i, k) = r(i, k) + w(k) - w(i) in (1) of Lemma 1 gives 

EF{MT - Mt\^} = EF{GT - Gt - ) y(Ys) d s / < } = 0 , t = T, 
t 

and thus 
EF{MT\@t} = EF{M,/<} = M, for all t = T. 

The other assertion proved follows analogous from (2), Lemma 1. • 

Corollary. 
Under an arbitrary replacement policy F 

lim — MT = 0 F-almost everywhere. (6) 
n-+oo *• 

n 

Proof: 1. We can write Mn = £ (Mk — Mfe_i). According to Lemma 3 
fc = i 

00 J 

£ — £(MB - M,,^)2 = 
n=l n 

oo -j n oo j 

= I — £( J MY,)ds) =g X — (max{^2(i)}), 
n = l n n - 1 n = l U i e / 

and {M„, n = 1, 2, ...} being a martingale, it is by [4], page 407 

lim — Mn = 0 F-almost everywhere. (7) 
n->oo » 

2. Let n£T<n+ I, then 

1 M T U — sup |M r-Mn | + —|MB|. 
T I » n ^ T < n + l H 

According to (7) it suffices to prove that 

lim — sup | M r - Mn | = 0 F-almost everywhere. (8 
n->oo Jl n<.T<n+l 



Denote by 

c = max {^i(0}» k = max {| r(ij) + w(j) - w(i) |} , 

i el i, j el 

Xn the number of transitions during the time <n, n + 1). Then 

sup \MT-Mn\^c + kXn. (9) 

n < . T < w + l 

°° 1 1 
As the series E( ]T — X*) converges, it is lim —^Xl = 0 F-almost everywhere. Hence 

lim — (c 4- kX„) = 0 F-almost everywhere. 
n->oo n 

This due to (9) proves (8). • 

Theorem 1. 

Let the optimality equation (see [2]) for the replacement policy f hold, i.e. 

max {v(j, k) + w(k) - w(j), keDji Q(j) + £ fi(j, k) [r(j, fc) + w(k) - w(;)]- 0} = 0, 

jeL (10) 
Then under an arbitrary policy F 

lim sup — RT ^ 0 F-almost everywhere. 
TI-+CO •* 

Proof: 
It follows from assumption (10) that <p(j) ^ 0 for all j e I, i.e. 

-J9(Y r)d^0. 
o 

Likewise, we have from (10) 

-S wn,. O + K O - w(Yj] ^ o. 
n = 0 

Thus 
MT^ RT- 0T+ w(Y+) - w(Y0). 

Since 

l i m l [ w ( Y ^ - w ( Y o ) ] = 0, (11) 
T-+00 I 

it holds 

lim sup — MT ^ lim sup — RT — 0 F-almost everywhere 
T~>oo 1 T-+00 * 

whence the statement follows from Corollary 3. • 
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Definitions. 
We call the state i e I consistent with the policy f if cp(i) = 0. We call the replace

ment i -> k consistent with f if v(i, k) + w(k) — w(i) = 0. 
Denote by 

QT the whole sojourn time in the inconsistent states in <0, T>, 
QT the whole sojourn time in states If in the interval <0, F>, 
OT the whole number of inconsistent replacements in <0, T}9 

0T the whole number of replacements diferent from / ->/(/) in <0, T}. 

Obviously 
ST = QT, OT ^ oT. 

Theorem 2. 
Let F be a replacement policy. If 

lim -TfQT ~ lim — 0T = 0 F-almost everywhere (F-in probability) (12) 
T->oo •- T->oo I " 

řhe/z 

lim — RT = 0 F-almost everywhere (F-in probability). (13) 
T-+oo I 

7/*i*he equation of optimality (10) /s va//d, then (12) /s necessary for the validity of (13) 
as well. 

Proof: 
T 

MT = RT - 0T + w(yf) - w(Y0) - 1 ?(-**) dt -
o 

- £ [vO;„, O + w ( 0 - w(YJ], aN £ T < <rN+1. 
n=0 

a) The function q>(.) is constant in any interval <trJ-_ x, a J). If i is a consistent state 
with/, then cp(i) = 0 and thus 

T 

min {<p(i)} 2T ^ J <K^) dt ^ max {^(i)} Qr-
iel 0 iel 

There are nonzero addends in the last sum of the expression MT in those moments an 

only, where an inconsistent replacement w*th/ occurs, hence 

min {v(i, j) + w(j) - w(0} or g £ Lv(Y,„, O + w(Y+) - w(Yff„)] g 
l . i«7 « = 0 

^ max {v(i, j) + w(j) - w(i)} 0T. 
ijel 

The above relations prove together with (6) and (11) that (12) follows from (13). 
b) Let (13) hold and let/fulfils (10). If /is the state consistent with/ then cp(i) = 0. 

In the opposite case then / e If and according to (10) cp(i) < 0. 
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Denote by I0 the set of inconsistent states withf. According to (13) 

0 = max {9(0} % £ - U <p(Yt) dt -> 0 for T - oo. 
ieI0 1 10 

The nonzero expressions are in the sum 

I [vo;„, o + »KO - Kyj] 
n = 0 

in those moments an, if there is in F a transition or a replacement consistent with/. 
If (10), (13) hold, then 

0 ^ max {v(i, fc) + w(fc) - w(0} - ^ r ^ 
i->k replacements inconsistent with f * 

= i £ Wn., O + w(Yff
+„) - w(YJ] - 0 for r - oo. 

1 n = 0 

Hence, if (10) holds, then (12) is necessary for (13) to be fulfilled. • 

Theorem 3. 
Let F be a replacement policy. Let 

lim —— QT = 0 = lim —=- 0T F-in probability (14) 
T-*00 yjT T~*00 yJT 

then RT - 0T 

JT 
has for T -* oo asymptotically normal distribution N(0, C). where £ is determined by 
equations 

w2(f(i)) - w2(i) = 0, ielf, 

Mi) + E Ki> fe) [w2(fc) - w2(0] - C = 0. «'#//, 

containing auxiliary constants w2(l), ..., w2(r). 
Proof: We prove this theorem in several steps. 
I. We prove first that it follows from (14) 

lim (h-ZSlL _ i M = o f-fa probability. 
n-+<n\ ^jn yjn J 

According to definition 
n 

Mn = Rn- On + w(Y„+) - w(Y0) - I <p(Y,)dt -
o 

- Z IXn,, *+) + w(y+) - wen,)], *N -S » < ^ + i . 
1 = 0 
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Obviously 

Since 

î im-^-[w(YГ)-w(У 0 )] = 0. 
fî-*00 +Jlî 

min {q>(i)} Qn g J <p(Y,)dt ^ max {<?(.)} ft,, 
iel 0 i e / 

min {v(i, k) + w(k) - w(i)} 0„ ^ £ Mr . , . y»*) + K-?.) - w(Yffi)] g 
i , fce/ j = 0 

g max {v(i, k) + w(k) - w(i)} 0„, 
i, k e / 

(see the proof of Theorem 2) 
assertion I follows from (14) by using Qn ^ QIJ? On ̂  On. 

M 
II. —~ has for n -» oo asymptotically normal distribution N(0, 0. 

Vw 

The proof of the above statement lies in the verification of assumptions of the 
central limit theorem for martingales below (see [1], [7]): 

n - l 

Let {Mn = Y Ym> n — 1, 2, ...} be a martingale with respect to the class of 
m = 0 

©•-algebras {#"„, n = 1, 2,...}. Let 
i n ~ l 

(i) lim — Y EiYl • X{\Ym\^n}l^m} = 0 in probability for all e > 0, 
n-+oo ** m = 0 

j n - l 

(ii) lim — Y E{Ym/^m} = £ in probability, where C is a constant, 
«->oo '*" m = 0 

M 
then —=?- is asymptotically normal Ar(0, 0 for n -> oo. 

V n 

n - l 

In our case we have Mn = Y (Mm+1 — Mm). By Lemma 3 {Mrt, n = 1, 2, ...} is 
m = 0 

a martingale with respect to the class of (x-algebras {3§n , « = 1, 2, . . .}. 
1. Let 8 > 0 be an arbitrary number. Then 

E{(Mm+1 - Mm)2x{lMm+i-Mm\^yn}l^} S " V - £ { l Mm + 1 - Mm l 3 / ^ } . 
eVn 

To the proof of 

£{l Mm+1 - Mm |3/^w"} ^ c, c constant, (15) 

it is sufficient to show that under an arbitrary replacement policy F' and under an 
arbitrary distribution 

£F'(|MX - M 0 | 3 ) ^ c 

As M0 = 0, we have (using the notation of the proof in Lemma 3) 

EF\\ Mx |3) = EF'(| G, - j y(Ys) ds |3) g K1>3 + 3kKlj2 + 3k2KM + k3 = c, 
o 

141 



where k = max {| y(i) |} and where according to Lemma 2 FF'(| Gt \
m) S Kltfn, 

iel 

m = 1, 2,. . . The realization of (i) follows then from (15). 
2. Let the numbers w2(l), ..., w2(r), £ be solutions of the system of equations 

from the statement of the theorem. Let us define to the verification of (ii) 

<Pi(0 = ^2(0 + £ Vih fc)[w2(/c) - w2(i)] - C, iel 
k±i 

a) We prove that under an arbitrary policy F 

UT = J MYt)dt - CT + w2(7?) - w2(Y0) - j <p2(Yr)dt - £ [w2(Y+) - w2(YJ], 
o o «=o 

r = o , ^ ^ T<<JN+1, 

is a martingale with respect to {83T, T= 0} satisfying the law of large numbers. 
Denote 

f i(Q = E A*0'» fc) O2CO - w2(0], i e J. 

On substituting and modifying we get 

-lr = E [w2(YJ - w2(Y")] - J {.(rr)d*. 
n = 0 0 

Using Lemma 1 for y(i, k) = w2(k) — w2(i) gives 

E(UT - Uf/^
+) = E(GT -Gt-\ y(Ys) ds/^+) = 0, t=T, (16) 

£{(Ur - Ur) W } = £{J £2(Y) ds/^,+ }, r g T, (17) 
t 

where 
WO = I tih k) [w2(/c) - w2(i)]

2, t e L 
k*i 

It follows from (16) that {Ur, F= 0} is a martingale with respect to {SSt, t = 0} 
and thus from (17) in the same manner as in the Corollary of Lemma 3 

lim — Ur = 0, F-almost everywhere. (18) 
T-+oo T 

We can prove sililarly as in the proof of Theorem 2 that under the validity of (14) 

lim ~{w2(Y^) - w2(Y0) - J>2(Y,)d. - £ l > 2 ( 0 - w2(YJ]} = 0, 
T->oo l 0 n = 0 

F-in probability (19) 

and thus from (18) and from the definition of Ur 
1 T 

Hm ^7 J faVQ dt = C, -F-in probability. (20) 
T-+00 -* 0 
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b) We shall prove further that {D„, M = 1, 2, . . .}, where (see [7]) 

n-í 
\2//22?+l A, = J MY,)dt - £ £{(Mm+1 - Mm)2/C), 

0 m = o 

is a martingale with respect to {«̂ „+, « = if % . . .}, for which the law of large numbers 
holds. 

According to Lemma 3 we can write 

n n—1 m + -

->- - j ^ r a d . - 2 £{ j wY jd^:}-•h(Y ()df-" 
0 m = 0 

For each m < n natural numbers 

m m _ ! j + 1 

E{DM) = J ̂ 2(I,)dr - y E{ J MYt)dtia;} = Dm. 
o Jzo J 

If we denote 
m + l m + 1 

Yn = J MY,)dt-E{ J MYt)dtl@+}, 
m m 

then 

A, = X Y,n 

As for arbitrary m = 0, 1, ... 
m + l 

EYm
2rg£( J ^ ( Y r ) d 0 2 ^ c 2 , 

m 

where 
c = max Ofo(0}> 

iel 

is the series 
g _EYJ 

m=o (m 4-1) 

convergent and by [4], page 407 

lim —Dn = 0 F-almost everywhere. (21) 
n-*oo ft 

It is obvious from (20) and (21) that 

lim 1 "X £{(Mm+1 - Mm ) 2 /<} = C F-in probability. 
«-»oo ft m = 0 

it means the assumption (ii) for martingale {M„, n = 1, 2,...} is valid. 
In parts I and II of the proof we have proved the following assertion: Let (14) 

be valid, then —-——— has for n -> oo asymptotically normal distribution N(0, 0. 
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III. Analogous to part I of this proof we can verify that 

t. (RT-GT MT\ „ ^ . , T.7. 
lim I pr J = 0 F-m probability. 
T-c»\ v l r v

/ r / 
IV. To conclude the proof we establish —~- having for T -> co asymptotically 

normal distribution N(0? £)• 
Let « g r < rz -1- 1. We know (see the proof of Lemma 3) that 

E(MT — Mnf ^ max ty2(i)} = c, 
iel 

and thus 
EMT ^ cT 

Hence 

Kf-t)2-[-(^-i)+i(—Is 

- ' [ I O - V ^ M O - ^ T - T } 
and thus 

limEf^-^Y=0. 

Using Chebyshev inequality we get 

lim i ^ r - ^-J = 0 F-in probability 
T-ooV^/T ^/n / 

and the assertion IV. follows from assertion II. 
Theorem 3 is proved by III. and IV. • 
In writing this article I have benefited from the advice and criticism given by 

dr. Petr Mandl, DrSc. whom I wish to acknowledge my gratitude. 
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