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It is well known, that there is a correspondence between framed projective planes
and planar ternary rings (PTR), called sometimes ternary rings only (see [6],
chap. 9.). Further, every homomorphism of a framed projective plane to another
framed projective plane induces a place (Stelle, T-homomorphism) of corresponding
ternary rings and conversely, every ternary rings’ place induces a homomorphism
of corresponding projective planes. Consequently, homomorphisms of projective
planes can be investigated as places of ternary rings. The first definition of a place
of PTR is due to Skornjakov ([5], 285). If PTR is linear, the definition of a place
can be expressed by means of addition and multiplication defined in PTR.}) If
such a linear PTR is one of the known algebraic structures, coordinatizing special
types of projective planes, the definition can be simplified. Cartesian groups were
investigated by J. André in [1]. In the case of semifields (see [5]), alternative rings
([2]), skew-fields ([1], [4]) and fields (e.g. [3]), the corresponding necessary and
sufficient conditions are known. Moreover, a place of fields in our sence is identical
with a notion of place (to¢ka) used in algebraic geometry.

In the following text, we shall establish characteristic properties of places of
quasifields and nearfields.

Definition.
The algebraic system (T, +,.) is called a planar ternary ring, if the following
conditions are satisfied (see [6], p. 276):

1) Let ¢ be a ternary operation in a ternary ring T. The condition of linearity can be expressed

as so:

ta,b,c)=a.b+c,
where

a+ b:=1t(1,a,b)
and

a.b:=1t(@,b,0)
for a,b,ceT.
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() (T, +) and (T = {0}, .) are loops with natural elements 0 and I respectively,
(ij) forallaeT,a.0=0.a =0,
(iii) Ya, b, c,de T, a # c, there exists a unique xe Tsuchthat x .a+b=x.c+d,
(iv) Y a, b, c e T there exists a unique x e T such that a. b + x = ¢,
V) Va,b,c,deT, a# c, there exists a unique pair (x,y)e TX T such that
a.x+y=bandc.x+y=d.

Definition.

A mapping O from a planar ternary ring (T, +, .) to a planar ternary ring (T, +/,.
is called a place, if it satisfies:

(P1) if a® # o0, b® # o0, then (@ + 5)® = a® + 'b° and (a. b)® = a° . 'b°,

(P2) if a® # 0, 5% = o0, then (a. b)® = (b.a)° = o,

(P3) if a® # oo, b® = oo, then (a + b)°® = (b + a)® = o,

(P4).if x® = y° = o0, b® # o, where y = a. x + b = a*. x, then a® = a*®,

P5) ifa® =b% = 0, (a.x + b)® # w and a. x* + b = 0, then x® = x*,

@P6)if y=a.x+b=a*.x, a.x*+b=0 and a° = b% = x° = )% = w0,

then either a*® = o0 or x*° = oo,

(P7) the image T® of T under O has at least two elements.

Our notation x® # oo (or x® = ) means, that an element x belongs (or does not
belong) to the domain of ©. Hence to those elements that have no image under ©
we give a common image, the symbol co ¢ T’, and we can shortly write @ : T — T’ U
v {0} to express that @ is a place of (T, +,.) to (T', +',.").

Propesition 1.

Let @ : T — T' U {00} be a place of PTRs. Then 0° = 0’ and 1° = 1.

Proof. Let m e T® and let us choose me T such that m® = m’ # 0. Then
m® = (m + 0)® = w0 by (P3), a contradiction. Thus 0° # « and we have m® =
= m® + 0% by (P1). But an equation m® + x = m® has a unique solution x = 0,
so it must be 0° = 0.

Suppose that 12 = oo. Then for all x € T, x? is either 0’ or o0, in contrary to (P7).
Really, if x° # 0’, then x® = (1.x)® = o by (P2). Thus 1° # oo. Let m’, m are
chosen as above. Then m' =m® = (m.1)° =m®.1° = m'.1°. An equation
m' . x = m' is uniquely soluble, thus 1° = 1.

It can be verified that an image T® of a planar ternary ring T under a place @
forms a planar ternary ring under operations +’,." defined on T'. Thus those
elements of T’, which are not images, can be omitted and we can suppose that a place
is surjective.

Definition.

A ternary ring (T, +,.) with the properties

(@) (T, +) is a group (i.e. T satisfies the associative law of addition),

(i) Va,b,ceT,a.(b+c)=a.b + a.c (ie. the right distributivity law holds)
is called a right quasifield.
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In a similar way, a left quasifield can be defined. It suffices to investigate right
quasifields only, since by means of a new operation xo y := y.x, from a right
quasifield can be obtained a left one and conversely. In the following text, under
a quasifield we shall always understand a right one.

It can be proved that in a quasifield, ¢.(=b) = —a.b and a+ b =5 + a.
Thus the additive group of a quasifield is Abelian. It can be easily shown the follow-
ing:

Propositien 2.
Let @ : T > T' U {0} be a place of ternary rings and let (T, +,.) be a quasifield.
Then (T', +',.") is also a quasifield.

Theorem 1.

Let (T, +,.), (T', +',.) are quasifields. A mapping © : T > T" U {0} is a place,
if and only if it satisfies

(Q1) if a® # oo, b® # w0, then (a — b)® = ¢® — 'b® and (a. b)® = a.'b°,

(Q2) ifa® # 0, b° = o0, then (a.b)°® = (b.a)® = oo,

(Q3) if x° = w0 and (—a . x + a* . x)°® # co, then a® = a*9,

Q4 ifa* . x=a.x —a.x* a®° = x° = 0 and a*® # o,
then x*® = oo,

To prove this theorem, we first establish several propositions.

Proposition 3.
A place © : T - T' v {00} of quasifields satisfies:
() (=6)° = 0 <« b° = 0,

(i) b° # 0 <> (—b)° = —'b°,

(iii) if a® # 0, b® # oo, then (@ — b)® = a® — 'b°.

Proof. If % = oo, (—b)® # oo (or b% # w0, (—b)® = ), we conclude according
to (P3) and Prop. 1, that 0’ = 0% = (b + (—b))® = oo, which is a contradiction.
This proves (i). Let 5% # 0. Then (=5)? # oo and ¢ = 0° = ° 4 (—5b)® by (P1).
Thus (ii) is true. The property (iii) is an immediate consequence of (P1) and (ii).

Proposition 4.
Let T, T' be quasifields and @ : T — T' u {0} be a mapping with a property
(*) If a® # oo, b® # oo then (@ — b)® = a® — 'b°, (a.b)® = a° . 'b°.
Then O satisfies:
G) 0° = 0,
(i) 6° = 0 <> (—=5)® = w0,
(i) if 5° # oo then (—b)° = — b€,
(iv) if a® # oo, b® # oo, then (@ + H)® = a® + 'b°,
(v) if a® # oo, b® = o, then (@ + b)°® = (b + a)° = .
The proof is not difficult. We can now return to our theorem.
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Proof of Theorem 1.

Let © be a place of quasifields. Then @ possesses the properties (P1)—(P6).
(Q1) follows from (P1) and Prop. 3. (iii). (Q2) is identical with (P2). (Q3) can be
proved by means of (P4) and (P2). Really, suppose that —a.x + a*.x = b,
b® # 0, x° = 0. Let y=a*.x =a.x + b. If y° = w0, we use (P4) to obtain
a® = a*%. If y° # w0, ie. (a¥.x)® # o0, then a*® = 0, by (P2). Since a.x =
=y — b, it holds (a.x)® = y° —" b® # o and therefore a® = 0’. To prove (Q4),
we suppose b = —a.x*, y=a.x + b = a*.x. Let all assumptions of (Q4) are
satisfied. Now suppose x*® s oo. Then (a* . x)® = (a. x*)® = o0. Let us prove it.
Suppose (a*. x)® # oo0. Then (a.x — a.x%)° = (a.x + b)° # o, where a. x* +
+ b =0 and x® = a° = c0. If % = 0, we use (P5) to obtain the identity x® =
= x*® = o0, in contrary to our assumption. If 2 # oo, then (—=b)® = (a. x*)® #
# 0, according to Proposition 3. (ii). By (P2), x*® = 0’, which is also a contradic-
tion. Hence (a* . x)® = oo. Now suppose (a. x*)® # oo. Then (—a. x + a*.x)® =
= (—a.x*? # o0 and a® = a*® by (Q3), in contrary to the assumptions of (Q4).
Thus (a. x*)® = o0. Hence all assumptions of (P6) are satisfied and since a*® # oo,
we conclude x*® = oo. This contradiction establishes (Q4).

Conversely, let © be a mapping of quasifields with the properties (Q1)—(Q4).
Since (P1), (P3) follow from Prop. 4. and (P2), (Q3) are identical, it remains to show,
that (P4)—(P6) are true. So let the assumptions of (P4) are satisfied. Then b° =
=(—a.x + a*.x)? # o and a® = a*® by (Q3). This proves (P4). The assump-
tions of (P5) imply, that b = —a.x* and (@.x — a.x*)? # 0. Thus (a.x +
+a.(=x¥)° = (a.(x — x*)° # o and we conclude (x — x*)® = 0’, according
to (Q2). If x® = o, then x*® = o0, too. If x® # oo, then x*® # oo and x® —' x*® =
= 0’ by (Q1). In any case, x° = x*°. Suppose now, that the assumptions of (P6)
are satisfied. Then either a*® = 0, or x*® = o0, according to (Q4).

Note that (Q3) can be substitued by a weaker condition

(Q3)if(—a.x+a*.x)° # o, x° = w0, a® # o, then a® = a*®.

Let a® = oo and suppose that a*® # 0. Let —c = —a. x + a*.x. Then
=(-=(=a.x)—a*.x°=(a.x —a*.x)® # . Since a # 0, the equation
a.z = c has a unique solution. Let us note it x*. Thena.x* = a.x — a*.x,a*.
.X=—a.x*+a.x=a.x — a.x* This implies x*® = oo by (Q4) and since
a® # 0', we conclude ¢® = (a. x*)® = 0, a contradiction. Thus a*® = oo and the
equality a® = a*® holds.

Definition.
A nearfield (more precisely, a right planar nearfield) (T, +,.) is a quasifield with
associative multiplication, i.e. (T — {0}, .) is a group.

In a nearfield, (—a) . b = —a . b. It can be verified that (T, +, .) is a right planar
nearfield if and only if (T, +) and (T — {0}, .) are groups, a.0 = 0.a = 0 for all
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aeT, @+ b).c=a.c+b.c for all a,b,ceT and —x.a + x.b = c has
a unique solution x for given @, b,ce T, a # b.

An image of a nearfield under a place is again a nearfield. Note, that ¢® = 0 <
< @h?=0.

Theorem 2.

Let (T, +,.), (T, +',.") be nearfields. A mapping @ : T > T' U {0} is a place,
if and only if it satisfies conditions (Q1), (Q2) and (Q3)'.

Proof. One implication is trivial. To prove the other, we must show that (Q4)
follows from (Q1), (Q2), (Q3)’. Suppose that the assumptions of (Q4) are satisfied.
Thena* . x =a.x + a.(—x*) = a.(x — x*). Since a® = oo, we conclude a # 0
and (@) = 0". Now we shall express x*. From the previous equality, a™* . (a*.x) =
=x —x* and x* = x — a”!.(a*.x). Suppose x*? # 0. Then (x — x*)® = o0
and (a* . x)® = (a.(x — x*))® = 0. This implies a* # 0. Now x = a*~ 1. (a* . x)
and after a substitution, x*® = (—a~!.(a*.x) + a*~1.(a*. x))® # c0. Substitu-
ting a™!, a*~1, a* . x for a, a* and x in (Q3)’, we obtain (a*~1)? = (¢~ 1)°. Thus
(@*~1° = 0, i.e. a*® = oo. This is a contradiction. Hence x*® = oo and (Q4) holds.

For completeness, let us mention other structures related to projective planes. By
a similar way as above, it can be checked that a mapping @ of Cartesian groups is
a place, if and only if it satisfies (Q1)—(Q3) and (Cl), (C2), where

(C) (a.x —a.x*° # ©,a® =00 - x% = x*9,

(Cifa*.x+a.x*=a.x,a°=2x°=(a*.x)? = o, (a.x*° = oo then
either a*® = oo or x*® = oo.

A semifields’ place is characterized by the properties (Q1), (Q2) and (8): ifa. x* =
=(a—a%).x,a°=x% = 0, a*® # o then x*° = o0.

In the case of alternative rings, skew-fields and fields, (Q1) and (Q2) appear to be
necessary and sufficient conditions for a mapping to be a place. Let us prove it for
alternative rings. In the other cases, the proof is trivial.

It suffices to show that (Q1), (Q2) imply (S). Leta. x* = (@ — a*). x,ie.a.x —
—a.x*=a*.x...(A), a®° = x° = 0 and a*® # . Then (a — a*)® = © and
((@ — a*) . x)® = 0. It can be easily seen that x # 0, x* # 0. Thus there exists
x~1, x*~1 and the above formula (A) can be rewritten to the form (@.x — a. x*).
xl=a* (@.x).x" ' —(a.x*).x ! = a*. According to the right inverse
property, a — (a.x*).x"! = a* and further, (a.x*).x* ! —(a.x*).x"! = a*.
Thus (2. x*). (x*~! — x™1) = @*. Thisimplies (x* ! — x™1)? = 0". Here (x™!)? =
= 0, since x® = oo, and thus (x*~*)® = 0". Hence x*° = oo.

It can be verified that an analogy of Proposition 2. is true in remaining cases. Of
course, an image under a place can have additional properties. For examples see

e.g. [1].
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SHRNUTI

HOMOMORFISMY PROJEKTIVNICH ROVIN
NAD KVAZITELESY A SKOROTELESY

ALENA VANZUROVA

V Clanku jsou nalezeny charakteristické vlastnosti umisté€ni (T-homomorfismi)
pravych kvazitéles a skorotéles. V zavéru je podan prehled podminek charakterizu-
jicich umisténi nékterych dalsich algebraickych struktur, s nimiz se setkavame pfi
soufadnicovani projektivnich rovin, totiz kartézskych grup, semitéles, alternativnich
téles, nekomutativnich a komutativnich téles.

PE3IOME

FTOMOMOP®U3MBI ITPOEKTUBHBLIX IMJIOCCKOCTENU
HAJDI KBABUTEJIAMUW U ITCUYTUTEJIIAMUA

AJIEHA BAHXVPOBA

B craThe yCTaHOBJIEHBI XapakTepHUCTHYeCkUe CBOicTBa T-roMOMOpP(dK3MOB Tipa-
BBIX KBa3UTEJ ¥ IOUYTHTE]I. B 3axiroyeHnn ykas3aHsl YCIOBYSA, XapaKTepU3upyroume
T-romoMopu3MBl HEKOTOPBIX IPYIUX CTPYKTYP, BCTPEUAIOLLMXCS NPU KOOPIUHA-
THI3AIMN MPOEKTUBHBIX ILTOCKOCTEH, 2 MMEHHO KapTe3CKHMX IPYMNI, CEMHTEN, albTep-
HATHBHEIX TeJ, TEJ ¥ IMOJeH.
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