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Abstract: Double linear connections on double vector
fibrations (as an analogue of linear connections on vector
bundles) are investigated. They are characterized by means
of double linear vector fields and one parameter groups.
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1. Introduction
In [6] the category of dX -spaces (double vector spaces) .
and their morphisms was introduced. A d Y-space was regarded
as a set with certain partial operations of vector type (with
scalars of an arbitrary field K). A basis and dimension of a
Jx—space were defined and its 3Y-autom0rphismsgroup was ex-
pressed in the form of a semi-direct product.

In the present paper, double linear connections on double
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vector fibrations (over reals) are investigated as analogues of
linear connections on vector fibrations (we will use here the
term "fibration" instead that of "bundle"). A @ ¥-fibration is
associated with a principal fibration of double linear frames,
and this correspondence is used to prove that any & ¥ -fibration
arises as Whitney sum of its underlying vector fibrations.
Further, a ¥ £-connection induces linear connections on the
underlying vector fibrations. As in the linear case, & ¥ -connec-
tions on a X & -fibration are in one to one correspondence with
right invariant connections on a principal fibration of frames.

Double linear connections are characterized by means of

double linear vector fields and double linear one parameter
groups.

In the following, K(n,s,t) = anxRSxRJC denotes a trivial
r] X-space with projection Rr" les let — R" les. Let us remark
that all definitions and statements remain valid in a complex
case K = © in a translated version (smooth manifolds and mappings

could be replaced by complex manifolds and holomorphic mappings
etc.).

2. Double linear fibrations

Let C be a J ¥-space over R with dimension dim C = (n,s,t).
Then there is an isomorphism f: C — K(n,s,t). Since R" xRS x
xRt = ]Rn+5+t is a smooth manifold in a natural way, a structure
of a smooth manifold arises on C such that f is a diffeomorphism.

Moreover, this structure is independent of f.

Definition 1. A (real) double vector weak fibration is a
fibred manifold ( ¢,p,M) each fibre Ex = p_l(x) of which has
a structure of double vector space. Given two double linear
weak fibrations ( ¥,p,M) and (& ,p,M), a morphism f: ( ¢,p,M) —
— (¢,p,M) of fibred manifolds over a base mapping g: M — M
is a morphism of double vector weak fibrations over g if
£, ¢ Ex —-—"Zx is a I -morphism for every x € M.

Double vector weak fibrations together with their morphisms

form a category JL U F .

The simplest example is a trivial double vector weak fi-
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bration, (M x C,prl,M), where M is a smooth manifold, C with

3:C — AxB is a uao‘(-space and prl denotes a projection to
the first component.

Definition 2. A double vector weak fibration ( ¢,p,M) will be
called a double vector fibration (shortly, a J & -fibration),
if there exists a zk’-space C such that, for every x € M there
is an open neighborhood U with x« U and a ¢ U # -isomorphism
f :‘(E’U,pU,U) — (UxC,prl,M) over identity 1,. Here p denotes
restriction of a mapping p onto @U = p—l(U). The 94 -space C
will be called a standard fibre of a %z-fibration 8 . Mor-
phisms of double vector weak fibrations which are at the same

time 3¢ -fibrations, will be called morphisms of 3 & -fibra-
tions.

Doble vector fibrations with their morphisms form a complete

subcategory d&F indhecategory LW 7.

For a given I X -fibration

(€,p,M), (1)
we introduce three underlying vector fibrations
(7,p,M), (B,py,M), (7,pg,M) (2)

in the following way. By the above, each fibre @X over x€ M
is a ﬁ.?-space which implies that there is a mapping
(Jf\'xz @X — ﬂxx .3)( of gx to the cartesian product of two

vector spaces :ﬂ'x, 3 having certain properties ([6]). Let 7?

X
denote the union vf= xeM ﬁ‘x and define p,; : A — M by pl(a) =

= x for a e ‘%x’ x € M. It can be checked that (/@,pl,M) is

a vector fibration. Similarly for ffr and . Moreover, projecti-
o~ _ Qv o~ = o~

ons J,l,x—prloﬁ EX—»?{'X and Ty ,x = Prg e Iy Zx—vﬁx

enable us to define smooth submersions (Jvl : k’—» Jé,

'./7'2:?-—»_5 by

_(\; _(\/
?iz—lll’xz, ?'zz—lz’xz

for z € ¥ with z e C. xem.

On the tangent space T& of a QSX—fibration (1), two
partial linear structures arise in a natural way. Consider
z,z2 e ¢ satisfying le= 77'12'. Let ZGTZE,Z'GTZ"f

be tangent vectors with (T27), 7 = (TTl)sz' Since fibrations
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(1) and (2) are locally trivial, there exist smooth curves §
]" : (-€,8) — ¢ satisfying

PO =z, 4(0) =2z, (3)
(d/dt) g () =2,  (@/d) o (1) =277, (4)
(Fpeg(t) = (Fro (1) for te (-€,8) . (5)

By (5), for every parameter t € (-€,€) the addition Fas2 *1
4°(t) is defined. Further, & = g+, 4 :(-£,&) — ¥ and
;\'l v s (-€,6) — ¢ given by

§(t) = g(1)+) (1) for te(-€,€),

(’\‘lf)(t) =f\.1g‘(t) for te(-€,€)
are differetiable curves. This enables us to define Z * l'e
eTz+lz»@ and f\'leTA.le by

Z4) 2 = (8/dt)y o SCE), A 7 = (9/dD) oD ) (L) .
The result is independent of the choice of curves , j"‘ with
properties (3) - (5). Similarly for (+2) and (.2).

We shall show now that the r-jet prolongation (Jrf.’,pr,M),
r 2 0, of (1) is endowed with a structure of a JdY -fibration.
First, the prolongations of (2) are vector fibrations. Further,

3 s QTN — TPy M)
and

3T, s QT¢,pT M) — (378,p7,M)

are fibre morphisms. Thus for any fibre Ji Y, x € M we have
N x3¥, I — N EXID

and the structure of 3 X -space arises as follows.

Let u, v eJit’ with (ji?’l)u = (ji?’l)v . Since (1) is

locally trivial, there are two sections '7’,'}" of projection p
on a neighborhood U of x such that
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LY = w3y = v, (6)

?’154 = ?’11* on U. (7

Clearly, a section S’+1'f is determined on U and we define
us v o= ji(‘/+1'§’) s A.lu = ji(/\.l‘/) for any A¢R. This de-
finition does not depend on the choice of V, 'V with proper-
ties (6), (7). Similarly for (+,), (.,). The axioms of a Y-
-space can be verified.

For 0 £r § s, a natural projection
(Di : (JS E,DS,M) nd (Jr?’pr,M)

is a g¥¢F-morphism.

Similarly to a linear case, each 'Jk—fibration is associ-
ated with a principal fibration of double linear frames in the
following sense. Consider again a trivial ¥ -space K(n,s,t).
Let Aut(n,s,t) denote its R’.?—automorphisms group. A canonical

. o [s] .
basis ({cikf , [vmf) of K(n,s,t) is formed by elements

Cik © (0,...,%,..,O,U,..,lk,..0,0,...,O) ,i=1,..,n,k=1,..,s
v =(0,...,0,0,...,0,0,...,1,...,0), m=1,...,t.
m n

Definition 3. Let C be a &K -space with dim C = (n,s,t).

A double linear frame (shortly, a JX-frame) is a 'Zx—isomor—
phism £ : K(n,s,t) — C. The set of all P ¥-frames in C will
be denoted by F(C).

The set F(C) is in a one to one correspondence with the
set of all FHL-basis in C via the mapping f — ({f(c?k)f,
{(v;)}). The group Aut(n,s,t) acts differentiably to the right
on F(C). This action is free and transitive. If f € F(C) with
underlying linear isomorphisms fl’ f2’ and g € Aut(n,s,t) with
underlying linear automorphisms 915 95 then fg has underlying
morphisms fl.g1 and f2‘92' Given a fixed f € F(C), for any
T € F(C) there is g & Aut(n,s,t) such that T = fg. This yields
one to one map u:F(C) — Aut(n,s,t). Structure of a Lie group
on Aut(n,s,t) gives arise to a unique smooth structure on F(C)
which makes a a diffeomorphism. This smooth structure is inde-
pendent of the choice of f e F(C).
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Now suppose we are given a J&-fibration (¥,p,M). Denote
%- ngjM F('fx) and define q: 4 —> M by g(f) = x where x e M
is an element such that fe F(@x). It can be verified that
(%,q9,M,Aut(n,s,t) is a principal fibration over M with struc-
ture group Aut(n,s,t). The group Aut(n,s,t) acts to the left
on K(n,s,t) as its @ ¥ -automorphisms group. The associated
fibration #(K(n,s,t) is J ¥ -isomorphic with the original 2 -
fibration (¥, p,M). The corresponding isomorphism sends an equi-
valence class of a couple (f,c) with f € 3’ c € K(n,s,t) to
an element f(c) € @

Let (4),a,,M,Aut(n)), (&,,0,,M,Aut(s), and (;’V},QB,M,
Aut(t)) be principal fibrations of linear frames corresponding
to the underlying fibrations of (f, .7@, 3, and 7"’respectively.

An element of 31 X x € M, is regarded as an isomorphism
K" —-Jf slmllarly for 1‘ ;’; A JX-frame w é‘y
a WX-isomorphism w = f: K(n s,t) — 'fx determines underlylng

11near isomorphisms f1 : KD —».7? 2 %G KS — ﬁ
(f/K ) : Kt — 'l/' whlch may be regarded as frames in 9‘1 )
"'Z,x and 9'3’)(. Denote 7I(w) = fl,x’ l2(w) = f2,x’ ?3 x) =

= (f/Kt)x. This gives smooth morphisms of principal fibrations
over homomorphisms of corresponding structure groups

o
Tl : (#,q,M,Aut(n,s,t) — (?1,q1,M,Aut(n))

over Aut(n,s,t) — Aut(n) ,
’c‘; : (R9,M,Aut(n,s,t) — (7

over Aut(n,s,t) — Aut(s) ,

2,qz,M,Au’c(s))

7; : (gv,q,M,Au‘t(n,s,t)) — ('f’\'},qrM,Aut(t))

over Aut(n,s,t) — Aut(t) .

Whitney sum ?’ Xy '\'2 M 5‘\'3 of the above principal fibra-
tions is again a pr1n01pa1 fibration denoted by (3" q,M, Au‘t(n,
s,t)) with structure group Aut(n,s,t) = Aut(n) x Aut(s) x Aut(t).
Morphisms ’t\i, 't\é, 7'3 determine a morphism of principal fibra-
tions

T . (Fq.MAut(n,s,t) — (Z,§.M,A0t(n,s,t) (8)

~
over structure group homomorphism j : Aut(n,s,t) — Aut(n,s,t).
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Given arbitrary vector fibrations (ﬂ',pl,M), (ﬁ,pz,M),
(’V‘,p3,M), their Whitney sum (as fibred manifolds) has a natu-
ral structure of a Ea‘(—fibration. For any fibre, ¢ = .7? X

X X
X ﬁx X 7/'x is a trivial DY -space. J X -fibration of the form

(-ﬂxM ﬁxM *, P Xy P2 Xy p},M) (9
will be called simple.

Theorem 1. Every double vector fibration is Jyﬁ-isomorphic
with a simple Rf,;‘(-fibration.

Proof. Let (@,p,M) be a given ¥ ¥-fibration, (4°,q,M) be
its fibration of @& -frames with structure group Aut(n,s,t),
and let (?",q',M) denote principal fibration corresponding
to (9). Since € is (up to X F-isomorphism) associated fibra-
tion #(K(n,s,t) and (9) is,in fact, & (K(n,s,t) it suffices
to prove that % is isomorphic with X". Let us choose a locally
finite open covering {Ui} iel of M by such neighborhoods that
on each Ui’ a trivialisation of is given and consequently,
also trivialisations of f, Z) , 7*. Using identifications intro-

duced in [6], transition functions of % relative to {Ui} may be
written as follows:

C f;J, f§3, D) :U;n Uy — Aut(n,s,t), i,5€ 1.

o e

Then transition functions of ?, #'2, & >

3 and & are

1. unu, — Aut(n), £ uAa U, — Aut(s)

R SIS SN ’

£33 :u;n U — Aut(t), and (£, 139, £37, 0) respectively.
~

An isomorphism between % and @ will be established by finding

a collection of functions
(1,1,1,65 : U, — Aut(n,s,t), iel
satisfying
(£}, 630, 630, 0 - (1,180 e, gdd ) gy g1y,
.(1,1,1,63) on U.N U,
1 J

Or equivalently
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613 - 61(1-1‘]’ f%j) _ fi3j63 on Uin Uj .

Let {hi} ie I be a partition of unity subordinate to a covering
{Ui}. An evaluation shows that a mapping given by

Gt -2 . h &% ki, tkh
ke

satisfy our requirements.

Examples. For any vector fibration (ﬁ,p* ,M) the correspon-
dent tangent and cotangent fibrations (TA,p,M), (T*£,p,M) are
® X -fibrations. Their fibres were described in [6].

Consequently, if we let 55 = TM or -7f= T*M, we obtain that
iterations TTM, T*1*M and spaces T*TM, TT*M are JY¥-fibrations.

3. Double linear connections

Recall that under a connection on a fibred manifold £ we
understand a fibred morphism [M: (€,p,M) — (Jli_’,pl,M) such that
goé o[ = id (@[l] 31— ¢ is a natural projection of a tar-
jet). A connection ' : Af— 317 on a vector fibration £ is
linear if it is a morphism of linear fibrations. A connection
on a principal fibration will be regarded as a section of g)(l]
which is an equivariant map.

Definition 4. A connection " : E’—» Jlf on a Y& -fibration
(¥,p,M) will be called double linear (DX -connection) if I
is aZ-Yy—morphism.

Consider a fixed 9 ¥ -connection " on a given J ¥ -fibration
. ﬁY?'-morphism [" induces morphismsof underlying vector
fibrations

Pl oy — M plm,
['2 : (ﬁ,DZ,M) i (le’p%’M) ’ *

1 1
F} : (W,pz,M) - (J ?’1p31M) .

Proposition 1. I, f'z , and F} are linear connections on
the vector fibrations /£, B, and 7 respectively.
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Proof. First let us prove that F is a linear connection.
Let ?[] denote again a natural prOJectlon J .7{—»/5 Since I"
is a morphism of vector fibrations it suffices to show that

'?[l) ° Fl = id. We have a commutative diagram

1
4 —— 3 14
" 5 '
0
pa A
N

Let y A and choose z e? so that ./llz = y. Then Ply =
1lao _ -
(3°7 )(/"z) It follows 4’0 = Jll ?U rz = le =y.
Slmllarly for f'
W. (t 1 1 . . [- _

Since "e&? and 3" U ¢ 3°¢ are fibred submanifolds, 3 =
= "/ 7 and the natural projection A P s @é = Qé/‘]lf’
we have

Lo = lsalmecrsry = 0kemy /7 -
0po/35 = (pPy 0

Hence /-'3 is also a linear connection.

Linear connections f'l,f'z,f'y will be called underlying
connections of [ .

Similarly to the linear case double linear connections are
in a one to one correspondence with right invariant connections
on the corresponding principal fibration.

Given a S X-fibration (¢,p,M) and x e M, let n = dim-?gx,
s = dim .3)(, t = dim 7/" Let & again denotes corresponding
principal flbratlon Under a (n,s,t)-frame in a JY- -space J 4
with 'Jl at E — J £x I, 1% we shall understand a JL-
morphism 1 : K(n,s,t) — fo such that Qonl is a ¥ ¥ -frame
in @x' Denote by ?)((1) the set of all (n,s,t)-frames in J)l(@

A triplet (?(l),q(l),M) with D - U 9')((1)

xeM and q
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— M being a natural projection is a fibred manifold. The group

Aut(n,s,t) acts on ?7(1) to the left:

(2,g) — Peg, 1e 3‘)((1) , g€ Aut(n,s,t).
As in the linear case, there is a natural fibred isomorphism
gt — (W W
which is at the same time an equivariant map. Via this isomorphism
both manifolds will be identified.

Proposition 2. There is a one to one mapping, {, of the set of
all Zﬁl-connections on a O¥-fibration f , on the set of all
right invariant connections on the principal fibration ?'.

The proof is similar to the linear case.

We say that a morphism f : ¢ — ¢ of fibred manifolds over
identity maps a connection " on ® onto a connection " on 4

if the following diagram is commutative:

. :
¢ > ¢

sle l

Jl‘e _— Jl@'.

Consider a d¥#-morphism £ : (¢,p,M) — (¢ ,p ,M) over Ly-

Let g: (%,q,M,Aut(n,s,t) — (% ,q ,M,Aut(n’,s ,t") denote the
induced morphism of principal fibrations (over identity). Let
I, " be BX-connections on ¥, ¢ respectively and ¢, ¢
be corresponding connections on 3’, 2. As in the linear case,

it can be proved the following:

Proposition 3. ”J.X?-morphism f maps the connection " onto [
if and only if g maps ¢/ onto ¢, -

Let ¢, %, F,‘F be as above. Let d-'l’ ‘r'z, ‘r'B be in-
variant connections on ?1, 3'\'2, ?3 corresponding to tma under-
lying connections /’1, /-'Z’ F} of . The y’hitney sum I of con-
nections Fi i=1,2,3 is a connection on # . Consider a morphism

7 introduced in (8).

Proposition 4. Linear connections /1], FZ’ /-'3 are underlying
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connections of a ﬁ,}(—connection " if and only if 'Lvmaps e
onto /7 .

Proposition 5. Let I’. be linear connections on underlying
vector fibrations ﬂ*, ﬂ,?/‘ of f . There exists at least one
double linear connection /7 on ¥ such that the underlying con-
nections are f'i, i=1,2,3.

Proof. By the previous results, it suffices to prove the
existe'llce of an invariant connection /.,x on # which is mapped
onto /7 by T . An exact sequence

0 —» Hom(Rans,Rt) A, Aut(n,s,t) Aut(n,s,t) — O
7

(4%
has a splitting 'Z:Aut(n,s,t) —s Aut(n,s,t) of the form
7(f1,f2,f3) = (fy,£,,£5,0) .

Consequently the homogenous space Aut(n,s,t)/ ?Aut(n s,t) is
diffeomorphic withthe Lie group Hom(R™ x R® t) and therefore
is contractible. It follows that the assot:lated fibration of
principal fibration (Q',q M,Aut(n,s,t)) with a type fibre
Aut(n,s,t)/¥ Aut(n s’z) admlts a cross-section, that is, there
exists a reduction (?’,q,M 'hAut(n s,t) of # to the subgroup
’ZAut(n s,t). In the sequence

A

(z‘,q,M,/7ATl’t(n,s,t»L-(?,q,M,Aut(n,s,t» z

~ o~ ~
L (#,9,M,Aut(n,s,t)
€ denotes an 1mbedd1ng and ?’ Eis an isomorphism of pr1n01pal
[
flbratlons which maps F onto an invariant connection I" on «
/" has a unique extension ["' on J' and 7" maps [" onto l"
This finishes the proof.

Now we shall give another characterization of 'D,,‘(—connect-

ions.

Theorem 2. Let /7 be a connection on a ®X-space (&,p,M).
I" is double linear if the following three conditions are sa-
tisfied:

(P1) Connection [ is projectable with respect to the morphisms

7 (e, — (M) and T (E,p,M) — (B,p,,M).
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(P2) Let z,z € € with T.lz = Tiz' ‘and let ZeH
that (T27)Z = (TF,)Z" then Z+;Z € H

(P3) If ZG:HZ and A €R then (\.iZs‘Ha

27 7 € H_- such
z+;2 ’

i=1,2.
'iz ’ ’
Remark. HZ denotes the horizontal subspace of I at z, i.e. a
subspace H, = (T V) (7 M)c T (L’) where V is a local section
of € on a nelghborhood of x satlsfylng J v=T(z2).

Proof. Let /" be double linear. Then (Pl) is satisfied by
Prop.l. Consider z,z ,Z,7 " satisfying the assumptions of (P2).
Denote x =pz=pz , X=(Tp)Z=(Tp)Z . Since ¥ is locally trivial
and /7 is projectable with respect to Tl’ especially (TqT"l)HZ =

= (T¥DH, - there are local sections ¢, ¢ of € on a neighbor-
hood of x such that T Y- (/ and (2) = j)l( Y, 'z =

= J Y. Then Z = (Tw)x and z = (TY)X. Since I” is double
llnear we have

Fzez) =F@ + MG =3 e sbe = sty ).

Thus Z+12' = T(‘/+l V‘)XG Hz+12" The remaining part of (P2)

and condition (P3) may be proved similarly.
Conversely, let [7 satisfies (P1) - (P3). Let z,z'e ¢ with
7’12 = le‘, x =pz =pz . Since [Mis projectable with respect to

T’l there exist local sections (/, (f of {C on a neighborhood of
x such that

e =59, FeH =59, T¢-

fvose a section 'Y' of e on a neighborhood of x so that

F(z»flz') = J)l('y’ .

Then W(x) = Y(x) 1Y) Let X6 T M and let (I'X),
(/"X)Z', (/"X)Z+ 2’ denote horizontal lifts of the vector X to
1 .
the points z,z',z+lz'respective1y. Clearly ("’X)Z = (TY)X,
(rxy,- = (T¢Hx, (rxy,, 2 (TPx. By (P2), (), + (I'X),
€71,., ‘¥ is a horlzontal vector with (Tp)((f'X) + (I"X) -) = X,
1

A _ ’
The unicity of a lift implies (I"X)Z+l(f')<)z' = (I"X)Z+ ;o that
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