
Acta Mathematica et Informatica Universitatis Ostraviensis

Petr Jančar
Nondeterministic forgetting automata are less powerful than deterministic linear
bounded automata

Acta Mathematica et Informatica Universitatis Ostraviensis, Vol. 1 (1993), No. 1, 67--73

Persistent URL: http://dml.cz/dmlcz/120475

Terms of use:
© University of Ostrava, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/120475
http://project.dml.cz

Acta Mathematica et Informatica Universitatis Ostraviensis 1(1993)67-74 67

Nondeterministic Forgetting Automata are Less
Powerful than Deterministic Linear Bounded
Automata

PETR JANČAR

Abstract. A complete proof of a result briefly mentioned in [4] is given.
Forgetting automata are nondeterministic linear bounded automata with restricted

rewriting capability: any input symbol can only be "erased" (rewritten by a speciál
symbol) or completely "deleted". They are, in fact, a speciál čase of 2-change automata
introduced in [1],

This páper shows by the method of diagonalization that, for any k, k-change automata
with a fixed (work) alphabet recognize a proper subclass of the class of languages rec-
ognizable by deterministic linear bounded automata (i.e. deterministic context-sensitive
languages).

Keywords: formal languages, linear bounded automata

1991 Mathematics Subject Classification: 68Q45, 68Q68

0, Introduction
Forgetting automata were studied e.g. in [3],[4].

The motivation mainly comes from linguistics. It is illustrated by the following
simple example (from [4]):

Example. Parsing a sentence can consist in the stepwise leaving out the words
whose absence does not affect correctness of the sentence, e.g.

"The little boy ran quickly away"
"The boy ran quickly away"
"The boy ran away"

It leads to considering linear bounded automata (LBAs) which are able to
rewrite every input symbol by a speciál symbol only; the operation is referred to
as erasing.

Such erasing automata were also considered by von Braunmůhl and Verbeek
in [1] as a speciál čase of finite-change automata. Their motivation was different:
to introduce a storage medium "between time and space".

In the example, the segments of erased symbols are not important and can be
deleted completely ("The boy ran quickly away", "The boy ran away", ...). It can
be modelled by the operation called deleting, which "cuts out" the cell (and pastes
the two remaining parts of the tápe together).

68 P.Jančar

By (the most general) forgetting automata we mean nondeterministic LBAs
which can only erase and delete cells (but not rewrite them).

Remark. To make deleting more natural, the model of list automata is usually
used; a list automaton uses a (doubly linked) list of items (cells) rather than the
usual tape.

In [4] all combinations of operations "move the head left (right)", "erase and
move left (right)", "delete and move left (right)" were considered and the corre­
sponding classes of languages were classified.

One of the interesting results whose proofs are only sketched in [4] is that
nondeterminism with rewriting limited to erasing and deleting is less powerful
than (general) determinism: forgetting automata recognize a proper subclass of
the class of languages recognizable by deterministic linear bounded automata.

The complete proof of this fact is the main subject of this paper. In fact, the
result applies for more general k-change automata (k-CAs) of [1] if we suppose a
fixed (work) alphabet. A k-CA can be simulated by a deterministic LB A (DLBA);
it is shown in [1] using the well-known idea of Savitch ([5]). We use here the
mentioned simulation and complete the proof by the method of diagonalization.

Section 1 contains definitions, Section 2 the result.

1. Definitions

We consider (special cases of) standard nondeterministic Turing machines working
on a tape consisting of cells. In what follows, we give the needed notation and
definitions.

1.1. Definition. A Turing machine, TM, T is a tuple T = (Q,E, A,6,qo,F),
where Q is a finite set of states , E is a finite set, the input alphabet, of input
symbols, A is a finite set, the work alphabet, of work symbols disjoint with E,
qo € Q is the initial state, F C Q is the set of final (accepting) states and 6
is a (finite) set of instructions of the type [q,a] —> [qf,a',D], where q,q' 6 Q,
a, a' £ E U A (if a1 ^ a then a! € A), D € {LEFT, RIGHT) (meaning that T
in state q and reading a can change the state to q', rewrite a by a' and move the
head in direction D).

A computation, an accepting computation (starting in the initial configuration
and finishing in & final configuration) and the language recognized by T, C(T) C E*,
as well as the notion of a deterministic TM can be defined in the usual way.

T is a nondeterministic (deterministic) linear bounded automaton, NLBA
(DLBA), if it is a nondeterministic (deterministic) TM and does not move the
head outside its input (any input word is bounded by special endmarkers which
are never crossed).

The following notion comes from [1].

Nondeterministic Forgetting Automata 69

1.2. Definit ion. A k-change automaton, k-CA, is a NLBA which rewrites
(changes) any cell of its input k-times at most.

As we mentioned, forgetting automata in [4] and elsewhere were considered
as list automata. For our aims it is only important that they can be viewed as
2-change automata (with a fixed work alphabet). They can be (somewhat artifi-
cially) defined as follows.

1.3. Definit ion. A forgetting automaton T is a 2-CA, where the work alphabet
consists of two speciál symbols, say @,#. In addition, # can not be rewritten and
can not influence any computation of T (it behaves like deleted, i.e. nonexistent).

2. Results
The next two lemmas follow from [1]. Nevertheless we show the proofs (perhaps
more lucidly) since we need to refer to the way of simulation in the main proof.

2 .1 . L e m m a . Any 1-CA T\ can be simulated hy a DLBA Ti (hence C(T\) =
C(T2)).

P R O O F : A 1-CA is a speciál čase of a NLBA. Hence Savitclťs idea ([5]) of simu-
lating a NLBA Ti by a deterministic quadratic-space bounded TM T2 applies.

We first outline a (nonrecursive) version of the relevant algorithm. Then we
show how the space in our speciál čase (where Ti is a 1-CA) can be reduced to
make T2 a DLBA.

A NLBA Ti accepts a given word of length n if it accepts it by a computation
of length shorter than 2 c n , c being a constant depending on the number q of states
of Ti and the number of work symbols of Ti.

n, q, c keep the mentioned meaning in the rest of the proof. In our context
log(x) will mean the least integer greater or equal to the logarithm of x with basis
2.

To find out whether Ti can reach a finál configuration from the initial con­
figuration in less than 2 c n steps, T2 will use space for cn + 1 configurations (see
Fig.l).

It uses consecutive segments 5o,Si, £2, ••• i^cn of the tápe. Each segment
consists of the statě part of length log(q) for storing the current statě, the head
part of length log(n) for the position of the head and the tápe part of length n for
the content of the tápe. Conf(Si) will denote the configuration stored in Si.

For technical convenience, segment S,+i is drawn below segment S, in Fig.l.
Suppose a lexicographic order on the set of all configurations (with the tápe of

length n). To this order we refer in commands like "S , := the least configuration"
or "increase S»" (replace Conf(Si) by the next greater configuration - if Conf(Si)
is not the greatest). It is clear that T2 is able to perform such commands.

For a given input word of length n, T2 writes the initial configuration in SQ and
performs Algorithm 1. Here the last segment (with some property) is the segment
Si with the greatest index (and with the property).

70 P.Jančar

SQ the initial configuration *

Si \log(q)\log(n)

S2 \log(q)\log(n)

5 3 \log(q)\log(n)

the initial configuration *

Si \log(q)\log(n)

log(q)\log(n)\ n/2

S 3 \log(q)\log(n) n/4 *

Scn \log(q)\log(n)\ n

Fig.l

Sk \log(q)\log(n)\l\ (j fc = ^ (n) + 1 }

Fig.2

Algorithm 1

Mark 5 0 and CLEAR BELOW 5 0 ;
while true do

if Conf (Si), where S% is the last unmarked segment, can be reached by
one step (of T\) from Conf(Sj), where Sj is the last marked segment

then mark Si and CLEAR BELOW 5, ;
if Conf(Si) is a final configuration
then HALT {meaning YES-answer of the algorithm}

else INCREASE
endwhile

where CLEAR BELOW Si means
for j : = i + 1, i + 2 , . . . , en do Sj : = the least configuration and unmark Sj

and INCREASE means
Find the last 5, which can be increased ;
if i > 0 then increase 5;, unmark Si and CLEAR BELOW Si

else HALT {meaning NO-answer of the algorithm}

Correctness of Algorithm 1 should be clear from the following remarks.
- Before any pass through the cycle, some segments are marked (denoted by * in
Fig.l), the others unmarked.
- Conf(Si), Conf(S2),..., Conf(Scn) are guesses of some configurations "passed
through" in a computation. We say that the guess for Si (i > 0) is correct if
Conf(Si) is reachable by 2cn~l steps from Conf(Sj), where Sj is the previous
marked segment (j is the greatest such that j < i and Sj is marked).
- An invariant of the cycle is that guesses in marked segments are always correct.

Nondeterministic Forgetting Automata 71

- The algorithm systematically generates all possible combinations of guesses and
verifies their correctness. It halts by encountering a correct (verified) final config­
uration or by exhausting all possibilities.

Our aim now is to reduce the used space. In a computation of a 1-CA, the
content of the tape can be changed n times at most. We define a multistep as a
sequence of steps where the last step is a "rewriting" one or reaches a final config­
uration while the others are "nonrewriting" ones. Hence any (finite) computation
consists of n + 1 multisteps at most.

Notice that linear space is surely sufficient to verify whether one configuration
can be reached from another by a multistep: it suffices to consider multisteps
consisting of qn steps at most. A configuration "passed through" by a given
multistep is fully determined by the current state and the position of the head; thus
its description can be stored in space log(q) + log(n). Hence the idea of Algorithm
1 can be applied using log(qn) auxiliary segments, each of length log(q) + log(n).

Now it is clear that T2 simulating a 1-CA Ti can perform a modification of
Algorithm 1 in which steps are replaced by multisteps. Hence approx. log(n)
segments are sufficient.

For technical reasons, suppose that n is a power of 2 and that log(n) + 2 seg­
ments are sufficient (any input word can be appropriately extended by "dummy"
symbols, by which its length increases twice at most).

To make the whole space linear, we still have to compress the representation
of configurations.

The point is in the following idea.
Suppose (the tape part of) a configuration C; let us refer to "the cells with input
(work) symbols as input (work) cells. To store a configuration C which appears
(a number of steps) after C in a computation, it suffices to store the cells of C
which correspond to the input cells of C because the contents of the work cells
must be the same in C and C. On the other hand, to store C which appears (a
number of steps) before C, it suffices to store the cells of C which correspond to
the work cells of C.

If Conf(S\), C o n / (5 2) , . . . , Conf(Si) are correct guesses then the tape part of
Con f (Si) is determined by the tape parts of Con/ (5 i) , C o n / (5 2) , . . . , Con / (5 ,_ i)
with exception of n/21""1 cells. In these cells in Con/ (5 ,_ i) are either input sym­
bols - if 5,_i is marked - or work symbols - if 5 j - i is unmarked. (The symbols
in) one half out of these n/2*"1 cells in Conf (Si) are the same as in Con / (5 ,_ i) ,
the other half of these cells are different - there are work (input) symbols instead
of input (work) symbols.

Hence, to store the tape part of 5,-, a segment of length n/21""1 is sufficient. An
admissible content of this segment is any string of n / 2 1 - 1 symbols out of which
one half (i.e. n /2 ') are input symbols and the other half are work symbols. Notice
also the natural condition of consistence - the corresponding input (work) cells in
different segments must have the same contents.

These ideas are the basis for the (algorithm of) T2 for which the segments of
lengths shown in Fig.2. (Si of length n/2'""1, for i > 0) are sufficient.

T2 can perform Algorithm 1 (modified for multisteps) provided that it is always

72 P.Jančar

able to reconstruct the (complete) tape part of Conf(Si) for any i > 1. It can
generate the admissible contents of segments (in the last segment, any symbol is
admissible) and use the following (sub)algorithm 2 for the reconstruction as well
as for checking the consistence.

Algorithm 2

A : = the tape part of Si ;
for j := i — 1, i — 2 , . . . , 0 do

B : = the tape part of SJ;
if Sj is marked
then replace the input cells in B successively with respective cells in A

checking the consistence at the same time {if the symbol in the m-th
cell of A is an input one then check that it is the same as the symbol
in the m-th input cell of I?, otherwise (it is a work symbol) write it
in the m-th input cell of B (m = 1,2,..., n/23)}

else replace the work cells in B successively with respective cells in A
checking the consistence at the same time

endif ;
A:=B

endfor
{ in the end, A contains the (complete) tape part of Conf(Si) }

It should be clear that the modified algorithm keeps the correctness (in simulating
a 1-CA) and linear space is sufficient for it. Thus the whole proof is finished. •

2.2. Lemma. Any k-CA T\ (k > 1) can he simulated by a DLBA T? (hence
£(T,) = £(T 2) j

PROOF: A k-CA T\ starting with an input a\a2 . . . an can be simulated by a 1-CA
T[with input a\ * * . . . * 02 * * . . . * an * * . . . * , where * * . . . * means k blank
symbols. If T\ changes the i-th cell for the j-th time then T[changes the j-th cell
in the i-th block. Then T2 simulating T[(and hence T\) can be constructed as in
the proof of the previous lemma. •

The lemma implies that any language recognized by a k-change automaton
(hence also by a forgetting automaton) is recognized by a DLBA. For the next
theorem we need to prove that, given any k and any work alphabet A, there is
a language recognized by a DLBA which is not recognized by any k-CA with the
work alphabet A. We use the standard method of diagonalization. Let us recall
it first (see e.g. [2]).

Consider any encoding of Turing machines by words in alphabet {0,1}. If, for
some class C of Turing machines, we have a universal (deterministic) TM which
halts for any input (deciding if the given encoded TM accepts the given word
or not) then there is a "diagonalizing" TM T with input alphabet {0,1} which
accepts a code of a TM M from C if and only if M does not accept it. It is clear
that C(T) does not belong to the class {L \ L = C(M) for some M € C}.

Nondeterministic Forgetting Automata 73

For an arbitrary* k, consider the class of k-GAs with the input a lphabe t {0,1}
a n d wi th a fixed work a lphabe t . We can choose any na tu ra l encoding for this class
where the n u m b e r of s ta tes of a k-CA M is bounded by the length of the code of
M .

It should be clear from the proofs of previous lemmas how a universal DLBA
as well as a diagonalizing DLBA can be constructed (log(q) being replaced by
log(n)).

Hence we have

2 . 3 . T h e o r e m . For any k and A , the class of languages recognizable by (non-

deterministic) k-change automata with the work alphabet A is a proper subclass

of the class of languages recognizable by DLBAs (i.e. of the class of deterministic

context-sensitive languages).

As any forgett ing a u t o m a t o n is a 2-change au toma ton with the work a lphabe t
{ @ , # } , the theorem implies

2 . 4 . C o r o l l a r y . The class of languages recognizable by (nondeterministic) forget­

ting automata is a proper subclass of the class of languages recognizable by DLBAs.

Acknowledgements

I would like to t hank Frantisek Mraz and Mar t in Pla tek who ini t ia ted me into

work on forgett ing a u t o m a t a and encouraged me to write this paper .

References
[1] von Braunmuhl B., Verbeek R., Finite change automata, Proc. of 4th GI Conference

on Theoretical Computer Science, Lecture Notes in Computer Science (LNCS) 67,
Springer, Berlin (1979), 91-100.

[2] Hopcroft J., Ullman J., Formal languages and their relation to automata, Addison-
Wesley, 1969.

[3] Jancar P., Mraz F., Platek M., Characterization of context-free languages by eras­
ing automata, Proc. of the symp. Mathematical Foundations of Computer Science
(MFCS) 1992, Prague, Czechoslovakia, LNCS 629, Springer (1992), 307-314.

[4] Jancar P., Mraz F., Platek M., A taxonomy of forgetting automata, accepted to
MFCS'93, Gdansk, Poland, to appear in LNCS, Springer (1993), .

[5] Savitch W.J. , Relationships between nondeterministic and deterministic tape com­
plexities, J. of Computer and System Sciences 4 (1970), 177-192.

Address: Dept. of Computer Science, University of Ostrava, Dvofakova 7, 701 03 Ostrava,
Czech Republic

(Received May 20, 1993)

		webmaster@dml.cz
	2013-10-22T10:24:21+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

