
Acta Mathematica et Informatica Universitatis Ostraviensis

František Mráz; Martin Plátek
Erasing automata recognize more than context-free languages

Acta Mathematica et Informatica Universitatis Ostraviensis, Vol. 3 (1995), No. 1, 77--(85)

Persistent URL: http://dml.cz/dmlcz/120489

Terms of use:
© University of Ostrava, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/120489
http://project.dml.cz

Acta Mathematica et lnformatica Universitatis Ostraviensis 3(1995)77-85 77

Erasing automata recognize more than context-
free languages

FRANTIŠEK MRÁZ, MARTIN PLÁTEK

A b s t r a c t . An erasing automaton is a linear bounded Turing machine which can rewrite
any symbol on its tape only to a special symbol (Q). In [1] was formulated a hypothesis
that erasing au tomata cannot recognize all context-free languages (CFL). We show here
that the opposite is true. We consider erasing automaton (E-automaton) as a special
type of list automaton studied in [10].

1991 M a t h e m a t i c s S u b j e c t Classif icat ion: 68Q45, 68Q68

1 Introduction

This paper shows a result contained in the conference contr ibut ion [8], and a
separat ion theorem from the conference paper [5]. The first result has s ta r ted
further intensive investigations of erasing and deleting a u t o m a t a resulting in a
series of contr ibut ions to various conferences and workshops (e.g. [5, 6, 7, 9]), but
still in the only one journa l paper ([4]). We try to reduce this gap by this paper .

The main result of this paper was shown in a different way also in [5]; never­
theless the technique presented here is interesting on its own and should justify
the paper . It is can be viewed as a generalization of a technique used in parallel
algori thms for parsing context free languages ([11]).

An erasing a u t o m a t o n is a linear bounded Turing machine which can rewrite
any symbol on its t ape only to a special symbol @. In [1] there was formulated
a hypothesis tha t erasing a u t o m a t a cannot recognize all context-free languages
(CFL). We show here tha t the opposite is t rue. We consider erasing a u t o m a t o n
(F -au tomaton) as a special type of list au tomaton studied in [10]. The input- and
working-memory of a list a u t o m a t o n is a linear doubly linked list with left and
right sentinels. Every i tem of the list contains one symbol from a given a lphabet .
The au tomaton has a head, which can read the contents of the visited i tem. At
the beginning of a computa t ion the list contains an input str ing delimited by two
sentinels.

The au toma ton can perform following basic operat ions:

MVR - moving to the right,

MVL - moving to the left,

DEL - deleting the visited i tem and moving the head to its left neighbour,

78 F.Mraz, M.Platek

ER -rewriting of the contents of the scanned i tem with a special symbo l @, which

can not be rewrit ten again, this operat ion is referred to as erasing.

D e f i n i t i o n 1. A list automaton is a system M = (Q, A, B, I, go, F), where

• Q is a finite set of states,

• A is a finite input alphabet,

• B is a finite working alphabet containing A, sentinels # , $ and a special

symbol @ all these symbols are not in A,

• go is the initial state (go G Q),

• F is a set of final (accepting) states (F is a subset of Q),

• I is a finite set of instructions of the following form:

[gi, 6] -> [g2, O],

where q\, g2 eQ, b £ B, o is one of operat ions MVR, MVL, DEL or ER.

Let us consider the instruct ion ment ioned above. The instruction can be per­

formed, when M is in the s ta te q\ and the head is scanning the symbol b. The
execution of the ins t ruct ion means tha t M changes its s ta te to g2 and the operat ion
O is performed .

We call M deterministic if for any instruct ion of the form [g, b] —> [gi, O], the
set I does not contain any other instruct ion of the form [g, b] —> [g2, Oi].

We represent a configuration of M by a triple K = (wb, g, v), where w represents
the string of symbols in the list on the left side from the head (lefthand side of
IV), where b means the symbol visited by the head, v is the str ing in the r igh thand
side par t of K and q means the actual s ta te of M .

Let K\ — (wb, q, cv) be a configuration of M, c,b symbols from B, w,v words
from B*, i = [g, b] —> [gi, O] some instruction of M . We write K\ => Ii2 by i in
the following cases:

(a) O = MVR, I\2 = (wbc, q\, v);

(b) O = DEL, I<2 = (w, q\, cv);

(c) O = MVL, K2 = (w,q\, bcv);

(d) O = ER, I\2 = (tu@, gi , cv).

The notat ion Ki => K2 means , tha t there is an instruct ion i in the previous sense.
We say tha t K\ => Ii2 is a sLep /rOm K\ to Ii2 . The reflexive and t ransi t ive
closure of the relat ion => is denoted by =>*.

We say tha t a configuration of the form (-#., go, v%) is a starting configuration of
M and a configuration of the form (# # $, g, A), where g is from F, is an accepting

Erasing automata . . . 79

configuration (A denotes the empty word). Any configuration K such tha t there
exists no configuration K\ such tha t K => K\ is called a halting configuration.

We say tha t a sequence C of steps Ii] => K2, K2 => N3, • ••> Nn-i => Kn is
a computa t ion of M. If Ki is a s ta r t ing configuration and Kn is an accepting
configuration then we call C an accepting computation.

We denote L(M) = {i> G ^4*; where (# ,g 0 , t>$) is a s tar t ing configuration of an
accepting computa t ion of M } .

D e f i n i t i o n 2 . A list a u t o m a t o n which uses the operat ions MVL, MV/t, ER only
is called E-automaton.

A list a u t o m a t o n which uses the operat ions MVL, MVB, DEL only is called
d- automaton.

2 The power of erasing automata

It was shown in [10] t ha t for any determinist ic context-free language L a determin­
istic d-automaton M such t ha t L = L(M) can be constructed . The construction of
M is based on the idea of the modifications preserving the relation being element
of L, i .e . modified word is element of L if and only if the original word is. Such
modification cuts off some nonempty par t of input word. By execution of a finite
number of such modifications we get some short word about which we can decide
whether it belongs to L or not . Obviously every d-automaton can be s imulated by
an F-automaton — simply replace the operation DEL by ER and add instruct ions
which skip over an erased symbol in the desired direction without changing the
current s ta te . Thus the following theorem holds.

T h e o r e m 1. Any deterministic context-free language can be recognized by a

deterministic E-automaton.

We show a construct ion of an E-automaton ccepting language given by a
context-free g r ammar . But in the case of nondeterminist ic languages the me thod
from [10] cannot be used because the modification preserving the relation being
element of L cannot be done.

We use a me thod by which an F-automaton tries to guess a derivation of a given
input word in a way similar to a bo t t om-up parser and during the computa t ion it
preserves the information about the s imulated derivation by the given context-free
g rammar .

T h e o r e m 2. Any context-free language can be recognized by a nondeterministic

E-automaton.

P R O O F : Let L be a context-free language and let G = (V/v, Vr, S, P) be a context-
free g rammar of L, where V/v, Vr, S and P are, respectively, the nonterminals ,
the terminals , the initial nonterminal and the set of rules of G. Wi thou t loss
of generality we assume tha t the initial nonterminal 5 does not appear on the
right/hand side of any product ion from P and G is in Chomsky normal form, i .e .

80 F. Mraz, M. Platek

all rules of G are of the form A —>• BC or A -» a, where A,B,C are nonterminals
and a is a terminal symbol.

We will manipulate derivation trees of some strings according to the grammar
G. A leaf of a derivation tree will be called a terminal leaf if it is marked by a
terminal symbol and a nonterminal leaf if it is marked by a nonterminal. Define
the size of a tree to be the number of terminal leaves of the tree. Let v be a node
of a derivation tree, the subtree of this tree rooted at v we denote by Tv. Let
K be a positive integer whose value will be determined later. We will use some
special types of derivation subtrees (their root need not be marked by the initial
nonterminal of G):

(a) Derivation tree of size at least K and at most 3K without nonterminal leaves.

(b) Derivation tree of size at least K and at most 2Ii with one nonterminal leaf.

(c) Derivation tree of size less than K with two nonterminal leaves.

If we have some tree T\ of type (b) with one nonterminal leaf marked by non­
terminal A and some tree T2 of type (a) which root is marked by A) then we can
construct a tree of greater size by replacing the nonterminal leaf of tree T\ by the
tree T2. In a similar way we can construct bigger trees (not only of the forms (a)
- (c)) from trees of types (a) - (c) . •

Claim 3. For any positive integer K, every derivation subtree of any terminal
string of length at least K can be constructed from subtrees of types (a) - (c) only.

PROOF: The claim is proved by induction on size of a derivation tree.
A derivation tree of a terminal string of length at least K and at most 3K is

obviously a tree of type (a), so the claim is true for them.
Suppose that the claim holds for trees of size less than n, where n is an integer,

n > 3Ii. Let Tu be a derivation tree of a terminal string of length n. Let
u = wi, 1*2,..., Uk be a path in tree Tu from node u to Uk such that subtree rooted
at Uk has size at least n — K + 1 and subtrees T\ and T2 rooted at sons of the node
Uk have sizes less than n — K + 1 (cf. Fig. 1). Such path can be found starting in
the root u and choosing the path through the son whose subtree has size not less
then his brother.

Thus

size(T\) + size(T2) >n-K + l

size(T\) < n- K + 1

size(T2) < n - K + 1

Let the size(T\) > size(T2). There are two cases:

size(T\) > n-2K (i)

size(T\) < n-2K (ii)

Erasing automata SI

Figure 1:

In case (i) size(T\) > K because n > 3K. Let T' be the derivation tree obtained
from Tu by replacing the subtree T\ by a corresponding nonterminal leaf. This tree
is of size at least K and less than 2K. Thus the tree T' is of type (b). According
to the induction hypothesis the claim holds for T\ and thus it holds for tree Tu.

In case (ii) obviously
size(T2) < n - 2K

and

and

size(T\) > K

size(T2) > K

then the tree obtained from T by removing subtrees T\ and T2 is of type (c). Again
according to the induction hypothesis the claim holds for trees T\ and T2 and thus
the claim is true for Tu.

The number of trees of types (a) - (c) for a givv.n grammar G is finite.
Let K be (2|VJv| + 2).
Next we describe an F-automaton M which recognizes nondeterministically the

language L. At the start of a computation of M the input word w is written on
the list. If the word w is of length less or equal 3K, then it is recognized directly
(the number of such words is finite). Otherwise the computation of M consists of
phases.

At the start of a phase there are some erased segments on the input list. An
erased segment is a part of working list. It starts with a contiguous sequence
of erased symbols (i.e. overwritten by @) followed by a "gap" - a sequence of
nonerased original symbols of length bounded by a constant, a contiguous sequence
of erased symbols and a sequence of nonerased symbols of constant length.

The main idea of the algorithm is that each erased segment corresponds to a
code of an erased subtree and contains a code of the nonterminal in the root of this
tree. Suppose that the nonterminals from VJV are numbered from 1 to |V/v|, a gap
of the length i will code the i-th nonterminal, and the trailing reserve sequence

82 F. Mráz, M. Plátek

AL6 reservě (N = 7)

a\b\b @ @ \a \a\b\a\b\b @ @ @ @ @ @ @ @ b \b\a\b\b\a\a\a\ b\a

erased segment
Figure 2: Erased segment which encodes sixth nonterminal AQ

will be of the length |V/v|- The trailing sequence of nonerased symbols is reserved
for a new code when two trees are combined (cf. Fig. 2).

The invariant of the computation is:

A subword consisting of original symbols represents a part of the input
word, when it is the first, third, resp. the (1 + 2i)-th subword (for
i > 0), consisting of nonerased symbols, from the left. For i > 1 the
(1 -f 2i)-th subword of original symbols (except the constant length
prefix - the reserve) represents a part of the input word. The codes
are represented by the (2i)-th original subwords from the left.

The automaton M starts each phase at the left end of the tape. M nonde-
terministically chooses one subtree T of the type (a) - (c). Then M scans the
tape and searches substring of symbols in the leaves of T. M scans each erased
segment as one unambiguously determined nonterminal. If M finds corresponding
substring, then M modifies this part of the list to a new erased segment. There
are three cases:

(i) T is of type (a). Then automaton M creates an erased segment on the place
of the corresponding substring. This segment will code the nonterminal in
the root of T. The erased tree T is of size at least K and this is enough for
proper encoding.

(ii) T is of type (b). Then there is one erased segment s in the corresponding
substring. Then s is preceded by a sequence of at least K/2 — |V/v| -b 1
original symbols in this substring or s is followed by a sequence of at least
K/2 = |V/v| + 1 original symbols in this substring.

In the former case we erase the substring so that in the part preceding s we
make a code of nonterminal in the root of T, we erase the "gap" in s and we
erase the sequence of nonerased symbols after the last erased symbol of s to
the end of corresponding substring except the last |V/v| symbols.

In the latter case we erase symbols preceding s and the "gap" in s. We
modify the reserve of erased segment s to the code of the nonterminal in the
root of T. The symbols following s in the corresponding substring we erase
except the last |VJV| symbols.

(iii) T is of type (c). Then there are two erased segments si and s% in the
corresponding substring. We erase the "gaps" in both segments and we

Erasing automata . . . 83

modify the reserve of s\ to the code of the nonterminal in the root of T.
Other terminal symbols of the corresponding string except the last \VN\
symbols we erase.

M finishes the computation successfully only if after some phase the list rep­
resents only one erased segment coding the initial nonterminal S of grammar
G. In this case M accepts the input word.

Using the claim it is obvious that if the input word w is from L(G) then there
exists accepting computation of M on input w. On the other hand, M is con­
structed in such a way, that the mentioned invariant is preserved after each phase
of a computation of M. That means, that in one phase a sequence of reductions
according to the grammar G is simulated. At the end of a phase, the list repre­
sents a sentential form, from which the sentential form represented by the list at
the start of this phase can be derived according to the grammar G. Thus for any
accepting computation on w there is a derivation of w in the grammar G, and
w e L(G) = L. •

Remark. The E-automaton was introduced in a bit different way in [1]. It was
based on the notion of Turrng machine with a tape bounded on the lefthand side.
The real difference to our model is only in not using the left sentinel on the left
margin of the tape. But in the previous construction we can mark the left margin
of the list of the M by erasing the first and the third symbol of an input word.
The original contents of this items can be stored in the finite control. The value
of K we increase by 2 and we modify the definition of an erased segment so that
the code of i-th nonterminal is a "gap" of length i-f 1. So the automaton moving
from right to left can deterministically recognize the left margin of the input word
as a "gap" of length one. Such an automaton need not visit the left sentinel of
the list. Further the automaton must be modified so that it keeps the information
which of these first three symbols are included in an erased segment. But all this
can be stored in the finite control of M.

We can see that such kind of erasing automaton is equivalent to some E-automa­
ton. Thus erasing automata can recognize all context-free languages in a similar
way as was shown in the previous construction.

Theorem 4. The class of (deterministic) context-free languages is a proper sub­
class of the class of languages recognized by (deterministic) E-automata.

PROOF: According to Theorem 2 any (deterministic) context-free language can
be recognized by a (deterministic) F-automaton. On the other side, it is easy to
see that the language L\ — { anbncn \ n > 0 } can be recognized by a deterministic
F-automaton (even by a d-automaton). •

The next separation theorem is an easy consequence of the Immerman and
Szelepcseny well known result solving the second LB A problem, (see [3, 12]).

Theorem 5. E-automata recognize a proper subset of the class of context sensitive
languages.

84 F.Mráz, M. Plátek

P R O O F : F-automaton is a special type of linear bounded au toma ton , so obviously
each language accepted by an F-automaton is context sensitive. On the other
side, using diagonalizat ion, we can construct a context sensitive language, which
cannot be recognized by any E-automaton. The next construction follows the
construction from [2].

All F-automata with some input a lphabet E (E having at least two symbols)
can be encoded using only symbols from E. Next a linear bounded a u t o m a t o n
A with inputs from E* can be constructed. The input to A is t reated both as
the encoding of some E - a u t o m a t o n E and as the input to E. A has the ability
to s imulate E, t ha t is, accepts only when the E -au toma ton E accepts its own
encoding.

Due to the positive solving of the second LBA problem the class of context
sensitive languages is closed under complement . Thus we can construct a linear
bounded a u t o m a t o n B comput ing complement to L(A), which accepts the encod­
ing of an F-automaton E if and only if E does not accept it. Then it is easy to
show, t ha t the language accepted by the a u t o m a t o n B cannot be accepted by an
E-automaton. For suppose t ha t E were such a u t o m a t o n . E has an encoding w

in E*. Suppose tha t E accepts w. Then A accepts w. So B does not accept w.

Likewise, if E does not accept w, B does. In either case, B and E cannot accept
the same language. •

R e m a r k . It is well known that the class of deterministic context-sensitive lan­
guages (defined by DLBA) is closed under complement. Therefore the diagonaliza­
tion can be used also to prove the deterministic version of the previous theorem.

References

[1] von Braunmuhl, B., Verbeek, R., Finite change automata, Proceedings of the Fourth
GI Conference on Theoretical Computer Science, Lecture Notes in Computer Science,
Springer-Verlag 67 (1979), 91-100.

[2] Hopcroft, J .E. , Ullman, J .D. , Formal languages and their relation to automata,
Addison-Wesley, Reading, Massachusetts, 1969.

[3] Immerman, N., Nondeterministic space is closed under complement, Proceedings of
the 3rd Annual Conference Structure in Complexity Theory (June 1988), 14-17.

[4] Jancar, P., Nondeterministic forgetting automata are less powerful! than deterministic
linear bounded automata, Acta Mathematica et Informatica Universitatis Ostraviensis
1 (1993), 67-74.

[5] Jancar, P., Mraz, F., Platek, M., Characterization of context-free languages by erasing
automata, in Proceedings of MFCS'92, Lecture Notes in Computer Science, Springer-
Verlag 629 (August 1992), 307-314.

[6] Jancar, P., Mraz, F., Platek, M., Forgetting automata and the Chomsky hierarchy,
SOFSEM '92, 1992.

[7] Jančar, P., Mráz, F., Plátek, M., A taxonomy of forgetting automata, in Proceed­
ings of MFCS '93, Lecture Notes in Computer Science, Springer-Verlag 711 (August
1993), 527-536.

[8] Mráz, F., Plátek, M., Erasing automata recognize more than context-free languages,
in SOFSEM '91, Jasná pod Chopkom, Nízké Tatry 1991.

[9] Mráz, F., Plátek, M., A remark about forgetting automata, in SOFSEM'93, Hrdonov,
63-66, 1993.

[10] Plátek, M., Vogel, J., Deterministic list automata and erasing graphs, The Prague
Bulletin of Mathematical Linguistics, Prague 45 (1986), 27-50.

[11] Rytter, W., On the recognition of context-free languages, in proceedings of Fifth
Symposium on Computation Theory, Lecture Notes in computer Science, Springer-
Verlag 208 (1985), 318-325.

[12] Szelepcsényi, R., The method of forced enumeration for nondeterministic automata,
Acta Informatica 26(3) (November 1988), 279-284.

Address: Department of Computer Science, Charles University
Malostranské náměstí 25, 11800 Praha 1, Czech Republic
e-mail: mraz@kki.ms.mff.cuni.cz, p latekGkk i .ms.mff .cuni.cz

		webmaster@dml.cz
	2013-10-22T10:37:26+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

