
Acta Mathematica et Informatica Universitatis Ostraviensis

Martin Procházka
On one language with connection to determinism and bounded deleting

Acta Mathematica et Informatica Universitatis Ostraviensis, Vol. 8 (2000), No. 1, 111--121

Persistent URL: http://dml.cz/dmlcz/120554

Terms of use:
© University of Ostrava, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/120554
http://project.dml.cz

Acta Mathematica et Informatica Universitatis Ostraviensis 8 (2000) 111-121 111

On One Language with Connection to Determinism
and Bounded Deleting

Martin Procházka

Abstract: The separation of two properties of formal languages which are studied by means
of deleting automata with restart operation (DR-automata) is presented.

A DR-automaton is a device with a finite state control unit and a head with a lookahead
window that moves from the left to the right along a finite list of items. The DR-automaton
can change the state in its control unit after each move to the right and it can also delete
the item scanned by its head moving the head to the right neighbour of the deleted item.
The DR-automaton can also execute a restart operation that sets its control unit to the
initial state and relocates its head with the lookahead to the beginning of the list.

DR-automata were used to study hierarchies of various classes of languages and for their
separations. Separation of determinism and nondeterminism is in great interest. In the
separation theorems particular languages play important role. This article is focused on
the language L — {am6 n | 0 < m < n < 2 • m}. Originaly, this language was considered as
a candidate for the separation of classes recognized by deterministic and nondeterministic
versions of DR-automata. In this article we show that determinism by itself does not disable
recognition of L by DR-automaton. The second feature that characterizes subclasses of
DR-automata that cannot recognize L is bounded deleting introduced in this article.

Key Words: DR-automata, separation of classes of languages, determinism, bounded delet­
ing.

Mathematics Subject Classification: 68Q45

1. Introduction
This article is devoted to the separation of two properties of formal languages which
are studied by means of deleting automata with restart operation (DR-automata).
Motivation for DR- automat a comes from natural language analysis and they were
introduced in [5].

A D .ft-automaton is a device with a finite state control unit and a head with a
lookahead window that moves from the left to the right along a finite list of items.
The Di?-automaton can change the state in its control unit after each move to the
right and it can also delete the item scanned by its head moving the head to the

Supported by the Grant Agency of the Czech Republic, Grant-No. 201/99/0236

112 Martin Prochazka

right neighbour of the deleted item. The DR-automaton can also execute a restart
operation that sets its control unit to the initial state and relocates its head with
the lookahead to the beginning of the list.

DR- automat a were used to study hierarchies of various classes of languages
and for their separations. In the separation theorems particular languages play
important role. The choice of proper separation language can expose the essence
of these separations.

In roots of formal language theory concrete languages and their features were
in a focus of study. It is evident when reading separation theorems contained in
[1] and [2]. Such a language often formalizes some properties of natural languages
(like English) and the result that this language does not belong to some class can
easily be translated back into natural languages. Natural language analysis was,
in fact, the main motivation for formal language theory and, as we have already
mentioned, it remains an important motivation for DI?-automata, too.

The style of this article resembles the style of separation theorems in articles
from the beginnings of formal language theory. Results of this article are presented
in the form L G L or L 0 L' (where £, C are certain subclasses of languages
recognized by DIt-automata) instead of the contemporary form L \ L1 / 0.

This style emphasizes the language we are focused on:

L=^ {amhn | 0 < m < n < 2 - r a } .

Originaly, this language was considered as a candidate for the separation of classes
recognized by deterministic and nondeterministic versions of DI2~automata. In this
article we show that determinism by itself does not disable recognition of L by DR-
automaton. The second feature that characterizes subclasses of DR-automata that
cannot recognize L is bounded deleting introduced in this article.

Let us give a short preview of this article:
DIt-automata, their deterministic version, and Di?-automata with bounded

deleting are defined in section 2.
Section 3 illustrates a relation of L to CFLand one subclass of DjR-languages.

Observations gathered in this section serves as a motivation for finding better sep­
aration line between automata that can and that cannot recognize the language
L.

Main results of this article are stated in section 4. There it is proved that any
D It-automaton both deterministic and with bounded deleting cannot recognize the
language L. But if we give up one of these properties L becomes recognizable.

2. Definitions and basic facts

Deleting automata with restart operation (DR-automata) serve as a tool for study
of subclasses of context-sensitive languages. They were introduced in [5].

We present definitions informally in the same way as in [5]; the formal technical
details could be added in a standard way of automata theory.

A deleting automaton with a restart operation, a DR-automaton for short, is a
device defined as a tuple M = (Q, E, k, I, go, QA)- It has a finite state control unit
(with the state set Q) and one head moving on a finite linear (doubly linked) list

On One Language with Connection to Determinism and Bounded Deleting 113

of items. The first item always contains a special symbol <f, the last one another
special symbol $, and each other item contains a symbol from a finite alphabet E
(not containing <f, $).

The head has a lookahead 'window' of fixed length k (k > 0); it means that
besides the current item, M also scans the next k right neighbor items (or simply
the end of the word when the distance to $is less than k).

A configuration of M is written as a tuple (u,q,v) where u G {A} U <j:E* (A
denoting the empty word) is the contents of the working list from the left sentinel
till (but not including) the position of the head, q G Q is the current state and
v G (<fE*$ U E*$) is the contents of the working list from the scanned item until
the right sentinel. The initial configuration with the word w G E* is of the form
(A,qo5^$) where go is a fixed initial state (and the head scans the left sentinel <f
with its k right neighbors).

A computation of M is controlled by a finite collection I of instructions. An
instruction is of the type

(q,au)-+(q',MVR) or (q,au) -> (q',DEL) or (q,au) -> RST.

Such an instruction is applicable when the control unit is in the state q G Q, the
head is attached to an item with a G E U {<£,$} and scans also the lookahead u G
G (EU{$})*, |u| < k (where |u| denotes the length of u); its meaning is in the case
of:

MVR - to change the current state to the prescribed state q' and to move the head
to the right neighbor item,

DEL - to change the current state to the prescribed state q' and to delete the
scanned item while placing the head to the right neighbor of the deleted item
(here a ^ { t , $ }) ;

RST - to restart, i.e. to switch to the initial state q0 and to place the head on the
most left item (containing <£).

We suppose that each state q G Q is either nonhalting - for any (possible) a, u
there is at least one instruction with the left-hand side (g, au) - or halting - there
is no instruction with q in the left-hand side. The set of halting states is composed
from the set QA of accepting states and the set of rejecting states. According to the
state, we also classify configurations as nonhalting or halting (accepting, rejecting).

Definition 2.1. (Deterministic F>I?-automaton) A DR-automaton is deterministic
(det-DR-automaton for short) if there are no different instructions with the same
left-hand side.

In the usual way, we define the (derivation) relations h ^ , h *̂ on the set of
configurations of M. A word w G E* is accepted by M if there is a computation
which starts in the initial configuration with w and finishes in an accepting con­
figuration, i.e. if (A,go 5 ^$) ^ *M('WI^QIW2) where q G QA- L(M) C E* denotes
the language consisting of all words accepted by M; we say that M recognizes the
language L(M).

Note that when starting with an initial configuration (A,ao,<tw$), the configu­
ration following a restart (RST) is again an initial configuration (\,qo,$w'%). We

114 Martin Prochazka

will suppose that the (new) word w' is always strictly shorter than w (something
was deleted out of w) - this can be easily ensured at any M by 'remembering' the
performing of a DFL-operation.

Under the mentioned condition, any computation of a DR-automaton is finite
and proceeds in certain cycles: by a cycle we mean the (part of a) computation
starting in an initial configuration and finishing in another initial configuration or
in a halting configuration while not entering an initial configuration in between.
The cycle finishing in a halting configuration is a halting (accepting or rejecting)
cycle.

We write u => MV to denote the fact that there exists a cycle of M starting in
the initial configuration with the word u and finishing in the initial configuration
with the word v\ the relation => *M is then the reflexive and transitive closure of
=> M (u => *Mv means (\,q0,u) h *M(\,qo,v)).

The next two obvious claims express the basic properties of the relation => *M.

Claim 2.2. (The error preserving property (for all D.R-automata)) Let M be a

DR-automaton, and u => *Mv for some words u, v. If u $. L(M), then v $ L(M).

Claim 2.3. (The correctness preserving property (for dei-LJjR-automata)) Let M
be a deterministic DR-automaton and u => *Mv for some words u, v. If u G L(M),
then v G L(M).

Definition 2.4. (DIt-automaton with bounded deleting) A DR-automaton M is
a DR-automaton with bounded deleting (DCR -automaton) if there is a constant c
such that at most c items of the working list are deleted in any cycle of M.

In the proofs it is often useful to assume a L)I?-automaton M in the weak cyclic
form - i.e. any word of L(M) longer than k is not accepted by a one-cycle compu­
tation (there is one restart at least). The assumption is justified by the following
claim (for proof see [4]).

Claim 2.5. For any DR-automaton M, with lookahead k, there exists a DR-
automaton M', with some lookahead n, n > k, such that M' is in the weak cyclic
form and L(M) = L(M').

We want to recall a definition of restarting automata as a special case of DR-
automata. For this aim, it is technically convenient to consider the following inno­
cent generalization of the basic definition: the form of instructions is generalized
to

(q,au) —> (qf,uj) or (q,au) —>> UJ,RST

where a; is a sequence of at most \aw\ (occurrences of) operation symbols MVR
and DEL. Besides the state change it prescribes a sequence of moving right and
deleting to be performed (and finished by restarting in the second case).

This can be easily simulated by the original Di?-automaton. Nevertheless it en­
ables the following definition of the restarting automaton, R -automaton for short,
which was introduced in [3]: just put the restriction that u does not contain DEL

On One Language with Connection to Determinism and Bounded Deleting 1 1 5

in the instructions (q,au) -> (q1,to), and it does contain DEL in the instructions
(q,au) —> UJ, RST.

The weak cyclic form claim (2.5) holds for R -automata as well (cf. [4]). In­
specting the proof of this claim we can see that its construction preserves both
determinism and bounded deleting.

For brevity, we introduce the following notation. DR denotes the class of all
(nondeterministic) deleting automata with a restart operation. DCR denotes the
class of all .DJR-automat a with bounded deleting. Prefix det~ denotes the determin­
istic version. For any class A of automata, C(A) denotes the class of languages
recognizable by automata from A, and an A-language is a language from C(A).
CFL denotes the class of context-free languages, DCFL the class of deterministic
context-free languages.

3. L, CFL and £(R)
In this section we illustrate a relation of L to CFLand one subclass of DR-
languages, namely C(R). Context-free grammars have a property that could by
considered as a complement to bounded deleting. This property could be called
'bounded inserting1 or 'bounded pumping1 and it has a close connection to pumping
lemma. Therefore, the relation of L to context-free languages is discussed, too.

Most of up to date studied subclasses of DR- automat a feature bounded deleting.
There are nondeteriministic automata from these subclasses that recognize L in
contrast to their deterministic versions. This is also a reason why determinism was
viewed as a key feature that disables recognition of L. In section 4 we will see that
this is not the case. We have to add some other restriction to determinism, namely
bounded deleting.

In this section we prove the statements bellow.

Le CFL

LeC(R)

Assertions that L $ C(det — mon — R) = DCFL, L G C(mon — R) are direct
consequences of statements above or could be proved in the same way. For definition
of monotonicity (abbreviation mon) and its basic properties see [4].

3.1. L e CFL
It is easy to see that L G CFL. Let us consider a grammar with the following rules:

S -> aSb | aSbb | A

Let the rule S —> aSb is applied just m-times and the rule S -* aSbb just n-times
in the derivation of a word w. Then w = a

m + n b m + 2 n
 a n c l w G L.

On the other hand, any word a m b m + n , where 0 < n < m can be derived from S
using the rule S -> aSb (m — n)-times and the rule S —> aSbb n-times.

116 Martin Prochazka

3.2. L e £(R)
A nondeterministic It -automaton M that recognizes L is based on the same idea
as a context-free grammar generating L. Such an automaton accepts words A,
ab, abb, and aabb in one cycle. All other words of length less then 5 are rejected
immediately. At least one cycle is executed on all words with a prefix from aa+bbb.
The automaton moves along the prefix of symbols a until aabbb is scanned and
reduces aabbb nondeterministically into either abb or ab. All other words of length
at least 5 are rejected in one cycle.

It remains to check that M recognizes L. It is easy to see that all the words
accepted in one cycle (A, ab, abb, and aabb) are just ail the words from L of the
length less than 5. Any word a m b m , where m > 2 can be reduced by M to the
word am~lbm~l which is from L. Any word ambm _ f n , where m > 2 and 1 < n < m
can be reduced by M to a

m~lbm~l'¥n~'1 which is from L, too.
The word w = ambn can be reduced into either am~lbn~l or am~lbn~2. If w $ L

(i.e. m > n or 2 • m < n) then none of the shorter words is in L. Moreover, any
word from aa+bbb+a{a, b}* contains a subword ba after any reduction executed by
M so that it remains out of L.

4. Determinism and bounded deleting
We prove that L cannot be recognized by any deterministic I7I?-automaton with
bounded deleting but if one of these features is omitted then there is an automaton
that recognizes L:

L є £(DCR)

L & £(det-DcR)

L Є £(det-DR)

4.1 . L e £(DCR)
We know that L ~ £(R). Any It -automaton removes items from the working list
within a single i?5Toperation in one cycle. Therefore a number of deleted items
in each cycle is limited by k + 1, where k is a size of its lookahead. It implies that
£(R) C £(DCR).

4.2. L g £(det-DcR)
Before we start to prove the statement from the title of this section we will introduce
three notions those will help us in the rest of this section. These notions are a loop,
a deleting loop, and a full-scan form. A loop is a part of computation that starts
and ends in the same state and with the same scanned symbols. A loop length is
a number of operations executed in the course of a loop. A deleting loop is a loop
during which at least one DEL operation is executed. A DR-automaton is in the
full-scan form if it restarts only when the right sentinel is scanned by its head.
For any DI?-automaton an equivalent DI?-automaton in the full-scan form can be
constructed. The construction is the following: Add a special new state qRST and
substitute the execution of RST operation with transition into this new state. In

On One Language with Connection to Determinism and Bounded Deleting 117

this state an automaton is allowed only to move to the right and restart when the
right sentinel is scanned by its head.

Let us turn our attention to the proof of the statement L $ C(det-DCR). We will
suppose that M is det-DcR -automaton recognizing the language L with s states
and the lookahead size k and that M is in the full-scan as well as the weak cyclic
form. We will show that this assumption leads to a contradiction.

We study a behavior of M on words from I?, C a*b* such that M executes at least
one loop on symbols a and one loop on symbols b during a cycle on any word from
It. This is sufficient due to the fact that we can construct a det-DR-automaton
equivalent to M which behaves exactly like M on words from It, accepts in one
cycle all the words from L f\ R (which is a finite set), and rejects in one cycle
all other words (they constitute a regular set). So, there is a det-DR-automaton
accepting all the words from Lf) R and rejecting all the words from It \ L iff there
is a de^-D.R-automaton recognizing L.

On any word w with the number of both symbols a and b greater than s -f k -f 1
the computation of M on w has the following course:

• M starts on w and executes a loopless computation on a prefix of A\ symbols a.
During this loopless computation there remain x\ symbols a in the working list.

• The loopless computation on symbols a ends by entering the loop. (Otherwise,
M is not in the full-scan form.) This loop is not a deleting one, because of the
bounded deleting. The length of this loop is ta.

• M leaves the loop when the first b is scanned. M cannot leave the loop earlier
because of determinism. Depending on the state in the moment when the first
b is scanned the first time (let's suppose that this state is qa) M makes two
decisions:

1. How many out of k scanned symbols a it will delete?

2. How it will continue the computation on symbols b?

The state qa can be derived from A2 - the number of steps executed by M
between following two configurations:

o the last configuration in which M is in the first state of the loop and only
symbols a are in the lookahead and

o the first configuration in which first b appears in the lookahead.
Therefore, a number of symbols out of last k symbols a that remain in the
working list is a function of A2. This number will be refered as x2(A2).

• M continues by a loopless computation on symbols b of the length B\(A2) after
which y\(A2) symbols b remains in the working list.

• The loopless computation on symbols b ends by entering the loop. (Otherwise,
M is not in the full-scan form.) This loop of length h(A2) deletes no b from the
list.

• M leaves the loop when the right sentinel is scanned. M cannot leave the loop
earlier because of determinism. The number of steps executed in the course of
the last unfinished loop is B2 and together with A2 it determines y2(A2,B2) -
the number of symbols that remain in the working list out of k last symbols b.

118 Martin Prochazka

The cycle of M has the following form:

aA1 + (£a-m+A2) + kbBl(A2) + (£b(A2).n+B2) + k _^

-^ axi + (£a-m+A2) + x2(A2)^yi(A2) + (£h(A2)-n+B2) + y2(A2>B2)

where A2 £ {V . . . , * 0 } , B 2 € { 1 , . . . ,4 (-4 2)} .

The description of the cycle for words with enough symbols a and b can be fur­
ther simplified using the least common multiple of loop-lengths £a,£b(l),-" ,h(£a)-
When we put

£ =LCM(£aJb(l),... Jb(£a))

R = fc + m a x (A i , B i (l) , . . . ,J5i(4))

the cycle can be describe in the following way:

a£m+R+Afo£n+R+B _^ a£m+x(A)j)£n+y(A,B)

where x(A) <R + A, y(A,B) < R + B and A,B € { 1 , . . . ,£}. Values of A2 and
H2 can be easily reconstructed from values of A and B.

Equivalence (1) below expresses both error and correctness preserving properties.

£-m + R + A< £-n + R + B <2-(£-m + R + A)

t (1)
£ - m + x(A) <£-n + y(A, B) < 2 • (£ • m + x(A))

Let us consider a special case of a cycle of automaton M when

R + A = £-z

R + B = £. z

x(A) =£.z-Aa

y(A,B)=£.z-Ab

for some z and A a , A& > 0. Because both A and B ranges between 1 and £ it is
obvious that there are values of these variables such that R + A and R + B are
both the same multiples of i. After substitution into (1) and several steps we get
a condition (2) for our special case.

m <n <2 . m + z

(2)
A & - A a , A 6 - 2 - A Q

\-m<n<2-m + z-\—

This condition holds for all m,n > 1. The last step eliminates m and n from
inequalities in (2). We get the error and correctness preserving properties for our
special case in the form of equations (3).

On One Language with Connection to Determinism and Bounded Deleting 119

Д ь - A a = 0 =
Ax Дo

The only possible choice for A a and A;, is

A a = A6 = 0

Therefore, M executes no DFLoperation on all words from the infinite set

(3)

{« ťm+R+Aфn+R+A m, n > 1 and 1 < A < i and (R + A) = 0 mod Є}.

This is a contradiction with the weak cyclic form of M. So, there is no det-DcR
-automaton such that it recognizes the language L.

4.3. L G C(det-DR)
We construct a det- DR-automaton M that recognizes the language L. M works in

the following way:

® M executes a cycle

a2-m+xlb2-n+Уl ^ am+x2Ъn+y2 (4)

for all m,n > 1, £1,2/1 G {0,1}. Values of x2 and 1/2 are determined from
values of x\ and Hi as stated in the following table:

X\ 0 0 1 1

î/1 0 1 0 1

Ж2 0 - 1 0 0

02 0 - 1 - 1 0

• M accepts in one cycle words A, ab and rejects in one cycle all the words con­
taining a subword ba, and words from a + , aa+b, b+, and abbb+.

Now, we will verify that cycle (4) preserves both errorness and correctness of
the word the automaton M reduces. In the same way as in the previous subsection
4.2 the condition (5) expressing error and correctness preserving properties for the
cycle (4) will be simplified obtaining an equivalent condition (6).

2 • m + xi < 2 • n + yi < 2 • (2 • m + xi)

m + x2< n + y2 < 2 - (m + x 2)

Xl^yi+m<n<2-m+2x'-yí

2 ~ ~ 2

t
x2-y2+m<n<2-m + 2-x2-y2

(5)

(6)

120 Martin Procházka

Resulting condition (6) is equivalent to the following conjunction of two equa­
tions (7).

xi - î / i
= X2 - 2/2 and

2 • Xi - yl

2-X2-У2 (7)

Table 1 shows that M satisfies condition (7). Therefore, M fulfills correctness and
error preserving properties on words from {ambn \ m,n > 2}.

Xi 0 0 1 1

2/1 0 1 0 1

X2 0 - 1 0 0

У2 0 - 1 - 1 0

r^i 0 0 1 0

X2 - У2 0 0 1 0

\±*±pĽL\ 0 - 1 1 0
2-X2-У2 0 - 1 1 0

Table 1: Verification of correctness and error preserving properties.

5. Conclusion

We presented the separation of two properties of formal languages which are studied
by means D R- automat a. In this separation the language L = {ambn | 0 < m < n <
< 2 m} was used. Originaly, this language was considered as a candidate for the
separation of classes recognized by deterministic and nondeterministic versions of
D R- automat a. In this article we showed that L is recognized by det-jOI^-automaton
but cannot be recognized by der-L>I?-automaton with bounded deleting that is
introduced in this article.

References

[1] Chomsky N.: Linguistics, Logic, Psychology, and Computers; Computer Pro-
gramming and Artificial Inteligence (an intensive course for practical scientists
and engineers), Summer session, University of Michigan, 1958, pp. 424-454

[2] Chomsky N.: Formal Properties of Grammars; Handbook of Mathematical

Psychology, 2, New York, Wiley, 1963, pp.323-418

[3] Jančar P., Mráz F., Plátek M., Vogel J.: Restarting Automata; Proc. FCT'95,
Dresden, Germany, LNCS 965, Springer 1995, pp. 283-292

[4] Jančar P., Mráz F., Plátek M., Procházka M., Vogel J.: Restarting Automata,
Marcus Grammars and Context-Free Languages; in: Dassow J., Rozenberg
G., Salomaa A. (eds.): Developments in Language Theory II; World Scientific
Publ., 1996, pp 102-111

[5] Jančar P., Mráz F., Plátek M., ProcházkaM., Vogel J.: Deleting Automata with
Restart Operation; Proc. of the З г d International Conference Development in
Language Theory, Thessaloniki, July-26 1997, edited by Symeon Bozapalidis,
Aristotle University of Thessaloniki, pp. 191-202

On One Language with Connection to Determinism and Bounded Deleting 1 2 1

Author's address: Char les University Prague, Dept. of Theoretical Computer Science, Malo-
stranske namesti 25, 118 00 Prague 1, Czech Republic

E-mail: martin_prochazka@hotmail . com

Received: August 19, 1998

		webmaster@dml.cz
	2013-10-22T11:09:46+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

