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Rational and irrational series consisting of special 
denominators 

Jaroslav Hanči 

Abstract: The main result of this paper is a criterion for irrational series which consist 
of rational numbers where the denominators are special numbers and numerators are not 
so much high. If we little increase the numerator then the example for rational series is 
included also. 
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1. Introduction 
Erdos and Straus in [3] proved that if A is an integer greater then one and {cn}n^-1 

is a sequence of integers such that ]T]nt-i lcn|-4~2n < oo then the number 

« = £ . A2" + cn 
n = l 

is irrational. 
Mahler introduced the most general method of proving the irrationality and 

transcendence of sums of infinite series. A survey of these results can be found 
in Nishioka's book [4]. In 1987 in [1] Bundschuh and Petho proved the following 
theorem. 

Theorem 1. Let {Rn}n%l be the second order linear recurrence with characteristic 
polynomial x2 — A\x — 1 where A\ is a positive integer and with RQ — 0 and R\ = 1. 
Assume that {bn}n

<L1 is a sequence of integers such that \bn\ is not a constant for 
large indices and there is a positive real number e such that for every sufficiently 
large n 

|&n| < / & - . ' . . 
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Then the number 
oo 

£ Ь„ 

n=l R2n 

7 1 = 1 

is transcendental. 

In 1999 in [2] Duverney proved the following theorem. 

Theorem 2. Let /3 be a positive rational number and 7 be a real number with 
0 < 7 < 2. Assume that {un}n

<Ll, {an}™^ and {bnJn^i a r e sequences of nonzero 
integers such that 

lim un = 00, 

n—• oo 

Un+1 = #U n + o(un), 
log | a n | = o(2n) 

and 
l o g | 6 „ | = o ( 2 n ) . 

Then a = 5Zn=i F^u~ Z5 a ra^ona^ number if and only if there is no such that for 
every n > no 

2

 a n+l&n , a n + 2 b n + l 
U n +1 = PUn 7 Un + . 

a n 0 n + l POn+lt>n+2 

The main results of this paper are Theorems 3 and 4. Theorem 3 deals with a 
criterion for the irrationality of rapidly convergent series. The terms of this series 
consist of special rational numbers which do not depend on arithmetical properties 
like divisibility. Theorem 4 presents several special rational numbers. 

2. Irrational series 

Theorem 3. Let A and B be two algebraic numbers with 1 < \B\ < \A\ and 
such that A2 and B2 are positive integers. Assume that {bn}n%1 is a sequence of 
integers such that 

l i m i n f b n + 1 ~ 2 y 6 n = 0 (1) 
n-»co A2 

and for every sufficiently large n 

\bn+l-2B2nbn\<A2n +B2n. (2) 

Then the number 
00 , 

E on 

A2n + B2" 
П=ì 

is rational iff there exists a rational number D such that for every sufficiently large 
number n 

bn = D2nB2n. (3) 
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Proof 1. Sufficient condition. Let (3) holds for every n with n > no- Then we have 

= Y ^ Qn f> bn{A2n
 zBrj, 

a 2__ Jpn
 + B2n 2 _ ^2" + * _ D2»+i ~ 

n = l n = l ^ 

bn (___+____-_____) _ .A b _ _ 2bnB2" 
A 2 „ + l _ ß 2 „ + , 2 - Л _ 2 " _ _ 2 n " — + î _ ß 2 

n = l n = l 
E _-nyy_ -t- __> - LD ) _ - - > / o n ZOn__r 

4 2 n + i _ R 2 n + 1 ~ Z . w ^ 2 - _ R2n - " - _ - " Í E ^ + T ) 
n = l 

0 0 L 

E 0n+1 ~ 
A2n + l _ 2 _ B 2 ' /__ Д 2 " + i _ g î ч 

n = l 

_L_ 1 V b n + * ~ 2 b " B 2 " , V b n + i - 2 b n B 
+ Z _ Л2" + i _ R2n + г + Z _ TJnTT-_ 2 _ B 2 .__• A 2 " + i _ B 2 n + > _ _ , A 2 „ + , _ B 2 n + , -

n = l n = n 0 + l 

bi y . , b n + 1 - 2b n B 2 " .2-, D 2 " + 1 B 2 " ^ - 2 D 2 " B 2 " B 2 " 
^2 _ B 2 + Z_ A2n + > _ B 2 " + i + Z_ A 2" + » _ B 2 " + ' 

n = l П=Пo 

n 0 b\ xг* bn+l - 2b n B 2 " 
+ 2 _ Л2n + i _ 2 _ B 2 ___ A 2 n + , _ B 2 „ + , • 

n = l 

Thus the number a is rational. 
2. Necessary condition. Assume that for every rational number D there exist 

infinitely many n such that b n / D2nB2n. From this we obtain that for infinitely 
many N 

b N + 1 - 2 b N B 2 N 7- 0. (4) 

Let a be a rational number. Then there exist two integers p and q with q > 0 such 
that a — E . Now we have 

_ P _ A b___ .22,_in___________) = 
Q 9 s - 4 2 " 4 - 5 2 " h n"_i(^+B2 i) 

_1 -p ___ 
_ R2~ Z_ П n 

Ьn{AT - B 2 " ) 

A 2 - B 2 ^ П " = i ( ^ 2 J + B 2 J ) 

_ 1 y _ _ _ _ _ _ _ _ 
A2 - ß2 è i Щ_í (A2' + в2 )) Щ=i И 2 ) + в 2 )) J 

. _ _ - _ - . b n + 1 - 2 B 2 " b n Jj- Ҳ—̂  Ь n + 1 

-ß2èiШ_i( A 2 _ B 2 A2-B2 ^ r _ r i j = i ( ^ 2 J +B23)' 

From this we obtain that for every positive integer M the number 

M M h r , R 2 n l 

IM = (II(A2J + B»MP{A> - B2) - .__ - , ^ r ^ ^ ) = 
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E jWi ~ 2B2nbn 

Tln (A2* 4- /?2 iC * ' 
n=M+l Hj=M-fl(^ + i* J 

is an integer. Equation (1) implies that there is a positive integer S such that 

_ _ _ - 2 i? 2 S M + 1 „ 1 ,„, 

— X - - + B - ' — K ~q ( 6 ) 

FVom (2), (4), (5) and (6) we obtain that 

\r i i V^ bn+\ — 2B bn 

lIs-ll=q]hnu(A2'+B2i)1-
_ _ _ - 2/J2"6n | v ^ | 6 n + i - 2 / J 2 " | 

9 ^ + B 2 S + 9
n _ - + 1 n ; = 5 M 2 , + ^ ) 

J6_____-J2_____ . ^ A2" + B 2 " - 1 
Í A2s + B2s + ? n Z + i n ; _ 5 + 1 ( ^ + ^ ) -

„!______ __-_ __ _ . -, / ^ ч 

9 A - ' + . 9 - » < L ( ? ) 

lb5-f i-2H 2 ^ |-M 
7 A25 + H25 

Condition (4) implies that there is a least integer P with P > S such that 

bP+1 - 2 £ 2 P b P 7- 0. 

Prom this, (2), (4) and (5) we obtain that 

II I — I V ^n-f i ~ 2B bn __ ^ frn-f I - 2B2 bn 

15-1'"9l h RU(A2i+B2i) l ~ 9 l h u"=s(
A2i+B2i) 

q\bP+1 - 2 B 2 P 6 P | .22, \bn+1 - 2B
2"bn\ 

> q\oP+1 - m- 0p\ _ y , |___ - zw 0_| 

n f = 5 ( ^ + B 2 1 ) g„=v+i n ; = 5 ( ^ + * 2 o 
_____________ -p ____________ 
nf=5^2i+B») \^+1 uu(A2i+B2i)" 

_ ] _ _ _ - 2 ^ 2 P 6 P | - 1) 

n;=s(^+I?n - (8) 

Inequalities (7) and (8) contradicting the fact that the number Is~\ is integer, o 

Example 1. Let A and B be two positive integers with B < A and n(n) be the 
number of primes less then or equal ton. As an immediate consequence of Theorem 
3 the numbers 

^2"- , (n ) + ^"> + n n ~A2«-*(n)+A2*<"> +&"<«> 

2-< A2*+i +B2n+1 2-< A2n+1 + B2n+1 

n = l n = l 

are irrational. 
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3. Rational series 

Theorem 4. Let A and B be two algebraic numbers with 0 < |H| < |̂ 4.| such 
that A2 and B2 are integers and no be a positive integer with no > 1. Assume that 
{^nlnlLi i>s a sequence of integers such that for every n > no 

bn+l = ] T ( A 2 J +B2' - l ) 2 " - ^ B 2 " + 1 - 2 3 + 1 + 6 n o 2 " - " « + 1

J B 2 n + ' - 2 n ° . (9) 
j ~n0 

Then the number 
oo , 

E On 

A2n + B2n 

n = l 

is rational. 
Proof From (9) wre obtain that for every positive integer n with n > no 

bn+1 -2B-"bn = Y^(A2' +B2' - l ) 2 - - J B 2 n + ' - 2 J + 1 +bnoT-"°+,B2n + l-2n°-
j—n0 

J2 (A2' + B2' - l ) 2 " ^ B 2 " + l ~ 2 , + 1 - 602"--»+1J32n + ' - 2 "° = 
j = n 0 

A2n+B2"-1. 

This and the definition of the number a imply 

= f^ bn _™bn(A2"-B2n) = 

a ^ A2"+B2" 2 - A2"+' - B2"+i 

n = l n = l 

V b n ( A 2 " + B 2 " - 2 B 2 " ) _ -2, bn 2bnB
2" 

A 2 n + i _ Б 2 n + i l_, A2n _ Ð2n A2n + i _ в 2 n + i 
n = l n = l 

b\ Y > 6n+i - 2bnH2" 

A2 - B 2 ---< ^2-+' _ J52-+' 
n = l 

&1 Y > on+l ~ ^OnB2" 

A2 _ B2 + Z v ^ 2 n + i _ £ 2 « + - ' 
n = l 

Thus the number a is rational. o 

Example 2. As an immediate consequence of Theorem 4 we obtain that the number 

oo v-^n K2J o n - j 

E - ^ = 1 D z 

5 2« + i + 1 
n = l 

is rational. 

Open problem 1. Let d(n) be the number of divisors of the number n. Is the 
number 

™ 52 n ~ 1 +d(n ) + 3 2 T l ~ - + d ( n ) 

L—J 5 2 " + 3 2 " 
n = l 

irrational? 
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