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Theory of Influence of Order-Disorder Transforma-
tions on the Electrical Resistivity in Alloys.
- Zdendk Matyas, Praha
(Wills Laboratory, University of Bristol.)
(Received February 3, 1947.)

§ 1. Introduection.

It is well known that in many binary alloys the atoms are
arranged in an ordered manner at low temperatures, whereas at
high temperatures the two sets of atoms are. distributed at random
over the lattice. As the temperature is raised the transition from
the ordered to the disordered state manifests itself in many ways.
The specific heat and the electrical resistance, for exemple, behave
anomalousely. The first method of approximating to the partition
function of an alloy, and hence of obtaining its properties, was
given by Bragg and Williams.*) This theory on order-disorder
transformation was based upon the consideration of the ordering
as a co-operative phenomenon characteristic for large assemblies
of atoms, i. e. the long distance order. Bethe,**) on the other
hand, has developed the statistical theory based on the local
order, taking into account the only mutual interactions between
the neighbouring atoms. It is difficult to apply his statistical
problem here and furthermore, the physical properties now under
" consideration, such as electrical conductivity, should mainly depend
on the order at long distances, showing a rapid change below the
transition temperature. Hence, for the present purpose, we have
adopted the theoretical results of the Bragg and Williams’ sta-
tistics on superlattice. :

The present paper is almost entirely concerned with the
binary alloy CusAu. The X-ray analysis shows that this alloy
has a face-centred cubic structure like pure gold or copper, and
that, in the superlattice state, the gold atoms occupy the corner

*) Proc. Roy. Soc. A vol. 145, (1934), p. 669; A vol. 151, (1935), p. 540.
**) Proc. Roy. Soc. A vol. 150, (1935), p. 552.
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positions of the elementary cells, while the copper atoms occupy
the remaining positions of the face-centred cube, as shown in
Fig. 1. This crystal structure remains unchanged during the order-
disorder transformation.

Let N be the total number of atoms in the crystal and F,N
(F4 = }) the number of gold atoms (Au) to be distributed among
these N lattice points. The number of copper atoms (Cu) is therefore
(1—F4 ) N=FgN (Fp=13}). For complete disorder the proba-

“Cuhu CuyAu

Fig. 1.

bility of any one of the N positions being occupied by a gold atom
is F4 and that by a copper atom is 1 — F, = Fp. In the perfect
ordered alloy on the other hand, both the Au and the Cu atoms
form their own superlattices, the two lattices interpenetrating
with each other. Let the number of lattice points in the gold
superlattice be F4N (x — sites), then the number in the copper
superlattice is (1 — F4) N (f-sites).

- When the perfectly ordered arrangement is disturbed, some
of the gold atoms will move into g-sites, displacing an equal number
of copper atoms, which move into «-sites. We describe such si-
tuations by stating the fraction of x-sites still occupied by ,,right‘
atoms; let this fraction be 7,. Then the degree of superlattice order
(Bragg-Williams long distance order) @ may be written

r“-—.LFA_Ta——FA
1—F, ~ Fs (1)

We see that Bragg-Williams’ order parameter is so defined that it
is unity for perfect order and zero for random state.

" In an equilibrium state defined by @ let V be the energy
which is neccessary for the interchange of two neighbouring atoms
from a position of order to one of disorder. Then ¥V is a function
of @. Bragg and Williams made, for the sake of simplicity, the

D =

Jollowing assumption:

V@) =V®, . (@
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where V; is the energy required for the.creé,,tion of a pair of ,,wrong‘
atoms in a perfectly ordered alloy. By an elementary consideration
of statistical mechanics we obtain the following condition of
equilibrum*): ) '

1 . 1 vV
wher k is Boltzmann’s constant.

Eliminating 7 in the simultaneous equations (2) and (3),
we obtain the equilibrum value of @ corresponding to each value
of T'. The method of solution is a graphical one and was given by
Bragg and Williams.**) The values of Bragg-Williams’ parameter

@ for different temperatures obtained in this way are given in
table I.

§ 2. Influenee of order on the electrical resistivity of CusAu alloy.

A. Experimental results.

Fig. 2 shows the effect of uniform long distance order on the
resistivity of a CuzAu alloy. At room temperature the specific

15.109
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resistivity of the rapidly cooled disordered alloy, which is free.
from large volumes 'of‘ long distance order, was found to be

*) Bragg-Williaros: loc. cit.; Nix-Shockley: Rev. of Mod. Physics,

Vol. 10, (1938), p. 16.-
*#+) Bragg-Williams: loc. cit.
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11,4.10—%ohm . cm; on the other hand an alloy cooled suffi-
clently slowly to posses a uniform scheme of long distance order

of high degree, has a specific resistivity of 3,9.10—%ohm.cm.
The smooth curve below shows the equilibrium resistance-tempera-
ture curve of the alloy with coherent schemes of long distance
order.*) We see that upon the normal linear dependence on
temperature there is superimposed a rapidly increasing rise termi-
nated by a discontinnous jump at the temperature 372° C. Thus
the difference of ordinates between the line @K', **) which is para-
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Fig. 3.

llel to QK and the equilibrium curve, mentioned above, give the
anomalous specific resistance of the alloy due to the order-disorder
transformation. The value of this anomalous specific resistivity of
Cu;Au for different temperatures are given in the table I. (gexperiment!)
and in the figure 3.

B. The theory of resistance of alloys.

Following the general quantummacanical theory of electrical
resistance as formulated by N. F. Mott,***) we may express the
resistivity as follows: the electrical conductivity of metal may be
written in the form:

g=—nr,

*) Jones, Sykes, ‘Proc. Roy. Soc A vol. 166 (1938) p. 379. - -
*#*) Print Q’ denontes the specific resistance of a perfectly ordered alloy
at zero temperature.
2‘;;) Mott; Theory of the properties of Metals a.nd alloys, Oxford 1936,
p-
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where 7 is the ,,time of relaxation‘, equal to half the time bet_ween
collisions, NV is the effective number. of free. electrons per unit
volume, and m, e is mass or charge of the electron respectlvely,
hence for the resistivity we have

m 1

Net 7°

Q:

% may be also interpreted as the probability per unit time that

an electron makes a collision, or is scattered. We know further
that according to quantum mechanics, electrons will move through
a perfectly periodic field without being scattered at all; in a pure
metal or perfectly ordered alloy, the only pertubations from the
perfect periodic potential in which the conduction electrons move,
are due to the thermal vibrations, which give rise to a scattering
probability p; (say), proportional to the temperature. In the solid
solution or disordered alloy there will be a further departure of
the field from periodicity in the places wihich are occupied by
foreign atoms or atoms in wrong positions and hence there will
be a further scattering probability p, independent of the tempera-
ture. It may be shown that these probablhtleq are mdependent of
one another;*) we thus have

9=N—ez(pe+po)

and hence for the anomalous resistivity of alloy due to the order-
disorder transformation

Aotranst = Net Do- (1)

, . N

We know that in pure copper or gold there is one free electron

per atom; we can thus suppose, that in the formula for Aggane. in

the case of alloys Cu-Au, the effective number of electrons per

unit volume is identical with the number of atoms per unit volume.

On the other hand p, is given by the well known formula:**)

fP(z?) (1 — cos &) sin 0 27 dd, (2)

where P(#) is the probablhty per unit tlme that an electron is
scattered through the solid angle dw; P(#) is assumed to be inde-
pendent of the direction of motion of the electron. Thus we see
that we have to calculate the probability P(#) for any state of
disorder of alloy; and to do this we must know the pertubation
potentlal due to the atoms in wrong posmons '

*) Mott; loc. cit.; p. 288 and 301.
**) See for exemple Mott, loc. cit., p. 262.
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" €. The ‘pertubation potential. n

~In order to determine this pertubation potential we first take
pure gold or copper. Following Wigner and Seitz*) we fill up the
whole space with polyhedra, one surrounding each atom, in the
following way: for the face-centred -structure we draw planes
bisecting the lines joining each atom to its nearest neigbours and.
we thus obtain a dodecahedron surrounding each atom. We denote
the potential energy of a valence electron in each cell by Vu(r)
in pure copper and by V,.(r) in pure gold and take them equal
to the potential energy of the free singly chargend ion of copper
and gold respectively.

- 'We know that the wave function for the lowest electronic
state u(r) or u'(r), in the two pure metals, satisfies the Schrodinger
equation:
: 8n m

Viu + (E_VCu)u—O

and - : )

8
V' + sz( —Van)u' =0

and also fulfiles the following condltlons on the boundary of the
polyhedron

ou’ ou'
_é’l—?, =0 or _871, = O, . (4)

where ;—% denotes differentiation normal to the bounding blane

For any other occupied electronic state with wave number -
f in pure copper we shall assume the wave function to have the
form: A
’ W = u(r) 60, (5)
where u(r) is mdependent of f. For the energy of the f-state we
obtain for pure copper:

By — f P [———v + VCu(r)] Ydr,  (5a)

. wluch reduces to. Ey = E, + h?k?/8n*m. In the case of pure gold we
ha.ve similar relations:. . :

B = f Pir [___ v+ VA“(r)] Wy dv = By + Wk 8ntm, (6)
.where ‘we ,assx;me, for the wave function yr the following form

Yy = u’(r) e‘“ v, » (6a)
') Phys. Rev. vol. 43, (1933), p. 804. ' :



The velocity of an electron in both cases is given:by the formula:

2 ht
b =7 grade By = 5o

The electrons behave, therefore, as though they atre free.
~ In the crystal of pure copper or gold as a whole we may write

: Yy = ettt U(x: Y, Z)
or ' o , ¥
’ '{,! = ¢t U’(x: Y, Z),

where U is equal to u(r) within each polyhedron in pure copper,
and U’ equal to u’(r) inside each polyhedron in pure gold.

_ In the case of alloy Cu;Au we can proceede in a similar way.
To obtain the wave function of the lowest state, we have to solve
Schrodinger’s equation for each polyhedron with corresponding
potential energy of the free singly charged positive ion of copper or
gold and join these wave functions smoothly at the boundaries
of the cells.

Naturally it is d]fflcult to find the exact solution, but we can
show, shat ‘it is easy give a solution for slightly different case.
We suppose that within the polyhedron occupied by the copper
atom the potentxal energy of an electron is given by: Veu(r) —
— (B, — E'q) and inside the cell with gold atom the potential
energy is: VAu(r) + 2(EBy — E'y); the meaning of Viu, Vau, £, and
E’y being the same as before. We see now that the solution of
Schrodmger s equations with the boundary ‘conditions (4), corres-
ponding to the lowest state in such a alloy, is composed of the
wave functions u(r) or u '(r) respéctively, which are identical’ wwh
the wave functions in the case of pure gold or copper.*) In ¢
of the alloy as a whole we may assume, that the wave function of
any occupied state with the wave number ¥ has the form

et (r), ) (8)

where U(t) is equal to u(r) within each cell with copper atom and
equal to u’(r) inside each polyhedron with gold atom. The energy
of the lowest state inside the cell with copper atom-is now: ¥y —
'— HE, — E'y). The energy of the same state inside the cell with
gold atom has the same value and may be expressed by the formula:

s + # (B, — E'o). The energy of any other occupled state is -
gwen by formula: _ : .

*) We suppose that the values of the wave functions u(r) or u’(r), whic¢h
satisty the boundary conditions (4) and are hormalised to unity for the i ,
in the alloy Cu, A, uré practich fycavqaahm the boundaries of polyhedra. This
condition as ean be easily seen from numerical calculations is fulfilled.

.
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Bo— (B — B i (9)
Byt 3 (E—Hy)/ S

In our exact problem we must find the solution for the case
when the potential in the cells is equal to Vg, or V., respectively.
We therefore have to apply the ordinary pertubation method and
determine the exact energy and wave functlon of the lowest state.
The pertubing energy (4V) in a alloy is — 3 |(Ey — E'y)| within
the cells with gold atoms and + } | E, .y o | within the cells
with copper atoms. It is well known that the first-order energy
correction is equal to the mean value of the pertubing energy
operator averaged over the unpertubed, or zero-order, wave
function. If we normalize the wave functions u(r ) or w/(r) so that
the integrals: [u*u dv or fu'*u dr over each cells is equal to unity,
than we see that the first order energy correction 0F of the lowest
state-is zero in the alloy CuzAu for any state of disorder:

sp— [UXAVUdY N3 .} |By— B —N .3 |B— B _
[U*U [U*U dr

where N denotes the number of atoms in the alloy and fdz’ is
taken over the space occupied by the alloy.

We may now suppose that we have solved with sufficent
accuracy this pertubation problem in the case of the perfect ordered
alloy and we thus know the exact wave functions of any occupied
state. But for our purposes it is sufficient to take the wave functions
in the approximate form (8). Let us now calculate the change of
energy of the electron in the ground state when two neighbouring
atoms interchange their places. The change of this energy in the
cell which was former occupled by the copper atom is now:

Ju*(r) _I|E —“Ell'“ | By — B'y|) u(r) de* =
= — |B,— B, fu*r)u (r) de = — ]Eo Ey,

where [dr denotes the integration over the polyhedron correspon-
ding . to ‘the copper atom. We obtain the energy with the same
absolute value but opposite sign for the cell occupied formerly by
& gold atom. We see thus that by interchanging two atoms in the
right positions, we are introducing at each polyhedron the pertu-
bating potential + |EB,— E'y| or — |E, — E”o{ respectively, which
gives rise toa ‘scattering of the conducting electrons.- Accordingly
to our simplified assumptions (8) and (9), we suppose, that these
conducting electrons behave as though they were free-and thus
the calculation of the probability P(9) is- reduced to the problem
of the scattering of free electrons by the constant field + |B, — E',|
within eaeh' polyhedron occupied by an atom in wrong posmon

- %
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. D. The ‘scattering probability in the case of nearly ordered
allo

yWhen the alloy is nearly perfectly ordered the sca,ttenng
centres have very simple form. The interchange of the positions of
two neighbour-atoms gives rise to a perturbing potential which
is constant in both corresponding polyhedra and its value is
+ |By—E'| or — |By— E'y| respectively. We can thus say,
that in the case of nearly perfectly ordered alloy the scattering
centres are formed by scattering dipoles, which are formed by two
kind of constant pertubing potential, filling up two adjacent cells.
These dipoles are distributed at randon in the alloy.

Before we start with the calculation of the scattering proba-
bility we express it in terms of the area J(d) dw which an electron
must hit in order to be scattered into solid angle dw. If we de-
note by Jp(#) this probability calculated for a smgle scattering d1-
pole, then clearly

‘ P(9) = xNavd p(9), (10)
where # is a fraction giving the proportion of the scattering dlpoles
present, Na number of atoms per unit volume and v is the velocity
of the electron.

Now it is easy to calculate the scattering probability Jp(d).
First it will be convenient to replace our polyhedra by the sphere
with the same volume, since the polyhedra approximate closely to
spheres. Our scattermg dipoles thus consists of two identical
spheres, with radius a, in contact and inside one of these spheres
- the scattering potential is -+ |E,— E')|, within the other one
is — |E,— E’)|. For the  incident, unpertubed wave of a con-
ducting electron we may take With good approximation the plane
wave: ¢/t ag we are only: mterested in the electrons on the
Fermi’ surface.

In order to obtain the scattering probablhty Jp(3), we have to
find the wave function which consists of an incident wave and
scattered wave, so that, at large distances from the scattermg
dipole, which is assumed to be at the origin,

‘I’gNe’“‘)—l——f(ﬁ) o (1'1)

We then have Ip(®) = [f(F)P -

If, ‘moreover, IEO B < 3ma? (v is the velocity of the
conductmg electron i. e. on the Fermi’ surface), as is the case in
the applications consxdered the problem may be solved by Born’s
approximation, and we have*)

2
To(®) = 2—;&‘:—” f 1) AV del

*) Mott: loc. cit.; p. 87 and 88, eq. (3) and (5).

(12)




where f and ¥ (|f| = |F'|) means are respectively the wave
veotor of a colliding electron before and after the collision, AV is
the perbating potential of the scattering dipole and the integration
is over the space of the dipole.

We split now the pertubation potential in two parts: AV =
= AV, + AV,; AV, is equal to + |E, — E') inside the sphere
with the center at the origin and the radius @ and equal to zero
outside this sphere, whereas AV, is different from zero only in
the second sphere of equal volume, whose centre is-at distance of

T(I_l] = 2a) from the origin and AV, is equal there to — |E, — E'y|.
Accordingly, we can split our integral in (12) in two parts: a) A
first integral over the first sphere has the form :
|By— E'y| [e@¥9) dr;

we introduce the polar coordinates r, ©, ¢, with the polar axis
along with f — ¥, and after carrying out the. intergration we
obtain

_, ana® | By — E', | f(2ka sin 19),
where ‘ - (13)

f(x) = a3 (sin * — x cos x).
b) In the second integral we carry out the translation of the

origin of the coordinate system into the centre of the second

sphere 1 = 1’ + 1. This integral has then a form:
— |By— B 1D [eit—1,¢) dp =
— — |By— B',| 470 {(%ka sin }9) . ei¢—¥7D,
From our preceeding analysis we then obtain for the scatte-
ring- probability Jp(#) the following expression:

2 —
| T By — By 0 f(2ka sin §8) (1 — e0—0.T)
i

As the orientation of the dipoles are random in the alloy we can

2

take for |1 — e"(f*"'_l;lz in the last formula its avarage value over
all possible orientations. If we introduce the polar coordinates
with polar axis in the (f — {’)-direction, we have:
' 2 n
[ J2[1 — cos (4ka sin }3 cos x)] sin = da de
1— e""”*':_"’[" =00 , -

27 n -

[ [sinzdzdy
00

_9 sin (4ka sin 3)
- ( "~ 4kasin 19 )




<

We can thus wnte Jp(®) in the form:

(@) = {8;’2’" By — B as}”fstzka sin 49) (2 2

sin (4ka sin §9)
4ka sin 49 )
(14)

E. Scattering probability in the case of perfeotly disordered
alloy. B :

An the case of a perfectly disordered alloy we can proceede
in a similar manner. * ‘

In the perfectly ordered alloy each gold atom is surrounded
by 12 copper atoms and among the 12 nearest neighbours of each
copper atom there are 4 gold atoms and 8 copper atoms. When the
alloy is perfectly disordered, we may say, that in the average each
,,wrong* atom of copper is surrounded by 3 gold atoms in wrong
positions and similary each ,,wrong‘‘ gold atom has as its nearest
neighbours 3 copper and 2 gold atoms in wrong positions.

If we denote now by Jo_o(f#) dw the area per unit volume
which an electron must hit in order to be scattered into solid
angle dw, than for P(#) we have similar expression as before;
that is : .

P(¥) = v Jo=o(?) dw.
In order to calculate the probability Js_o(#) in this case, we may
use the Born’s formula (12) again. We split the pertubation po-
tential AV into parts; each one is equal to + |E,— E’)| or
— |EBy— E’y| in the sphere corresponding to the atom in the
wrong position. The integral in the expression (12) is then given
by the following sum: ' '
’ - [e0 AV di = 3 [eitt0 AV, dx,,
]

where [dv; is taken over the sphere with the wrong aﬁbm in the
position given by the latice vector Tand AV, is the corresponding
pertubation potential. |
To carry out the intergrations we transform the origin of the
coordinates into the ocentte of each spehre and we thus obtain:

Sfe—t.0 AV, dry = 3 [elt—tTr0) AV, do'y =

] 4
r o vy -3
=D 1.0 feit—t.t) AV, dv’,,
- Shat

where the iﬁtegmtion Jdr'; is over each sphere in the new coordinale
system. : : - o



For the square of this integral we than have -

[fet=t0 4V deft = (By — Bt [0 dxift S5 eit—riD,
. T ' (15)
where the double summation extends over all the latice points corres- -
ponding to the atoms in the wrong positions and the sign -+ or —
before the exponentlal term is to be taken according as the distance

-7 between two atoms corresponds to like or to unlike atoms
respectively. We thus see that the integral in (15) has the same
form as in the preceding paragraph and its value is then given by
the: formula (13).

“In order to carry out the duble summation in (15) 11; will be
sufflclent to take into account only two sets of terms: ‘

a.) The terms which correspond to T—7 = 0 and the number
of .which is equal to the total number of atoms in the wrong po-
sitions, i. e. to 2. 1. } Na, where Na is the number. of atoms per
unit volume.

b) The terms which correspond to two ad]acent atoms. When
in this case we draw lines connecting each wrong atom with its
nearest neighbours in wrong positions; we see that these lines are
oriented at random in the alloy as a whole. According to what we
said at the begining of this paragraph, we can see at once, that
from each copper atom in the wrong position there dlverge on
the average 3 lines to its three nearest gold atoms also in the wrong
“position; similarly from each wrong atom of gold 3 lines diverge
to the three nearest copper atoms and 2 lines to the two nearest
gold atoms also in the wrong position. Thus the total number of
such dublets is equal to:

. NaF4Fp.(3+ 3)=DNa2.}.6 in the case of two odjacent
unlike atoms and to Na FAFB 2 —>Na 3. i: 2 in the cage of two
like atoms. - -

Now we can ea.sely carry out the summatlon in (15) for the.

terms correspondmg to | T—7 | = 2a. This sum is equal to

NaF 4Fy (2— 6) =17

" where ¢it—t.7—7) means the average value taken over all possible
orientations of (I—T7') in the space, i. e. it is thus equal to*)

*) The polar coordinates are introduced in the same way as before, e n
with polar axis in ({ — ¥)-direction.

90



2n n
L(f—f l—l)
[[e Sm”d’”d"’ sin (4ka sin §9)

Zmm = " 4ka sin }9
besinxdxdq) H

‘1t is not necessary to take into account the set of the terms
in the double series (15) corresponding to the interaction of the
next nearest neighbours, as these terms lead in the final formula
for electrical resistivity, to integrals, whose values are practically
Zero.

If now we put expressmns obtained above into the integral
(15) we have:

[[eltE.0 AV de|2 = (By —E'p)? | [e® V¥ de'|2 Na 3 } .
94 sin (4ka sin §3)
) 4ka sin 49 |
For the square of the integral in the last equation we take the
expression (13) and can thus write:
|fe‘“_’ D) AV d‘t|2 =

= (E°_E’o)2‘(4n a®)? f*(2ka sin %19) Na} i} [2 —4 2ka sin 35

It is now possible to calculate probébility Jo—o(d) by meané
~of Born’s formula (12):

sin (4ka sin %ﬁ)]

~

Vonol®) = {8”,:”“—} (By—B'o) f{2kasin 19) Na} 1.
' 2 4 sin (4Ica sin 19) k (16)
) [ —— 4ka sind | ’ _

F. Scattering probability in the "disordered alloy.

-If we compare the formulae (14) and (16) for scattering pro-
bability in the two limiting cases, we can immediately sec, that
the average scattering probability per atom in the nearly perfectly
ordered alloy is: 3 _ p
. sin (4ka sin 9)
4ka sin}d)

{ thzw,

-and in the_ perfectly disordered alloy is (number of atoms in the
wrong positions = 2 Na F,Fp =2 Na } })

{ 872mad

(B — E'o)} 12 (2Ica sin: 10)(

S T

sin (4ka sin 49)
4kasind |

(&, —'E,,')}zfé(zka sin 39) (1 —2
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During the order-disorder transformations one of these ex-
pressions_changes continuously into the other one. We will not
investigate this change in details; for our purposes it will be suffi-
cient to suppose, that this transition is proportional to the change
of Bragg’s order parameter @, defined by eq. (1) in the first chapter.
We thus assume, that the average scattering probability Jo(d)
per atom corresponding to the Bragg’s order @ is equal to

Jo(®) = { Sn'md” g, — E’o)} £2(2ka sin 19) (1 —e—9).
sin (4ka sin 39) (17)
— " ahasin 39 ) ,

Any more detailed calculation does not practically change
' . NPT . . . sin (4ka sin §39)
_the electrical resistivity; the integrals, which contain ~dhasnid

as a factor in the integrand, have very small values.

§ 3. Final expression for resistivity and compdrison with the
experimental results.

After these calculations it is possible to write the'final expres-
sion for the anomalous resistivity oguanst. Of alloy CusAu in the
different states of disorder. If we denote by y the number of atoms
in the wrong positions (i. e. y = 2 Na F 4F 5(1 — ®)), then according
the formula (10) P(?) is clearly equal to: P(#) = y v Jo(d) =
= 2 Na F Fy(l — @) vJo(#). If we assume Na = N (one electron

r atom) we may write the expressmn for anomalous resistivity
(1) in the form: -4+
: my

| . AQtrnnsf. = Zﬁf Y. B; .
where v (18)
| B= f Jo(ﬁ) 27 (1 — cos &) sin & d#.

\f we put for J o(3) the expression from (18) we can thus write the
formula for spéeﬁic resnstivxty m the final form.

Sn’ma (B, — E'o)}

Agvann. =222 (3. %)(1—@{

sin (4ka 8in }9) : _
—W) 27 (1 —cos ) sin 9 dé.

ffs(zka smw)(l_(z—@)
| (19)
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To compare this theoretical formula with experiment we are
accepting the following data:

. 1. Tt is well known that the lattice constant of the alloy
. CugAu-is 3,7.10—% cm and hence for the radius of atomic sphere
we obtain: @ = 1,46 . 10—38 cm.

2. From the paper of N. F. Mott (The electrical resistance of
dilute solid solutions; Proc. of Camb. Phil. Soc., Vol. 32, p. 287,
1936) we choose for the value |E,— E')| =21 eV = 3,34.
. 1012 erg as corresponding to @ = 1,46 . 10—8 cm.

3. The maximum kinetic energy of the.conducting eléctrons
may be taken from the meassurements on the soft X-ray spectra
of pure copper carried out by Skinner*) and has the following
value: E,, = 8,5 eV; the corresponding value of the wave vector
k is then: 1,5. 108 em—! and the product 2ka is equal = 4,5. The
velocity » can, of course, be calculated from E,, by the formula:
By = % mod

4. The integrals in the expressmn (19) were calculated nume-
rically and the following values and obtained :

[12(2ka sin 48) (1 — cos 8) sin & 4 — 0,014,
0

sin (4ka sin }9) (1
4ka sin 19

The values of the integrals which are contained in the integrand .
- factors corresponding to the interaction of nex-nearest nelghbours
are so small; that we can neglect them.

If we put these constants into (19); we obtain for the ano-
malous specific resistivity Agiranst. the values, which are tabulated
in the colum Agiranst-theory in the table I and shown in the fig. 3.

[12(2ka sin 19) — cos 9) sin & d¥ = — 0,0006.
0

Table I.
e ? 4 @iranst -experim. A04ranst.-theory.
. Q.cm Q.cm
372° 0 7,1.10—¢ 7,6.10¢
372° 0,46 4,6 - 4,1
- 342° 0,64 2,8 2,7
313° 0,69 2,0 2,3
240° 0,83 1,0 1.3
166° 0,91 0,6 0,68
93° 0,96 0,33 0.30
20° - 0,98 0,19 0,156 \
0° 1 0 0 -

%) Nature, vol. 140 (1937), p. 508.
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§ 4. Conclusion.

When we compare the theoretical results with ‘those obtained
by experiment, we see that the agreement between the theory
and the experiment is close. At the same time it is evident, that
anomalous change of resistivity during the order-disorder trans-
formation is governed by the long-distance order. The influence
of short-distance order may be expected only in the state of per-
fect disorder. It will manifests itself in as a slight change in the
sin (4ka sin 49)

(4ka sin 19)
But this change with regard to the very small value of the corres-
ponding integral is without any practical effect on the final value
of electrical resistance.

Similar calculations were carried out for the alloy CuAu and
also in close agreement with experiment.

In conclusion I wish to thank Prof. N. F. Mott (Wills Labora-
tory, University of Bristol) and Prof. V. Trkal (Charles’ University
in Prague) for helpful interest in this work. At the same time, the
writer wishes to express his thanks to Mr. K. Huang for his valuable
‘emtlclsm and advice.

numerical factor accompanying the term with

®
Theorie vliva uspofadani atomi na elektrieky odpor slitiny..
(Obsah pfedchoziho ¢lanku.)

- UspoFadani atomu v jistych slitindch (na p¥. CuzAu, CuAu) je
zavislé na teploté. Pri niZsich teplotach jsou atomy obou sloZek pra-
videlné uspofadany v prostorové mifZi (vznika t. zv. nadstruktura),
kdezto pii zvySovani teploty po¢nou si vyméiiovati navzdjem mista
a stav dokonalé uspofadanosti se porusuje. Tato transformace sli-
tiny z uspofiddaného do neuspoi"é,daného stavu je provazena zménou
jistych fysikdlnich vlastnosti. Na pt. specifické teplo nebo elektricky
odpor se méni charakteristickym zpisobem.

Autor ukazuje, jak je mozno poéitat zménu elektnckeho od-
poru béhem transformace na zakladé kvantovémechanické theorie
elektrické vodivosti. V uspofadané slitiné je potencidl vodivostnich
elektroni dokonale periodicky v souhlase s periodickym uspofadé-
nim atomu v krystalové mifZi. Béhem transformace se pravidelné
uspofdddnf atomit rusi, vznikajf odchylky od dokonalé periodicity
: pot;enmélu, které zpusobi rozptyl vodlvostnich elektrond a tim
i jisty nadbyteény odpor.

Predpokldddme-li, Ze zminé&ny poruchovy potenciél je charak-
terisovdn podobnym zpiisobem jako v Mottové theorii elektrické
vodivosti zfedénych tuhych roztoki, tu zminény rozptyl elektront

w



je moino poéitat na zikladé Bornovy rozptylové formule. Je
mozZno tedy pfedpovédét, jak elektricky odpor slitiny zavisi na-
stupni uspofddan{ atomu.

Bragg a Williams v8ak ukézali, Ze je mozné ur¢it stupeii uspo-
Fddanosti slitiny pfi jisté teploté z jednoduché statistické theorie.
Definujeme-li stupeii uspofadanosti podobnym zplsobem jako
Bragg a Williams, miiZzeme potom vypotitat ke kazdé teploté od-
povidajici elektricky odpor slitiny. V piipadé shtmy typu Cu;Au
byly numerické vysledky, plynouci z theorie, porovniny s experl-
mentem a byla zjiSténa uspokojujici shoda.
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