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P-regularity. and a duality theorem of Cech.
Shaun Wylie, Princeton, N. J.
(Received May 23, 1936.)

1. Introduction.

Professor Cech?) has proved a duality relation between dimen-
sions p and n — p of a complex under conditions based on his
notion of p-regularity. A complex is said to be p-regular if

I(I) it is a simple orientable n-circuit,
(II) for r = p, star (o,) has the n-th Betti number R, = 1,
(III) for r < p, star (oy) has R, p4r = Op—pir—; = 0,

i. e. the (n — p + r)-th Betti number is zero and there are no
torsion coefficients for the dimension » — p 4+ r — 1.

The star (o,) is the set of simplexes having o, as a face. We also
make use of link (¢,), which is the set of simplexes ¢ such that oa, is
a simplex of K,, the complex.

We can write (II) and (III) as
(I1)' in link (o,), Rp—p—, and O,_, , are spherelike.

That is, R,—p—, and ©,_,_, are identical with the corresponding
numbers of an (n —r— 1)-sphere. These two statements are
equivalent.

In this paper we prove the independence of regularities for
different indices by a series of examples, and give an idea of the
generality of p- and (p — 1)-regular complexes as compared with
manifolds. This is significant as it is for such complexes that Cech
proves his partial duality theorem. :

2. Independence Examples.

Example 1. Showing that p-regularity isnot a property
invariant under subdivision.

1) B. Cech, Multiplications on a complex (to appear in Annals of
Mathematics).
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Take a 3-sphere, and mark on it two 1-cells-having common
endpoints; identify these 1-cells, to give us a single 1-cell E. Now
subdivide this point-set in such a way that no vertex lies interior
to E; call this K. It is easy to see that this is 0-regular; i. e. that
in the star of every vertex R, = 1. For the only doubtful vertices
are the end-points of E; but the link of such a point is a 2-sphere
with two points matched; here R,—, = 1, so that in the star B, = 1.
Also K, is a simple orientable 3-circuit.

It is equally easy to see that the first derived K'; is not 0-regu-
lar. Take the vertex interior to Z; its link is two 2-spheres joined
at two separate points, giving R,—, = 2; so in the star R, = 2.

Example 2. Showing that p-regularlty is independent
from all other q-regularltles exceptg=n—p—1.

This is a K, which is p-regular and (» — p —1)-regular, but
not g-regular for any other gq.

We first construct an M,_, whose only zero Betti numbers
are R, and R,_,_, and without torsion coefficients. This is due to
Bassi.2) We consider the product H, X Hp,—;—,: (H,is always an
r-sphere); this has only R,_,, R,——,, R, and R, different from zero,
We now take one such model for every ¢ different from p and
n—p—1, and we take the sum of these manifolds. Two mani-
folds of dimension s are summed by extracting from each an s-cell
and matching their boundaries; about sums we have the theorem
that the Betti numbers of the sum are the sums of the Betti num-
bers for every dimension except s and @, when the Betti numbers
are 1. So, in this M, we have constructed, we have only R,
and R, zero. Now take two models of this M, and join them to
two points. This is the example. The only irregular points are these
two points, and in their links every Betti number is at least 2 except
R, »—, and R,; sothat this K, is p- and (r — p — 1)-regular but
regular for no other index. K, is obviously a simple orientable
n-circuit. It is, of course n-regular; but that is true of every simple
orientable n-circuit.

Example 3. Showing that p-regularity is independent
of (n — p— 1)-regularity.

We could use Example 1: this is a K; which is 0-regular but
not 2-regular. If it were to be 2-regular, in every link R, would have
to be spherelike; but in the link of £ we see that R, =2 and not 1.

, We can also give an example of a K, which is 2-regular under
any subdivision but is not l-regular however it is subdivided.
This K, is described as the join of two points to a projective 3-space.
The irregular points are the two points; for 2-regularity, in their
links ‘we require R, = @, = 0, which is satisfied as their link is

?) A. Bassi, Un Problema Topologwo di Esistenza; Reale Accademw.
d’Italia, 1935.
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projective 3-space. For 1-regularity we would need R, = @, = 0;
but @), is not zero, so that K, is not 1-regular. K, is a simple circuit
and is orientable since projective 3-space is.

If we had taken the join of two points to two models of projec-
tive 3-space we would have had a K, which is 2-regular but neither
3-, 1- nor O-regular.

3. The generality of the p- and (p — 1)-regular complexes.

This problem can be as easily treated by considering the
complexes which are p-regular for every p between ¢, and ¢q,. We
get greater generality by this method and can without difficulty
deduce the special cases.

We only consider, from now on, p-regularity which is invariant
under subdivision. When we make this assumption, we can streng-
then conditions (IT) and (III). If o,is a simplex of K, and 7, is a sim-
plex of the first derived, K’', and 7, lies in o,, then star (7,) in XK',
is homeomorphic to star (o,) in K,. Now we can find such 7,’s for
every value of s < r; applying the conditions of p-regularity to the
stars of these 7,’s, we can use the results as conditions on the star
(oy). We get that, in star (¢;), By—p4+r downto R,_,and @pp 4,
to @,—,—, are cell-like; or, in link (¢,), Ry—p—; to Ry—p ', and
Onp—p—3 to Op_p_,_, are spherelike.

If now we have that K, is p-regular for p > ¢, and < g,, we
get that in link (o,) R, t0 By g, and @p4_,t00p_4, 4
are spherelike. '

Now it is an elementary matter to verify that, if K, is p-regular
in any subdivision, link (o,) is g-regular for all ¢ between p and
p — r — 1. This follows readily from the fact that -

link (o) in link (¢,) = link (0y05) in K,.

The only condition not fulfilled is that link (o,) does not itself
have R,_,_, = 1; it is a circuit but not a simple circuit. This condi-
tion is however unnecessary for the duality theorem, which states
that under p- and (p — 1)-regularity R, = R,—,and Op = Op_,_,.

Applying this several times to link (o,), we can deduce that
in link (o,) we have also that B,,—, up to R,, and @4, up to @, are
spherelike. .

We now have a considerable amount of information about the
Betti numbers and torsion coefficients of link (o,); it is important
to see under what conditions we have enough to ensure that link
(o,) has the homology characters of a sphere. We will have this
position if the indices (n — g;— 1) to (n — gz — r — 1) and g, to
(¢, — r) exhaust those from (n — r — 1) to 0; and if also (n — ¢, —
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—2) to (n—gy—r—2) and ¢, to (g, — ) exhaust those from
(n—r—2) to 1.
We now separate two cases: n —q; — 1= ¢,; that is ¢, +
+g=n—1L1
(i) ¢ + g2 < n—1; then n — g, — 1 > ¢,, and we will have
all the indices represented if and only if n —¢, —1>n—r —1
and n —q—r— 1< ¢, + 1, thatisif r > ¢, and > n — 2¢, — 2.
(i) ¢ + ¢ =n—1; now n — ¢, — 1 < ¢, and we have that
the conditions are that g >n—7r—1and ¢y —r<n—gq — 1L
-We cannot have ¢, — r = n — ¢, for then we might have @, _,_,=
= O@p—¢,—, different from zero. So we get as the conditions —
r=>n—gq,—1 and > 2¢, —n 4 1.
Subdividing (i) into two cases we get
(@) if ¢ + ¢ < n—1, and ¢, + 2¢,<n — 2 (this of course
includes the other), then for r > n — 2¢, — 2, link (o) is spherelike;
(b) if ¢ + ¢ < n—1, and ¢, + 2¢, > n — 2, we must have
r2 g )

Similarly

() if ¢y +g=2n—1, and 2¢; + ¢, < 2n—2, we have
r=>n—gq,—1;

- (d) if 2¢; + ¢, = 2n — 2, we need r > 2¢; —n + L.

Now if link (o,) has the characters of an (n — r — 1)-sphere,
we say that o, is regular. A manifold is a complex all of whose
simplexes are regular. If a complex has all its simplexes of dimen-
sion > r regular, it is called a relative manifold of degree 7, and may
be written M, ™. We have shown that if K, has ¢,-regularity up to
gq-regularity, in the range ¢, + 2¢, < n — 2, K, is an M,"—2%—2);
there are the corresponding statements for other ranges of ¢, and g,.
It is not of course true that every M,("—2—?2 is g¢,-regular to
go-regular; there are additional local conditions as well as that of
being orientable.

Tt is desirable to give examples of these complexes which are
not manifolds of lower degree; that is, complexes of this kind which
- contain irregular simplexes of dimension one lower than the degree
indicated. In three of the four cases this can be done, and in the
fourth we only lose one dimension in the degree.

Example 4. A K,, p-regular from p = ¢, to p = ¢,, where
¢ + 2¢; S n—2, containing irregular gp—g,—’s.

Take the topological product of two Hg,+1’s, and join to an
H, ., —3; as always H, is an r-sphere. The simplexes of Hy—p,—3
are irregular and in their stars we have Rs—g— = B, = 1; the
other R’s and @’s are 0. This gives us that Bn—,+r down to B,
are cell-like, and all @’s are zero; so that K, is ¢:- to g,-regular.
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Example 5. q, + 2922 n—2 ¢1+@<n—1; K, con-
taining irregular Og—1S.

Take an H, and pick out two non-intersecting H, ,’s on it;
identify these. The irregular simplexes lie on this H,_,, and in their
stars R, = 2, R, = 1; other R’s and @’s = 0. Again R,_4 4, to
Ry, are cell-like, since we need only consider » < ¢; — 1 and we
know that n — g, > ¢,.

Example 6. ¢, + ¢, =2n—1, 2¢, +¢. < 2n—2; K, has
irregular op—g,—,’s.

On an H, identify two non-intersecting H,_4,,’s; the irre-
gular simplexes lie on this H, ,_, and in their stars R, = 2,
By g1=1; since ¢ +@2n—1 n—qg+n—¢—2)<
<n—1; that is, n—g +r<n—1 for any r<n—gq,—
Consequently for sunplexes of the irregular set R,—;, +, to Ry, are
cell-like.

Example 7. 2¢, + g, = 2n — 2; K, has irregular gy9—pn—;’s.

Join an Hyy—,—, to H,,. The verification is as before.

In order to find a best possible result here we would want
a K, with irregular og,,’s; if this were found, the link of an
irregular gy, would be a manifold whose only non-spherelike
character would be @,_,_,, the central torsion coefficients. When
n — ¢, = 2, the projective 3-space is such a manifold; but a general
example is unknown to the author. The construction then of an
optimum example hangs entirely on the construction of such an
M 2n—2¢,—1-

It now remains to point out the special cases. If we take
¢, = ¢, we get the simple p-regular complexes. If ¢, =¢,—1,
then the complexes are p- and (p — 1)-regular; this is the case of
primary interest for the duality theorem, and the examples 4 to
7 show that the range of application of the theorem is considerably
broader than the set of manifolds.

If we take ¢; = 0 then cases (c) and (d) drop out: in (b), g =

= % (n — 2), we find that every simplex is regular and the complex
isa manifold. This could have been deduced more simply by seeing
that the ¢,- to gy-regular complex is also (n —g,— 1)- to (n —
— ¢, — 2)-regular; this results immediately from the application
of the duality theorem to the links. So if ¢, = 0, since an n-circuit
is automatically (n — 1)-regular if it is O-regular, we have that
the 0- to g-regular complex is also (n — g — 1)- to (» — 1)-regular:
if then ¢ = } (» — 2) we get p-regulanty for any.p, which is the
condition for a manifold. Similarly if g, *= n — 1, and q1 < 3 (n—1)
K, is a manifold. .

" The results then are these; —

(I) p-regularity is not invariant under subdivision,
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(II) p-regularity is not dependent on any other set of regul-
arities,

(ITII) if however p-regularity is taken as an invariant property,
p- and (p — 1)-regularity imply (» — p — 1)-regularity,

(IV) if K,is ¢,- to g, regular, all regularities being taken as
invariant properties, there is an upper bound to the dimension
of the irregular set, which can in most cases be shown to be reached,

(V) complexes other than manifolds exist for which Cech’s
partial duality theorem is applicable.

%
P-regularita a Cechiiv teorém duality.
(Obsah pfedeslého &ldnku.)

Poincaréiiv teorém duality pravi, Ze u m-rozmérné variety
M, p-té a (n — p)-té Bettiovo é&islo se sobé rovnajf a rovnéz i p-té
a (n — p — 1)-ni koeficienty torse. Cech definoval pojem p-regu-
larity komplexu tak, Ze n-variety splyvaji s n-komplexy, které jsou
p-regulirni pro viecka 0 < p < n; a ukédzal, Ze pro platnost
Poincaréova teorému duality pii daném p stadi predpokladati
p- a (p — 1)-regularitu. V tomto &lanku je vySetfovana vzijemna
zavislost p-regularity komplexu pro ruzné hodnoty p. Z diskuse
plyne zejména, %e teorém duality plati pro komplexy mnohem
obecnéjsi nez variety.
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