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K Y B E R N E T I K A — V O L U M E 33 ( 1 9 9 7 ) , N U M B E R 6, P A G E S 5 8 3 - 6 0 6 

A DYNAMIC FACTOR MODEL 
FOR ECONOMIC TIME SERIES1 

F R A N C I S C O J A V I E R F E R N Á N D E Z - M A C H O 

A dynamic factor model is introduced which may be viewed as an alternative to vector 
autoregressions in the treatment of cointegration. An obvious way of introducing dynamics 
in the standard factor analysis is to allow a realization of the common factors at a specific 
time interval to work its way through to the observed variables in several time periods. A 
problem arises however, when representing economic time series which generally are non-
stationary. In this paper the dynamic factor model considered can handle nonstationarity 
rather trivially via unobserved factors with unit roots. The stochastic behaviour of these 
factors is explicitly modeled, and therefore the model is a member of the multivariate struc­
tural time series model class. A situation in which we might wish to entertain such a model 
is wnen considering two or more related economic variables which, as is often the case, 
appear to exhibit a common trend and hence are cointegrated. The paper investigates the 
maximum likelihood estimation in the frequency domain and a scoring algorithm is pro­
vided. Also a generalization is considered in which independent common factors are made 
up of stochastic trends with stochastic common slopes and stochastic seasonals. 

1. INTRODUCTION 

The analysis of cointegrated systems through vector autoregressions (VAR) has be­
come a standard procedure in applied macroeconometrics following [22, 23]. In many 
instances the main interest of the analysis consists in the extraction of dynamic 
common factors, such as common trends, and, although the vector moving-average 
(VMA) representation — determining the way in which nonstationarity is generated 
in the system — can be obtained from the VAR representation, it may be argued 
that if the main objective is the extraction of permanent components then possibly 
a better idea would be to formulate directly a model taking care of such permanent 
components. The corresponding VAR representation will in practice have a very 
high order (probably infinite) and clearly will not be appropriate for this purpose. 
As an alternative a dynamic factor model may be used. 

1This paper is based on research conducted while the author was research scholar in the Dept. 
of Stats, and Math. Sciences at the London School of Economics, for which financial support from 
the Dept. of Education of the Basque Government and the LSE's Suntory-Toyota foundation is 
acknowledged. Financial aid from The University of the Basque Country under grant 038.321-
HA 052/94 is gratefully acknowledged. 
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The standard factor analysis (FA) was originally developed mainly to analyze 
intelligence tests so as to determine whether "intelligence" is made up of the combi­
nation of a few factors measuring attributes like "memory", "mathematical ability", 
"reading comprehension", etc. In this sense, the basic idea of FA is, given observa­
tions on n variables, to assume a proper statistical model in which each observed 
variable is a linear function of k < n unobserved common components or factors 
plus a residual error term, i.e. 

yt = A nt + et , t = 0...,T (I) 
(n X 1) (n X k) (k X 1) (n X 1) 

Most applications of standard FA have been in the search for latent variables ex­
plaining psychological and sociological cross-section data. We note however that 
since dynamic effects are absent from the analysis, the technique is clearly inappro­
priate for analyzing time series data. An obvious way of introducing dynamics in (1) 
is to allow a realization of the common factors at a specific time period to work its 
way through to the observed variables in several time periods. In other words, we 
may assume a distributed-lag factor model, 

yt = A(L)r)t + eu t = 0,...,T, (2) 

where A(L) is a polynomial matrix in the lag operator, i.e. A(L) = YlTLoArL
r, 

and the factors in nt and the error terms in St are generated by stationary random 
processes. For example [3], Chapter 9, investigates the problem of representing a 
stationary series as a filtered version of a stationary signal series of reduced dimension 
plus an error series. Similar FA models have also been considered by [1, 9, 16, 17, 26] 
and others. Other data reduction techniques have also been considered by [2, 28, 
29, 34, 37] and [38]. These techniques, unlike the dynamic FA model, pertain to the 
case in which observable input series are assumed to be given, e. g. lagged dependent 
variables. In particular, in the approach of Box and Tiao [2] the original time series 
are assumed to follow a multiple stationary autoregressive model; then principal 
components of the one-step-ahead forecast error covariance matrix are extracted so 
as to obtain a transformed process whose components are ordered from least to most 
predictable. 

As a first step towards identification of the structure (2) we will assume henceforth 
that A(L) is a geometric distributed lag, i.e. Ar = A$r, where <I> is a (k x k) matrix 
such that, in order to keep {yt} stationary, its eigenvalues are less than one in 
absolute value. Thus 

oo 

yt = Aj2^rVt-r + et, t = 0,...,T, (3) 
r = 0 

which is equivalent to 

yt = Aџt + et, t = 0,...,T, (4) 

Џt = Фџt-i + Ъ, (5) 

cf. (1). This suggests a reinterpretation of the dynamic FA model in which fj,t, rather 
than nt, is the vector of common factors, being generated by a dynamic mechanism 
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in the form of a transition equation. Thus (4)-(5) is a special case of the "state-
space" model used in engineering to represent certain physical processes. In [9] Engle 
and Watson use a similar one-factor model (which they also described as "dynamic 
multiple indicator" model) to obtain estimates of the unobserved metropolitan wage 
rate for Los Angeles based on observations of sectorial wages. They use a time 
domain approach based on the Kalman filter [20, 27] which may be computationally 
very demanding for multivariate time series. Later in this paper the time domain 
structure of the model is estimated from the spectral likelihood function as explained 
in [11]. 

2. UNIT ROOTS AND COMMON TRENDS 

Up to here we have considered the observed series, and hence the factors [it in ( 4 ) -
(5), to be stationary. This is certainly not very realistic if they are to represent 
economic time series. Yet previous techniques seem to run into trouble when at­
tempting to tackle this problem. For example, if {yt} is nonstationary in (2), the 
lag structure must be infinitely long thus rendering the analysis impossible [26]. In 
[2] the "most predictable" component will be nearly nonstationary representing the 
dynamic growth characteristic of economic series. However, they note that the tech­
nique will break down in the presence of strict nonstationarity. They also mention 
that differencing is of no help in this case since when analyzing multiple time se­
ries of this kind, it might be that the dynamic pattern.in the data is caused by a 
small subset of nonstationary components, in which case differencing all the series 
could lead to complications in the analysis, particularly in the form of strict non-
invertibility (which relates to the problem of cointegration treated below). It might 
also be worth mentioning that in [9] the unobserved component — metropolitan 
wage rate — appears to be nonstationary. 

On the other hand the dynamic FA model (4) - (5) can handle nonstationary 
series rather trivially. Thus in the sequel we will consider a nonstationary version 
of (4)-(5) in which the transition equation has O set to the identity matrix and a 
deterministic drift is also present. Further, it will be assumed for simplicity that the 
disturbance terms follow multivariate NID processes. (More generally they might be 
allowed to follow AR processes of low order, as in [12], but the statistical treatment 
is essentially the same.) This simple dynamic factor model thus takes the form 

yt = 7 + A lit + et , * = 0, . . . ,T, (6) 
(n X 1) (n X 1) (n X k) (k X l ) (n X 1) 

fit = fit-i + 6 + T)t , 
(k x 1) (A; x 1) (k X I ) (kx 1) 

where 7 and S are vectors of deterministic intercepts and slopes respectively and 

Єt 1 ~ NID 0 I ^ ° 
' ( 0 Ľ„ 

That is, the common factors are specifically modeled as random-walk-cum-drift com­
ponents and therefore they will be interpreted as common stochastic — or local — 
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linear trends; cf. the Multivariate exponential smoothing (MES) model in [11]. 
Note that we assume 0 < k < n. In the extreme cases k = 0 or k = n, no common 

factors are present: the former collapses trivially to yt = et and the latter to the 
MES model with component /ij = A/jf 

As it stands, model (6) is not identifiable. For example defining A^ = A E | P ' , 
f _ i * _ i | _ i 

/~t = PTV
 2 fj,t, 8\ = PT,V

 26t, rjl = PUri 2rjt, where P is an orthogonal matrix, we 
obtain an alternative dynamic FA model 

yt = 7 + Л V Î + É : . , t = 0,...,T, 

Ќ = A-i+^ + rì, 
in which the trend innovation covariance matrix is In for any choice of P, (note that 
the factors remain independent). In order to identify a structure we choose within 
each equivalence class that member satisfying the following restrictions on A and 
Tlr,: A is formed by the first k columns of a (n x n) unit-lower-triangular matr ix 

A = [aij/oij =0, i < j ; an = 1] (7) 

and Sr, is a diagonal matr ix 

E-j = Wri,ijI Cr),ij = 0, i ^ j ; crnta = c^,-]. (8) 

Also it will be assumed that E e as well as TJV are of full rank so that the statistical 
t reatment presented in Section 4 does not break down. 

Constraining T,v to be diagonal also ensures that the common factors are inde­
pendent as is customary in standard FA. An interesting point here is that the factors 
themselves might be given an economic interpretation. In such a case it is some­
times useful to consider a rotation of the estimated factors. An appropriate choice 
of matrix P above may be used to redefine the common factors so as to give the 
desired interpretation. 

3. COINTEGRATION 

A situation in which we might wish to set up such a model as (6) is when considering 
two or more related economic variables which, as is often the case, evolve in t ime 
in such a fashion that they do not diverge from each other. In other words, they 
appear to exhibit a common trend. An obvious example might be the prices of the 
same merchandise at different locations or the prices of close substitutes in the same 
market. In this case the common trend could be interpreted as the "latent" market 
price so that observed divergences are at tr ibuted to specific factors. Other typical 
examples are interest rates of different terms, national income and consumption, 
etc. Although individually all these economic series need differencing, it has already 
been mentioned tha t differencing a multiple time series is not appropriate if common 
trends are suspected: in general more unit roots than necessary will be imposed and 
only relationships between changes will be investigated while important relationships 
between the levels of the variables will be lost. Assuming that there are k < n 
common trends, only k unit roots should be imposed. 
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Let us consider the dynamic factor model (6). Since the factor loading matr ix A 
is of full column rank k its orthogonal complement in a basis of 9£n, say matrix B, 
will have full column rank n — k and its columns will be orthogonal to those of A, 
i.e. B'A = 0. Thus in (6) 

B,yt = f + iu t = 0,...,T, (9) 

where & ~ NID(0, B'Y±eB). This means that there exists n — k linear combinations 
of the observed variables for which the trend components cancel out so tha t the 
vector of such linear combinations follow a stationary vector process even though 
each of the observed variables is best described by an integrated ARM A process. 
Time series which together exhibit this feature are called cointegrated (CI) series. 
[19] gave the following general definition: 

"If each element of a vector of time series yt must be differenced d times 
to achieve stationarity, but linear combinations B'yt need be differenced 
only d — b times, the t ime series yt are said to be CI of order (d, b) with 
cointegrating matr ix B." 

In our case it follows tha t the series yt in the dynamic factor model (6) are CI of 
order (1,1) . 

The converse is also true. As can be seen in [36], da ta generated by a CI process 
with n — k linearly independent vectors can be represented as linear combinations 
of k random-walk "trend" variables plus n — k "transitory" variables. 

As an example, it is easy to see that in the typical bivariate case 

vu = yi,t-i + a i i , 

2/2. = <$yit + a2t, 

in [2, Sec. 4.4] or [21] illustrating the problems which can arise with differencing (e. g. 
strict noninvertibility) there must be a common trend since the observed series are 
CI. The cointegrating vector is b = (—6,1)' and {b'yt} is stationary. 

Back to our model we can see from (9) that B'yt will wander around its mean. 
For that reason B'yt = j , where {yt} represents the mean course of {yt}, can 
be interpreted as a long run equilibrium towards- which the observed variables are 
pushed back by economic forces whenever they drift apart . Also, at a particular 
time t = r , £T = B'(yT — yT) is a measure of current disequilibrium. 

Finally, since yt ~ CI(1,1) , it follows from theorem 1 in [10] that there exists 
an error-correction representation of the dynamic FA model (6), i.e. in such a 
representation a proportion of the disequilibrium £ r from one period r is corrected in 
the next period. Tha t model (6) has error-correction representation is an interesting 
property because error-correction mechanisms are used very often in econometrics 
(e.g. [32] and more recently [4] and [31] among others). 

4. MAXIMUM LIKELIHOOD ESTIMATION OF THE FA MODEL 

Apart of the intercept 7, which does not enter into the likelihood, there are |[fc(3 + 
2n — k) + n(n + 1)] parameters to be estimated in the dynamic factor model (6) 
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as follows: k parameters in the drift vector 6, nk — ^k(k + 1) in the factor loading 
matrix A, k in the common trend innovation covariance matr ix E - , and ^n(n + 1) 
in the transitory term covariance matrix E £ . 

Before going any further, it is convenient that we define column vectors containing 
these unknown parameters, (i .e. eliminating those elements which are already set). 
Thus, let a be a vector obtained from vec A by eliminating those elements above 
and on the main diagonal. Similarly, let diagE,, be the vector of diagonal elements 
of E., and let v E£ be the vector of distinct elements of E£ obtained from vec E£ by 
eliminating all supradiagonal elements: i.e. 

a = [atj e A/i > j], diagE,, = [cr^- G ._.,/* = j], v E£ = [ae>ij _ E £ / i > j]. 

Let us further define 0-1 matrices mapping a, d iagE^ and v E £ into vec A, vec E., 
and vecE£ respectively, i .e. 

Daa + vec 

so that 

Һ 
On-Jfc 

= vecA, HdiagE^ = vecE^, L)vE£ = vecE £ 

d vec A d vec E^ d vec E£ 

da1 a' . ( d i a g E , ) ' = ' _ ( v _ _ ) ' = ' 

These matrices help to simplify the analysis since the derivatives with respect to 
the unknown parameters can be obtained from the derivatives with respect to the 
corresponding vec by straightforward application of the chain rule, i.e. §-- = 
(dvecA\< dL _ Di dA J 
I da' ) e v e c „ - ^ 9 v e c A » a n ( l s o o n -

Since yt ~ CI(1,1) in model (6) taking first differences we obtain a stationary 
series 

zt = Ayt-A5 = Arlt + A£t, t=l...,T. , (10) 

Let us consider the Fourier transform of {zt} 

Wi = , V Ztelk*\ A,- = •— 
" t=i 

This can be expressed more compactly as 

T 
£ - . e 1 A i ť , Xj = ^ , j = 0,...,T-l. (11) 

vecW =( U <g) In ) vec Z , (12) 
{nT X 1) (T X T) (n X n) (nT x 1) 

where VF = (w0,..., W T - I ) , Z = (Z\ • • •, ~i), U is the ( T x T) Fourier matr ix whose 
(h, k)th element is (2irT)~~ exp(ikXh-\), and /„ denotes the identity matrix of order 
n. Note also that UU* = (2TT)~1IT, i.e. U is proportional to a unitary matr ix by a 
factor of (27r) - 2. 

Since {zt} is a multivariate stationary nondeterministic gaussian process, {WJ} 
is asymptotically distributed as a normal independent zero-mean heteroscedastic 
process, i.e. 

Wj~M(0,^-Gzj), j = 0,...,T-l, 
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where GZj is the autocovariance matr ix generating function (AMGF) of {zt} evalu­
ated at Xj = 2irj/T. From (10) it is easy to see that 

Gz(u) = A^A' + (1 - « ) ( 1 - u~x) EC ! 

Gzj = Gz(e
ix>) = AYrjA' + c ,E e , Cj = 2 - 2 cos Ay. (13) 

Since the Wj's are independent the joint density function is simply the product of 
the individual densities whose logarithm, apart of the usual constant, is equal to 

^ = - ^ [ l o g d e t G , i + t r G - 1 ( 2 7 r p , i ) ] , / > 0, (14) 

where E e > 0 ensures that Gzj > 0 for j > 0 and PZj denotes the reai part of the 
periodogram matr ix of {zt} at frequency Xj. 

It is also clear that , for j = 0, GZQ = ATJ^A' is of deficient rank k < n. Thus 
WQ has a singular (or degenerated) multivariate normal distribution, and no explicit 
determination of the density function is possible in t£n . However, the density exists 
in a subspace and according to [30, p. 204] the logarithmic density of WQ in the 
hyperplane K'WQ = 0 (where K is a n x (n — k) matr ix of rank (n — k) such that 
K'GZQ = 0 and K'K = In-k) can be written as 

£0 = --\ogcp- TTWQ'G+QWO, 

where tp is the product of nonzero eigenvalues of GZQ and G+
0 denotes the Moore-

Penrose generalized inverse of GZQ. 
As we know that for any matr ix X, XX* and X*X have the same nonzero eigen-

i 
values writing X = AE% we find that , since A'A is of full rank, <p = det(-A'.A) det E,.. 
Besides G+

0 = (A + )'Y,~lA+ where A+ = (A'A)~l A' since A is of full column rank. 

Therefore the logarithm of the density function of WQ is 

£Q = - i l o g d e t ( A ^ ) - i log det E- - ^ t r TI~
1[A+(2'-PZQ) (A+)'\. (15) 

Finally from (12) we see that since U is (27r)_ ~ times a unitary matrix, the likelihood 
function — the density function of vec Z as a function of the sample — is (27r) _ n T l 2 

times the density function of vec W. Thus the log-likelihood function can be written 
as 

L = ~~f -og(2*) + £ > . 
i=o 

where the £j's are given by (14) and (15). 

The periodogram of {zt}, whose real part {Pzj, j = 0 , . . . , T — 1} is needed 
in (14), cannot be directly computed from the sample as it depends on the unknown 
6. From (10)-(11) and since 

т 

E 
t = i 

l A j ť s 
T, ; = o 
0, otherwise, 
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we get 

_ _ f fr**. i = o 
zi — \ 

[ PAy,j, otherwise, 
where h = T 1(yT — y0) — A8. As 8 only appears in the log-likelihood via h in £Q, it 
can be easily concentrated out. First of all take into account that in (15) 

A+(2irPz0) (A+)' = T(A+h) (A+h)', (16) 

being A+h = T~lA+(yT — y0) — 6, so that 

T 
2 „ _ , - r _ , _ . . . , _ , v _ У J -- - t r E - 1 [ ^ + ( 2 7 r P _ 0 ) ( ^ + y ] = - - ^ ( A + A y ^ ^ A + A ) . (17) 

Thus we can write 

§ = t = ̂ + » - (18) 
This is zero if and only if A+h = 0; therefore the ML estimator of 8 conditional on 
A is 

~8(A) = T-1A+(yT-y0). (19) 

From (18) we can also get the second derivatives involving 8 as follows 

d2L =T^-1d(A+h) = 

8888' " (96' ' ' 

<92L ^ ^ . i d(A+h) dvecA r / v/ ._0veci4+ „ 
— — - I T " ^ _ v - 7 T 7 - = ^ - 2!o ® s r , 1]-s7 TT7Da, 

aoao:' ' <9(vec_4)' c/a' ' a(vec_4)' 

where 

i ^ - = C n i p ' A ) - 1 ® (/„ - A4+)3 - p + y ® A+], (20) 
being C7nfc the commutation matrix such that for any matrix X, vecX is converted 
in tovecx ' . Finally 

060(diagE„)' = T 0(vecE-)' <9(diagE^)' = - T P + W ® V ^ ' 

but note however that E ( r--r-_. L = N, 1 = 0 because E(_4+/i) = 0. It is also obvious 
V9«9(diags r,)'j v ' 

that 
<92L 

<9<5<9(v£e)' 
= 0. 

Substituting 8 by 8 in (16) we see that (17) (i. e. the last term in the expression (15) 
for £0) vanishes so that the concentrated log-likelihood can be written as 

T—1 

Lc = ~ log(27r) - i logdet(_4'_4) - i logdet E, + _T <,, (21) 
i= i 
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where the ^ ' s are given by (14) with Pzj = P&y,j for j = 1 . . . ,T — 1. 
Let d be the vector of parameters to be estimated via maximisation of (21): 

i.e. d = {a1, (diagE.,)', (vE£) '} ' . As the derivative vector dLc(tf) and the (con­
centrated) information matrix $(1?) = - E g ^ - , - are relatively easy to construct, a 
scoring algorithm is appropriate for ML estimation. This procedure involves finding 
a direction vector, p($) = $(^)_1dLc(i9), to obtain new estimates from the recur­
sion tfK+i = $* + pKp(dK) (with pK as a step length) and iterate until convergence. 
Analytic expressions for the derivatives are as follows. 

From (21), since »lof %'&'*> - 2vec[(A+)'], 

dLc
 r, ._,_,,, ~^ ( d£ . . vec[(A+y]+-r(J^). (22) 

d vec A *-*' V d vec A J 
; = i 

Also, since for any nonsingular square matrix X it is well known that d log det X = 
tr [X~l(dX)} = (vec x"1) (dvec X), we have 

dLc 1 . . 1 t - J / r3A- \ 

. ^ = " V e C ^ + E l ^ r ) . (23) 
and finally 

<9vecE„ 2 * r-"í V5vecEn 
j = i 

ð" = £ ÏÄ-) - w $ vec E£ r—/ V ð vec E 
j = i 

Note that for positive definite Gzj, i.e. for j > 0 here, it can be found that 

(—dtp ~ ) m i ' ^ G {vec .4,vecS,,vecEc}, 
t9/j _ 1 fdvecGZj 

l~J~ 2 

where m j = w e [ G 7 / ( 2 W ^ ) G 7 / - G"1]. 

Differentiating (22) - (23) - (24) further and denoting fy (i/>i, V>2) = ~ E (d^%>) ' 
with V*» £ {vec A, vec E„, vecE^}, z = 1,2, we get that the diagonal blocks in the 
information matrix are 

dwec[(A+)'} T~l 

*(veC A) " 9(vecV + E *'[vec A'(vec A)<1' 

T - 1 

^(vecE,) - - i ( E - x ® S - 1 ) + ^ ^ [ v e c E ^ v e c E , ) ' ] , 
J'=I 

т - i 
Ф(vecEє) = __Фj[vecI]є,(vecĽ£)'}, 

i = i 
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and the off-diagonal blocks 

T - 1 

J = l 

As shown elsewhere [11], we have that for j > 0 

Ф j t ø i . Ä 
1 fdvecG 

*з 
дф[ 

MІ 
д vec Gz 

дф'2 

with Mj = (C7j/ (8) Gj/), and it only remains to find expressions for the derivatives 
of vecGzj- From (13) they are as follows 

dvecG^ _ dvec(A^A') _ } 

d(vecA)' d(vecA)> K V -

where Nn = \(ln2 + Cnn) is the "symmetrication" matrix such that for any square 
matrix X it returns the vec of \(X + X'), [25], 

vecGzj _ dvec(AY,nA') _ 

and 

Summarizing 

0(vecE.,)' d(vecZr,)' 

d vec Gzj 

(Л -A), 

<9(vecE£)' 
Cjln2. 

âLe(ů) = 

D'a{-vec [(A+)'] + (E„A' ® /„) Ei-Ti ™i) 

H'[-1vecS"1 + | ( A ' ® A') Ej-Ti1»»/] 

Ф(tf) 
ФiiO?) ФиW ФiaW 
Фu(v) Ф22(<?) Ф г з W 
Фiзrø Фгз(tf) Фзз(^) . 

with 

Фn(0) Dá S P ' ^ ) - 1 ® (In - ЛA+)] - Cnk[(A+)' A+] 

+ 2(E„A' ® In) \_Z MJ ) IVП(AEЧ /„) > £>a 

ФiгO*) = Я' (A' A') I £ Mj ] (AE„ ® /„) L>Q 
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Ф 2 2(tf) 

Фiз(i?) 

Ф2зW 

Фзз(^) 

= H' 

= D' 

1 

2 

'T-\ 

2 

т - i 

-^(S-1®E-1) + -(Л'® A') Г Ţ > Л ( A ® Л ) 
J=-

H 

D' 

= D' 

T-\ \ 

Dr 

i=-
H 

tT-l 

D. 

From these expressions a scoring algorithm can be constructed for ML estimation 

of the parameters in d. Once these parameters have been estimated, 6 is estimated 

from (19) and 7 from 

7' = [0І1..,0 , ^ ] Г > 2 . - І 2 І Г W ] 
т 

where (yt,A) has been partitioned so that (y\t,A\) contains the first k rows and 

(y2ij^42) the remaining n — k rows. 

This scoring algorithm should be initialized with a consistent estimator which 

can be constructed from the moment estimator as explained in the appendix. Once 

starting consistent estimates of E e , A and E^ have been calculated efficient ML 

estimates can be obtained by iterating the scoring algorithm until convergence. Un­

fortunately the limiting properties of the ML estimator are not easily established 

under the present circumstances. We can apply some suitable LLN (e.g. [8]) to 

assess almost sure convergence to the true values but, as the spectral density matr ix 

happens to be singular at A = 0, the CLT in [7] breaks down. This is of course 

the usual unit root problem arising here because of the presence of common trends. 

There are k common trends in (6), therefore there are only k < n unit roots in the 

AR part of the corresponding ARIMA representation but differencing, as in (10), 

imposes n unit roots, that is, n — k more than needed. The effect is similar to that 

of overdifferencing a univariate series in that n — k unit roots appear in the MA part 

and this is reflected in the spectra as E(0) being of deficient rank k < n. 

Let us review this more formally. From (10) we see that the difference vector 

series follow an MA(1) process, i.e. zt = (In — Q)vt, where Vt ~ N I D ( 0 , E l / ) . Thus 

the spectrum matr ix can be expressed in two alternative forms: 

27r.F,(A) = .4E-..A' + c(A) E£ = (/„ - 6e 1 A) £ „ ( ! „ - e ' e - l A ) , 

where c(A) = 2 — 2 cos A. For A > 0, E£ > 0 implies FZ(X) > 0 which in turn implies 

E„ > 0. But for A = 0 

2тгF,(0) = - 4 E - . І 4 ' = (In - ) Ľ„(In - ') 



594 F. J. FERNANDEZ-MACHO 

is of deficient rank k which means that 0 must have n — k unit roots. This situation 
has been discussed in [33] for the univariate MA(1) process where the ML estimator 
is shown to be not asymptotically normally distributed. We are then to expect a 
similar result in our present multivariate case. 

If the limiting distribution of the ML estimator is not normal the classical pro­
cedures, e.g. likelihood ratio test, Wald test and LM test, all run into difficulties 
and cannot be applied for testing the presence and number of common trends. The 
problem has received some attention in the literature. In the univariate case it is 
associated with testing for a unit root in autoregressive processes. Among the earli­
est contributions see in particular [14, Sec. 8.5], [5], [6] and [15]. In the multivariate 
case [13], [19] and [36] have proposed and compared a variety of tests for common 
trends. 

5. AN EXTENSION O F T H E MODEL 

The dynamic factor model (6) can be easily extended in a number of ways in order 
to handle more general kinds of data, thus providing an attractive alternative to the 
VAR context advocated by [22], [23] where such extensions are not so obvious. In 
this section a generalization is considered in which independent common factors are 
made up of stochastic trends with stochastic common slopes and stochastic seasonals, 
i.e. 

yt 
(n X 1) 

ft 
(kx 1) 

A/it 
(fcx l ) 

T + A ft + Єt 
(n X 1) (n x k) (k x 1) (n X 1) 

Џt + & i 
(k X 1) (fcXl) 

A6 6t-i + 7]t , 
(k X ks) (kå X I ) (fc x 1) 

t = l - s . . . , 0 , . . . , T , (25) 

A6t 

(ks X 1) 

S(L)6 
(k x i ) 

/ et \ 
Vt 

C. : 
(ks x 1) 

ut , 
(k X 1) 

NID 0, 

/ - - . 

V 
E, 

0 

0 

-WJ 
where 0 < k6 < k < n (strict inequalities in nontrivial cases) and S(L) represents 
the seasonal sum operator. 

Since the factors ft are assumed to be independent we must have tha t the co-
variance matrices E y , v € {r7,C,w} are diagonal. Also, for identification, the loading 
matrices A and A6 are restricted to be respectively the first k and the first k6 columns 
of unit-lower-triangular matrices. 
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Note that in general the trend components fit are themselves cointegrated in the 
sense that fit has to be differenced twice to achieve stationarity but there exists B6 

such that B'6A6 = 0 so that B'6fj,t is stationary after differencing only once. In the 
terminology of [10] we write fit ~ CI(2,1). 

As for the observed variables we will see below that AA.j/j is stationary but it 
is clear that there exists B such that B'A = 0 so that B'yt is stationary. We may 
write yt ~ CI(1,1) x (1,1)5 — in an obvious notation extending that of [10] to allow 
for seasonality — which is a sort of complete cointegration as mentioned in [24]. 

The dynamic FA model (25) can be analyzed much in the same way as model (6) 
above. Since A. = S(L)A we have that 

AAsfit = A6As6t-i +AsTjt = A6S(L)Ct-i + Asnt, 

AA,& = A2S(L)6 = A V 

Therefore 

zt = AAsyt 

= A[Asnt + A6S(L)Ct-i + A2ujt} + AAsSt, t = l,...,T, 

is stationary with AMGF given by 

Gz(u) = (l-us)(l-u-s)AZrjA' 

+ S(u)S(u~1)AA6i:cA'6A' 

+ [(l-u)(l-u-1))2AXUJA' 

+ (l-u)(l-u-1)(l-us)(l-u-s)X£. 

Thus setting u = exp(iAj), Xj = 2irj/T, we have, for j > 0, 

Gzj =Gz(e
ix>) =csjAXT1A' + (csj/cij)AA6Z(:A'6A' + c2

jAi:uJA' + (cijcsj)Ze, (26) 

where crj =2 — 2 cos(rXj), r 6 {1, s}, and for A = 0 

Gz0 = Gz(l) = s2AA6Z(A'6A'. 

As before the Fourier transform of {zt}, say {WJ}, is distributed as NID(0, (2/K)~1GZJ), 

j = 0,...,T— 1, asymptotically and in particular, w0 has a singular distribu­
tion. Following the same arguments as in the previous section the logarithm of 
the density of WQ in the appropriate hyperplane of dimension (n — k6) is £Q = 
— 4log<£> — TTWQG+

0WO where <p is the product of nonzero eigenvalues of GZQ, i.e. 
ip = s(

2k6) det(A'6A'AA6) detE^, and G+
0 is the Moore-Penrose generalized inverse, 

i.e. G+0 = s-2(AA6)
+'Ec(AA6)+. Therefore 

l0 = - j f c t f l o g ( s ) - i l o g d e t ( ^ A ' y W « ) ^ 

For j > 0, Se > 0 ensures that Gzj > 0 so that the logarithm of the density function 
of Wj is 

4 = - o {logdetG-i +tr[G;.1(27rP^)]} , j > 0. 
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Let d be the unknown parameter vector in the model, i.e. d = {a', a'6, (diagE,,)', 
(diagE^)', (diagE^)', (vE e ) '} ' , where a and the operators v(-), diag(-) are as de­
fined in the previous section and as is as a but with reference to As. Since the Wj's 
are independent the log-likelihood is 

T—1 

L(d) = -~\og(2ir)+Y,^)-
j=o 

This is to be maximized with respect to the elements of $, perhaps using a quasi-
Newton method like the Gill-Murray-Pitfield algorithm which does not need the 
explicit evaluation of derivatives since the construction of the Hessian, and hence 
of the scoring algorithm, is rather cumbersome in the present case. To give an 
example, the scoring algorithm will be shown only for the special case in which 
ks = k and AgE{A6 = h so that, in addition to (7)-(8), the common factors 
remain independent. 

Firstly, after some algebra we get 

^ ° fA+V 
= —vec (A*) dvecA 
-s~2vec [(/„ - AA+) (2TTPZ0) (A+)'(A'A)~l - A+(2TTPZ0) (A+)'A+], 

$o(vec A) = Cnk[Ik 0 (A+)'A+] + (2Ink - Ckn)[(A+)' ® A+] 

-Cnk[(A'A)-l®(In-AA+)]. 

Secondly, for j > 0, we know that 

dij _ 1 (dvecGZ]\ 

дд 2 V Ôů 

;w-\( 1 fdvecGzj\ ., fdvecG 

W^)M'[-âd 
2] 

where m ; = vec [G;j
1(27rPZJ)GjJ

1-Gj/], M, = (G;/<g>G;/) and from (26) d vec Gzj 

= csjdvec(AHT1A') + (c# J/ciy)dvec(AA') + c2
jdvec(AYÍVA') + (cijcsj) d vec £-. 

Since, in general, for any matrices B, E„ 

dvec(B.E„B ') = vec[(dH)Eí,/3
/] + vec[HEi/(dH)/]-(-vec[H(dEí/)H

/] 

= 2Nnvec[(dH)Ei,H
/] + vec[H(dE;,)H

/J 

= 2Nn(HE„ ®In)(d vec B) + (B ® B) (d vec £•,), 

we have that 

d(vecA) 

where Qj = CsjEn + cfyEw + (csj/c\j)In 

dvecGzl = 2Nn(AQJ®In), 
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Also 

c^vecE,)' j ( } ' d(vecE-)' - C l ' ' ( A ® A ) ' - .(vecE-)' " ^ 1 * - , ) ^ - , 

from where we can easily construct the expressions for the first derivative vector 
dL(^) and the Hessian $(d) of the log-likelihood function with respect to the pa­
rameters in d. 

6. FACTOR E X T R A C T I O N 

Once the model parameters have been estimated, an interesting question is how to 
obtain estimates of the k unobserved — or hidden — factors. It goes without saying 
that since the dynamic FA model can be written in state-space form, the optimal 
factor estimators should be obtained applying the Kalman filter (forwards) and a 
smoother (backwards) [11]. 

On the other hand multiplying the measurement equation of the FA model in (6) 
or in (25) by the Moore-Penrose generalized inverse of A we obtain 

fit = A+(yt - 7 - - t ) , t = 0 , . . . ,T , 

and, therefore, a moment estimator can be easily obtained as linear combinations of 
the n observed series as follows: 

fit = A+(yt - 7) 

which in contrast to the filtered optimal estimate, is contaminated with the errors 
{et} and hence will not be optimal in general; cf. [18] whose estimator is essentially 
the same as fit and hence will not be optimal. 

For example in an n-variate one-factor model (i. e. k = 1) with A = (1, a2 . . . , an)' 
this "quick" estimate of the common factor will be given by 

i-t = [Vit + a2(y2t - 72) + V an(ynt - %)]/(! + _! + • • • + an) . (27) 

7. EXAMPLES 

7.1 . Simulated da ta 

Figure 1 (thin lines) plots 180 observations of two artificial series generated by 

yu = (-t + eit, 

y2t = 0.8/it + £2t, 

fit = /it_i + 0.02 + nt, no = 100, 

I eu. \ 
Var I e2t -

\ *H J 
together with their underlying common factor (thick line). 

0.008 -0.004 0 
-0.004 0.02 0 

0 0 0.01 
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н i i i н i i i m i i i i i i i i i i ü i i ы i h i i i i i i i i i i п i ! - - t l i н i l l l l l l l i l l ľ 79 

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121127 133 139 145 151157 163 169 175 

—Common Trend 

Fig. 1. Simulated data: drifted random walk plus errors. 

Maximizing the log-likelihood (21) for a bivariate dynamic factor model, i.e. 
assuming a common drifted random-walk factor, we obtained the following results: 

factor loads: A = (1 0.8401)' 

intercept vector: 7 = (0 - 4.1038)' 

factor innovation variance: T,v = 0.0100 

factor drift: 6 = 0.0245 

error covariance matrix: XL = 0.0110 
-0.0059 0.0159 

which are very close to the true ones used to generate the data. 
Thus in the present one-factor bivariate case the common factor "quick" estimate 

given by (27) is 

fit = 2.0212 + 0.5862yi t + 0.4925y2.. (28) 

Figure 2 compares this quick estimate of the common factor with both observed 
series (left axis: {yi,/-}, right axis: {y2,afi}). 
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1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121127 133 139 145 151157 163 169 175 

— quick est •a*quick est 

Fi{^. 2 . Simulated data: quick estimate of common factor. 

Notwithstanding the possibility of factor rotation already mentioned at the end 
of Section 2, it must be said that the observed systematic deviation of the "quick" 
estimate in Figure 2 from the underlying true factor in Figure 1 is just consequence 
of estimation error and it can be expressed as 

dftt =dÂ+(yt -j) (29) 

where d^4+ is obtained from (20). In the present bivariate example we have then 
that the quick estimate of the common factor will have a systematic deviation of 

2\2 dfit = [(1 - a2) (y2t - 72) - 2ayu] d a / ( l + a2) 

where da is the estimation error of the factor load a. The following table gives 
expressions for some chosen values of a. 
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â = 0 áџt = day2ť 

à = ±1 da 
d*-** = =F ү У н 

â = ±2 d/ìť = ( - ^ У 2 ť =Я g » u ) da 

â = ±0.5 d/îť = ( ^ У 2 ť =F 
2 5 "\ A — Уi* d a 

16* 

In particular, since a = 0.8401 and 7 = —4.1038 in our case, the systematic 
deviation of our factor "quick" estimate is given by 

d/ft = (0.4148 + O.lOlljfe. - 0.5774yit) da. 

This, for an estimation error of da = 0.0401, gives 

djlt = 0.0166 + 0.0040y2t - 0.0231yi,. 

Figure 3 compares these estimation errors for the quick estimate (28) (solid line) 
with those obtained for the optimal — Kalman filter plus smoother — estimate 
(dotted line). In both cases they are relatively small: their respective sum of squares 
being 1.0555 for the quick estimate and 0.7494 for the smoothed one. 

quick estim - - - k f e s t i m 

Fig. 3. Common factor: estimation errors. 

7.2. European stock exchange data 

Figure 4 (thin lines) presents 431 observations of three European stock exchange 
indices from January 92 to September 93 (excluding nontrading days). Looking at 



A Dynamic Factor Model for Economic Time Series 601 

the graph it not only appears t h a t all series are nonstationary, but also t h a t they 

tend to move together in the long run. The usual unit root tests applied to the logs 

of the three series come in support of this notion as shown in the following table 

(figures in b o l d type mean rejection of unit root at the 5 % significance level): 

DF test: 
lst and 2nd unit roots 

London -1.124 -22.26 
Paris -1.633 -23.18 

Frankfurt -0.648 -17.87 

Engle-Granger test: 

1 residual unit root 

-2.382 

•4.279 

•3.919 

London FTSE100 

<кғ> 

\ L2550 
151 201 251 301 351 401 

Fig. 4. Three European stock exchanges: observed indices and common factor. 

To summarize, we may conclude that all three series are 1(1), but there appears 
to be two 1(0) linear combinations between them, thus implying the existence of one 
common factor. Therefore a dynamic factor model (6) with n — 3 and k = 1 was 
adjusted to the stock exchange data. Maximization of the spectral log-likelihood (21) 
produced the following results: 

Уiť = log(Londonť) 

y2t = log(Parisť) 

Узt = log(Frankfurtť) 

Aџt 

Ht + £h,t, 

4 .9468 /1 . -31 .5239+ £p,í, 

6.0779/iť- 40.5879 + eF,t, 

*+ T)t, 

(30) 

0.8236 x 1 0 - 4 
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Var 

/ ЄL,t \ 

£p,t 

£ғ,t 

\ m ì 

17.7022 6.0080 1.0017 0 
6.0080 5.9712 -0.4607 0 
1.0017 -0.4607 0.2197 0 
0 0 0 0.0208 

x 10" 

The thick line in Figure 4 shows the common factor extracted by Kalman filtering 
and smoothing. On the other hand, for the stock exchange data, the common factor 
"quick" estimate given by (27) is 

fit = 6.4512 + O.OI6O2/1. + 0.0793y2t + 0.0974y3t. 

Figure 5 compares the observed series with both the optimal smoothed estimate 
and this quick estimate of the common factor (both scaled in accordance with (30)). 
Notwithstanding the possibility of factor rotation, we have that the systematic de­
viation (29) of the "quick" estimate in Figure 5 is 

dßt -
(1 - a\ + oj) (y2t - 72) - 2á2(yu + á3) (y3t - 73) da2 

2^2 

+ 

(1 + a\ + a2) 
(1 - á | + a\) (y3t - 73) - 2á3(ylt + á2(y2t - 72)) da3 

(l + a2 + á2)2 

where da2,da3 are the estimation errors of the factor loads a2,a3 respectively. In 
particular, since a2 = 4.9468, a3 = 6.0779 and y2 = —31.5239,73 = —40.5879 in our 
case, the systematic deviation of our "quick" estimate of the common factor is given 
by 

dftt = (-0.5176 - 0.0025?/i, + 0.0034z/2< - 0.0154t/3.) da2 

+ (-0.6062 - 0.00Slylt - 0.0l54y2t - 0.0029y3t) da3. 

Therefore, since the estimation errors will probably be small due to the length of 
the sample, we expect the quick estimate to be not far from the optimal one in this 
case. 

APPENDIX: INITIAL ESTIMATES 

The autocovariance matrices of the differenced series (10) are 

rz(0) = AZTIA' + 2X£, Tz(±l) = -Z£, r , (±r) = 0, [ r (> l . 

. Thus by the method of moments we obtain 

-X = - ^ ( 1 ) + ^ (1)L ^ = ^ ( 0 ) + [tz(1) + t>A1)]> 

where E^ will just approximate AY^^A' because in general it will not be of reduced 
rank k < n. The problem is then how to obtain A, E^ satisfying the identification 
conditions (7)-(8) so that AYJ^A' is of reduced rank k < n. Since [35] shows that the 
least squares estimator of the CI matrix, i.e. B in (9), is consistent we can construct 
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51 101 

1900 
Frankfurt AZ •'/jjlИҷяґ 

ifWYЛf 

1800 

- JjЛ\л 

1700 шJí V ' l \\ 
Ч-Xпi' * 

V i Jг 

15p0 í 

:' |» 
51 101 151 201 251 301 351 401 

-scaled factor(KF) scaled factor(quick) 

F i g u r e 5. European stock exchanges: common factor est imates. 
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an idempotent matrix M = In — BB+ which has the property MA = A. Then by 
constructing $ = MT^M, a symmetric matrix of appropriate reduced rank k < n is 
obtained such that 

zl = AtnA'. (31) 

As, for identifiability, A and T,^ are restricted so that the former be a truncated unit-
lower-triangular matrix and the latter be a diagonal matrix, (31) can be interpreted 
as a rank-deficient Cholesky decomposition. 

Strictly speaking a Cholesky decomposition only exists for strict positive definite 
matrices but this notwithstanding an approximate decomposition can be obtained 
in the following way. Let CAC be the spectral decomposition of matrix $, i.e. 
$ = CAC where A denotes the diagonal matrix of eigenvalues in descending order 
and C the matrix of corresponding eigenvectors. Since rank $ = k < n the last 
(n — k) eigenvalues must be zero. Let us substitute the zero eigenvalues in A by a 
small but positive number h and let us call A/, the resulting diagonal matrix so that 

yh = CAhc (32) 

is a positive definite matrix for which a standard Cholesky decomposition exists. 
Let 

$/. = LhDhLh 

(*) 
(n-k) 

Lx 
0 ' ' Dг 0 ' Г J-i 

L2 

(k) 
Lз 

(n-k) . 
0 

L (k) 
D2 

(n-k) . 
0 

- (*) 

Ľ2 

L' 
k) J 

(33) 

be such decomposition (note that the eigenvalues in Dh are in descending order). It 
is easy to see from (32) that the smaller h > 0 is the closer z^h gets t o $ , i.e. 

\imzXh = $ • 
Һ-+0 

(34) 

Similarly in (33) it must be that lim^_o D2 = 0, implying that 

lim 5^ = lim 
/.-•o / i—o 

Li 
L2 

Di [ L[ Ľ2 } . (35) 

Combining (34) and (35) we have 

Џ - lim 
Һ-+0 

Lx 

L2 

Dx [ L\ L'2 } . 

This suggests, by comparison with (31), that A and T,v such that $ = AT,VA' can 
be approximated by the (n x k) matrix of k first columns of Lh and the (k x k) 
diagonal matrix of k first columns and rows of Dh • The approximation depends on 
the choice of h > 0 and therefore is as accurate as desired (or rather as permitted 
by the machine accuracy). 

(Received April 15, 1997.) 
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