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K Y B E R N E T I K A — V O L U M E 18 (1982), N U M B E R 3  

PRINCIPLE CONCEPTS OF SYSTEMS FUZZIFICATION 

Fuzzification of Systems for Technical and Medical Practice I 

ROMAN BEK, ZDENĚK POKORNÝ, MILAN RŮŽIČKA 

The paper describes motivation of large variable systems fuzzification the comprehensive 
language modelling of which, providing unique predictions of future events, may be for theoretical 
or practical reasons difficult or impossible. Therefore we deal with definitions of simpler sub­
systems which we fuzzify. Modelling language is modified to enable formation of correspondence 
between predictions and their certainty grades (measures). 

In the article fundamental presumptions and means of such a modification of the language are 
introduced. Apart from notions of "fuzzy class" and "fuzzy relation" there are terms as multi-
fuzzification of a class by means of language with time terms (chronology language). 

The authors of this discourse have recently published in this journal papers [ l ] 
and [2] dealing with the definition and questions of large variable systems modelling 
and compartmental ones in particular. Modelling of those systems was formed 
in precise languages with predicate-logical classical (two-valued) base of higher 
degrees. 

We would like to publish series of papers regarding the systems fuzzification 
questions of higher degrees and compartmental systems common in biology and 
medical sciences. 

First we shall study a few general questions concerning the definition of "sharp", 
fuzzy systems related to their language modelling. 

1. BASIC REASONS FOR FUZZIFICATION OF LARGE SYSTEMS 

Required optimal solution of various practical tasks in technical and non-technical 
spheres, for example in medical sciences branches, supposes a definition of considered 
systems on a given ontological sphere and their exact language modelling. 

This modelling enables a formation of requested future events which occur as 
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consequences of coincidentally existing conditions and proposed work operations. 
Language model of presumed processes envolves logical operation deduction of sen­
tences on predicted consequences from those which describe circumstances and 
operations in physical sciences. In technical problems there are mostly mathematical 
language models and so especially for solving of difficult, for instance constructive, 
tasks if there is time enough to find a convenient language, mathematical formulation 
of assumptions and deduction of logical consequences. Even in biological and social 
sciences mathematical language modelling plays an increasing role. 

A subject of language modelling may be a system defined on a suitable ontological 
sphere (technical, biological, social etc.). The semantic counterpart of propositions 
and logical consequences of a language model are input and output events of the 
system. The semantic counterpart of general, law-like sentences of the model are 
objective regularities in ontological sphere, which we can coincidentally consider as 
essential relations of the system. 

The definition of "sharp" system is connected with a series of unique decisions 
which entities from the sphere we take as inputs and outputs events respectively and 
which regularities of the sphere we select as substantial system relations. These 
decisions regard registration of corresponding entities into given sets, sets of inputs, 
outputs, input and output events and relations. Obviously these sets can be classified 
as classical ("sharp") ones. Language modelling of such a system is therefore based 
on classical (two-valued) logical base. 

A system, defined like this, is a result of a remarkable simplification of a sphere 
under consideration. From epistomological viewpoint, we can take that for a network 
located between us and the sphere. Its task is to provide an easier orientation on this 
sphere, where, at the same time, a series of various systems can be defined, as to the 
character of this simplification. Some of them can be taken for subsystems of other 
systems. 

An effort for more adequate predictions (less distinguishing from really proceeding 
occurrences) leads to a definition of larger systems with greater number of inputs, 
outputs and essential systems relations. 

A process from smaller to larger systems is usually related to their dishomogenity: 
qualitative differences among individual elements and parts of the system and its 
relations are more remarkable. 

This system extension has its limits. A description of a very large system is too 
complicated. Greater dishomogenity leads not only to more complicated general 
assumptions in predictive procedures, but also to special demands regarding syntax 
and semantics of modelling precise language. 

Biological and social sciences are characterized by statistical character of studied 
occurrences and systems and by vagueness of their terms. Undoubtedly it is caused 
by descriptive foundations of these sciences. These terms can be considered (cf. 
Zadeh [6]) as linguistic variables or restrictions respectively, that means as fuzzy 
sets [7]. We give following examples from morphological and clinical branches. 
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For frame descriptions terms "short" — "long", "rounded" — "ellipsodical" — 
"filaminous", "flat" — cubic" — "cylindrical", network "dense" — "thin", colours 
"light" — "dark", "pale" — "vivid". Situs is denoted by so-called body region etc. 
Similarly in clinical sciences, anamnesis, subjective complaints and current state 
description are necessarily presented in vague terms regarding, for example, pain, 
(MUDr Jirasek distinguished 36 terms for pain quality), habitus, body holding, 
motions, height, meagerity, muscle tone, colour and humidity of skin, etc. Almost 
all symptoms, as palpatory, auditory and percutory signs, are denoted by vague terms. 
Descriptions of x-ray, ekg findings and others contain vague terms. Majority of quan­
titative labs findings are to compared with a norm, but this norm itself is not accurate. 
Even the notations of illness and health are vague. 

Physiological branches have to start from facts given by a description. Apart from 
that, they have their own sources of inaccuracies, as for example: difficulties with 
preservation of experiment conditions, methodological modifications and their 
inaccurate description complications with result transfer on an isolated system 
(skin, organ etc.) for conditions in intact organism or between two biological systems, 
impossibility of direct parameters determinations. Quantification of a physiological 
system is often incomplete. We have to be only satisfied with a description of a res­
ponse on a stimulus, as increasing or decreasing of a factor. These inaccuracies exceed 
often and practically possibilities of statistical registration. 

In biological and medical sciences we meet so large dishomogenic systems that we 
do not even try to form their "sharp" definition. In this connection, let us remind 
L. A. Zadeh's sentence: "As the complexity of a system increases, our ability to make 
precise and yet significant statements its behaviour diminishes until a threshold is 
reached beyond which precision and significance become a most mutually exclusive 
characteristics." [6] 

In an ideal case, a precise language model of a "sharp" system leads from true 
propositions to logical consequences, the truth of which is certain. In discussed 
circumstances we often have to be satisfied with limited grade of deducted conse­
quences certainty. But we would like to know this grade of certainty (or certainty 
measure), because of decision formulation regarding prepared work operation. 
In such a case, "sharp" system can be replaced by a "fuzzy" one. If the system 
definition was based on the set theory concepts, then the corresponding sets are 
getting to be fuzzy sets. Precise language model which served to a description and 
system prediction, is now being generalized and completed by means for certainty 
grades (measures) calculation, values of related membership functions. 

In the following part of this discourse we bring a few basic viewpoints and opera­
tions required for completion of exact language for describing fuzzy systems. 
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2. BASIC OPERATIONS WITH FUZZY SETS. SYMBOLS 

In forthcoming reasoning we begin from three major grounds of systems fuzzi-
fication: 

a) We are not quite sure if given objects belong to a given set (class) at a 
given moment, i.e. if they have certain property (hence we build up precise lan­
guage on an extensional base). 

b) We do not know exactly, if m-tuple of given objects belong to a certain relation 
at a moment and if these particular objects really belong to respective n-tuples. 
In further text we shall often use the term "to fuzzy". It is to be understood the 
replacement of a "sharp" system by a fuzzy one. 

c) We are not certain if given moments belong to a given time interval. 

A fuzzy class (set) we shall understand as (unique) mapping (transformation): 

A 0 : UL -» Go. 

where UL is the language universe (in which we shall define system). 

Q01 is interval of rational numbers <0,1>. 

Thus the fuzzy set A0 can be considered as a class of ordered pairs of the type: 

(xhnA0(x)y, xteUL, txAo(x,)eQot 

The function /J,AO is called "membership function" and for given argument xt denotes 
certainty grade (measure) that xt belongs to A0. 

Remark 2.1. In this article we shall not deal with general conception of fuzzy 
set theory, languages and automata. Hence the range of membership function does 
not have to be any concrete numerical interval, but any set L partially ordered by 
a relation of the type ^ . 

On the set L there are defined operations of the type: 

n, +, -,-*, and holds: 

(L, +, •) is complete subring with element 1 s Las the upper one, 

(L, -•) ' is implicative algebra, 

a . b ^ c iff a ^ b -+ c, 

(L, n ) is complete sublattice, 

+ is idempotential operation. 

By a specification of these requirements we can obtain an algebraic structure which 
is near to Lukasiewicz's logic: 

instead of L we introduce closed interval R01 = <0,1> partially ordered by the 
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relation ^ , 

a n b = min {a, b) 

a + b = mâx {a, b) 
a .b = max (0, a + b — 1} 

a _> fr = min {1, 1 — a + b} for a, b e Rc 

For the following reasonings we perform further specifications: as the range of 
membership function we accept closed interval of rational numbers Q0i = <0> 1>> 
because for empirical investigation of membership function of basic entities of fuzzy 
systems, rational numbers are fully sufficient. Further demand is computerization 
of membership function values for derived entities. 

We assign operations a + b and a . b to those of union (A u B) and intersection 
(A n B) of classes, where a is a value of membership function of fuzzy set A0 for 
given argument, b is a value of that for fuzzy set B° for the same argument, a + b, 
a . b are respective values of membership functions of fuzzy sets A u B, A n B for the 
same argument: 

a = nAo(x), b = fiBo(x) for x e UL , 

a + b = max {a, b] = ftiAilB)(x) 

a . b = min {a, b] = n(AQB)(x) 

Further we associate operation subtraction from the unit (1 — a) with class A 
complement formation as follows: 

a = nAo(x) as formerly, 

with the negation of the sentence x e A0 (i.e. x £ A0) corresponds value (1 - a) = 
= (1 - ^o(x)). 

Remark 2.2. When considering a, b as true values of sentences of the type: 

"Element xeUL belongs to A" 

"Element xeUL belongs to B", respectively, 
we can take operations a + b, a . b, (I — a) for arithmetical once, which define 
functors of multi-valued logic. 
(This specification corresponds with non-generalized conception of fuzzy set from [4]) 

When looking for fuzzy algebraic interpretation of sentences of chronology langua­
ge envolving also time terms, we often meet possibility of coincidental fuzzification 
of time interval and successive multi-fuzzification of a given class. 

Let a simple sentence have a form: "An object x has at a moment i ; property A". 
("The object x belongs to a class A at a moment t"). Symbolically: <x, (,•> e A. 

The class A can be fuzzified once. Let a cause of fuzzification be a fact that we 
cannot verify with a full certainty, if the object x has really the property A at the 
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moment tt. To denote explicitly the first fuzzification of the class A, we shall now 
write the letter A with number 01 and the membership function of once fuzzified 
class will be abbreviated like this: 

/*xo.(x, f ; ) . 

In further explanation A0" is to be understood as n-times successively fuzzified class 
A. 

Time interval At, i.e. class of moments ordered by the relation "to happen earlier, 
than" can be fuzzified once, because we are not able to verify completely sentences 
of the type "moment tt belongs to time interval At". Hence At0 will be a fuzzy set 
(interval) of moments and we consider that as transformation 

At°:T-+Q0l 

where T is the class of all moments and forms a base of time structure from the onto­
logy of applied precise language. We fuzzify time intervals only once and therefore 
we omit from symbolic abbreviation number 1 in the circle over At. The membership 
function of fuzzy interval At0 is denoted by nAto(t^). We sometimes consider member­
ship of a moment t{ in subinterval At' c At limited by duration time of given charac­
teristic for a given object. 

Membership uncertainty regarding time we meet when studying biological rythms, 
determining a childbirdth delivery or investigating successive combination of pato-
gennic impulses. 

Let us have now a further simple sentence of the type "n-tuple of objects xu ... 
..., xn occurs at a moment ti in a relation R" abbreviated by 

(xu ..., Xn, t;>€R 

The class R of ordered (n + l)-tuples (on the last place in each is always time term) 
can be fuzzified twice successively. Let us notice that the sentence "Object Xj belongs 
to the field of (n + l)-member relation R at a moment (;" (n ^ 2) may lead to un­
certainty of the following type: as known, Xj belongs to the field R at th if it belongs 
to at least one from (n + l)-tuples, with the last term t{, which is an element of the 
class R. 

Let uncertainty be based on unability to decide with full reliability, if Xj belongs 
to the given (n + l)-tuple (this (n + l)-tuple is an ordered class itself). 

In diagnostics, for example, we are not sure, if determined signs "belong together". 
We do not know, how remarkably proceeding processes are dependent on one 
another. 

Let us call the fc-th (n + l)-tuple, belonging to R, the fc-th context of the R, abbre­
viated by (cont)fc;R. This context is a class which can be fuzzified. Its membership 
function will be (̂Cont)£,R(xj> tt). 

We can formulate n-tuple of membership functions of the above mentioned form 
fo n given objects xu ..., x„ with respect to moment ff and these tuples are connected 
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with certainty grade (measure) that objects xt, ...,x„ belong to the /c-th (n + 1)-
-tuple at fj belonging to R. For the whole (n + l)-tuple we can calculate then the 
value of "total" membership function: 

M(cont)!U(*i.-- •>*»' ' .)•" 

= min {j"(cont)°,R(*j> h) | for all xp 1 S j ^ n, (xu ..., x„, f;> e R} . 

Further: the relation R itself is a class of ordered (n + l)-tuples of the type (xu ... 
...,x„,tty. When verifying sentence <x 1 ; . . . , x„, f,-> eR we may not be quite sure 
if this (n + l)-tuple completely belong to the class R. 

For example, we are not certain, if present symptoms set belongs to one or other 
nosological unit. We do not have certainty regarding alternatives of state prediction 
or therapy determination. In such a case, we shall write corresponding membership 
function ^01 (*i,. . . , x„, tt). 

Let us consider now two types of fuzzification. Related total membership function 
(for twice fuzzified class R) can be calculated: 

UROifa,..., x„, tt) = min {n&ifa,.... x„, tt), ^eOBt)°Jxu ..., x„, tt)} 

where (x1,..., x„, i;> is the fe-th element of R . 

Relations and attributes of higher degrees can be successively fuzzified also from 
some other viewpoint: 

Let (s)R be a relation among distinct objects and have degree s > 1. Objects within 
this relation can be elements of the universe U of "sharp" system being fuzzified 
or they can be relations of this system with the degree utmost (s — 1) and time term: 

< (s l )Ri, ...,(S")R„, t,)ewR 

For simplicity reason, we consider attribute as unary relation and denote an element 
of the universe by symbol (0)R. 

As we have just seen, the first two fuzzification of the relation (S)R are motivated 
by uncertainty whether (n + l)-tuple 

<}Si)R1,...,
{-s")R„,tiy 

belong to the class (s)R and if its individual members ( s i )R1 , . . . , {Sn)R„ belong to this 
(n + l)-tuple. The membership function of twice fuzzified relation (s)R is 

Hi,}R„1(^R1,...,^Rn,ti). 

The second two fuzzifications of the relation (s)R are motivated by uncertainty 
whether respective ordered classes of lower degrees relations belong at a moment t,-
to corresponding classes 

(S1)R1,...,(S")R„ 

and if particular members of these classes belong there. 
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The total membership function can be obtained from membership functions 
values of these relations by means of operation min from mentioned initial values. 
Obviously, the fuzzification process of the relation (s)R can continue if s > 1. 

For value calculation of membership functions of classes (relations) the following 
algorithm can be formed: 

2.1. RULES. 

1. Let a relation of the type (s)R be class of ordered (n + l)-tuples 

<(Sl)Ri, ...,(Sn)R„, f/>, s ^ 1 , n >: 1 . 

The first two fuzzifications of (s)R lead (as we have already seen) to fuzzy class ( s )R02 

with the membership function: 

/ ^ o ^ R , , . . . , < ' » > * „ , r,) = 

= min {fi^o^'Ru ..., (Sn)R„, t,), ^oni)°k^R((Sl)RL • • -, iSn)R», t,-)} , 

where < ( s l )R!,.. . , (Sn)R„, /,-> is the A;-th element of (s)R. 

2. Let a relation of the type (Sj)Ry be class of ordered (jm + l)-tuples 

\ K y , i > •••> nj,m, li? • 

The first two fuzzifications of this relation lead to fuzzy set (S-')RJ?
2 with the member­

ship function 
WJ,R°ilsj-l%,n..->(sj-m%,m,tt)~ 

= min {msj,gotJ^Rj,u...,^%,m, tt), d ^ w / ' " ^ , , (Sj"%,m, h) | 

| for all (Sj)R,-, <(SJ-,)RJ-,1,. • -,
 (sj-)jR7>m, t;> is the k-th element of ^^R^.} . 

3. Are all elements of the type ( S l ) R i , . . . , (Sn)R„ coincidentally those from the system 
U universe, i.e. st = s2 — ... = s„ = 0? 

4. The second fuzzification of (s)R is final. 
Let respective membership function identify final value for max fuzzified ( s )R. 

5. Take successively: 

Sj = s„ 

6. Do for these s ; successively rule no. 2 for all their elements, i.e. for ordered (jm + 1)-
tuplesofthetype: 

e^RJil,...,^-%m,ti}. 

Calculate min from these membership functions values. 

7. Are all elements of the type 

coincidentally those of the universe U (i.e. sJA = si>2 = . . . = 0)? 
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8. The last fuzzification of ( S )R is final. 

Determine min from all so far obtained membership functions values as final 

value for max fuzzified ( s ) R . 

9. Put respectively: s- = sJA 

for all s ; > 1,..., sjm greater than zero. 

Development diagram: 

|Do1 

It is obvious, that a relation of the type ( s ) R can be fuzzified max 2s-times. Fdr de­

nomination simplicity we shall write only / i ^ o instead of fi(s)R02s. Objects attributes 

(i.e. unary relations of the first degree ( 1 ) R ) we fuzzify only once. 

E. 2.1. Example. 

Let in "sharp conception" be defined following relations: 

( 1 ) R = {(x, tt\ <y, tj}} , ( 2 ) R = {< ( 1 )R, y, tj}} , 
( 3 ) R = {< (1)R, ( 2 ) R , x, t,\ < ( 1 )R, ( 2 ) R , y, tj}} . 

Let (empiricaly obtained) membership functions values be given: 

fiWR01(x, t,) = 0-85 no^y, tj) = 0-82 

/Woo.,<2)R((1)R, tt) = 0-75 /Wt)°i ,<»«(*> tt) = 0-8 

fimR01(
(1)R, x, tt) = 0-7 

^onoo1,<3,K((1)-R, t,) = 0-71, niemt)Hii3m((2)R, h) = 0-82 

ftconO'l .!»«(*•*.) = 0-86 

VWR01(
(1)R, (2)R, x, t) = 0-6 

/W002,<3>K((1)#, tj) = 1 , 

^(cont)02,<3,Jj(>', tj) = 1 , 

tiWR4il)R> l2)R> y, tj) = o-65 

/Wt)°2,<з,я((2)Я, tj) = 0-69 
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jpr-

Now we can calculate further values of membership functions. 
(1)R can be obviously fuzzified only once. 

For ( 2 )R : this relation contains only one triple which is therefore its first and last 
context and membership function values of this context will be: 

^0«»°IMWR> X> *i) - 0-75 

The relation ( 2 )R now we fuzzify for the second time: 

HmR02((1)R, x, «f) = 0-7 

The relation ( 2 )R can be fuzzified for the third time (in the context (1 )R will be fuzzified) 

limR03(
(1)R, x, fi) = 0-7 . 

(2 )R cannot be further fuzzified, since all its parts are already max fuzzified. For the 
part (1 )R is unary relation of the first degree, so has been fuzzified only once and 
hence ( 1 )R0 1 = ( 1 )R02 . For the same reason ( 2 )R03 = ( 2 )R04 . 

For ( 3 )R : this relation envolves only two quadruples, hence, we consider two 
comprehensive contexts. 

Membership function values for both comprehensive contexts: 

fiiconi)01M
(1)R>(2)R>x>ti) = o-n 

^onlr2Ma)R> i2)R> y>*j) = °-6 9 

The relation (3 )R can be fuzzified for the second time: 

fiWROi((1)R, (2)R, x, t,) = 0-6 

H^R0>((1)R, (2)R, y, tj) = 0-65 
(3)R can be gradually fuzzified for the third time ((1)R and (2 )R will be now fuzzified 
in contexts for the first time): 

Ho>ROi((1)R, (2)R, x, t,) = 0-6 

/ i (3,Ro3( (1)R, (2)R,j,0) = 0-65 
(3)R is fuzzifiable for the fourth time ((1)R cannot be fuzzified anymore, but ( 2 )R 
can be still fuzzified once more): 

/.(3,Ko4((1)R, (2)R, x,.;) = 0-6 

^ o , ( ( 1 ) R , ( 2 )R , y, tj) = 0-65 
(3)R can be fuzzified for the fifth time (in context we consider (2)R to be fuzzified 
three times): 

^(3)JJ05((1)R, ( 2 )R , x, ti) = 0-6 

H«mo>((1)R, (2)R, y, tj) = 0-65 

Further ( 3 )R cannot be fuzzified. 
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Sometimes determination of membership function values of vague terms arises 
from definition, but that is based on individual or collective experience with applica­
tions of these terms in given situations. 

At basic cases it is possible to find functional value of membership function using 
empirical way. It seems to be necessary to stress that a value of membership function 
of a given class for an argument — so the certainty grade (measure), that a sentence 
about elementshood of an object with respect to a certain class is true — cannot 
be replaced by a probability value. Specific algebraic structure, having been defined 
on the interval of rational numbers g 0 1 and serving for precise language model 
of fuzzified systems, differs from algebraic structure of probability theory. 

Values of membership functions for some (defined) classes can be determined, 
as we have already shown. We shall use formulas which will be further introduced 
in connection with definitions of corresponding entities from the systems theory. 

An important part of these formulas play operations min, max and that of comple­
mentation, which are uniquely associated in our specification with respective opera­
tions and sentential functions: 

(A(x) A B(x)) ...nA^B(x) = min {nAo(x), nBo(x)} , 

(A(x) v B(x)) ... nAhB(x) = max{vAo(x), fiBo(x)} , 

~ A(x) . . . ^o (x ) = l - / v ( x ) 

(A(x) - B(x)) ... min {1, 1 - ^o(x) + /^(x)} . 

Formula with universally bounded variable with finite domain can be replaced by finite 
conjunction of sentential functions and value of corresponding membership function 
is obtainable by operation min: 

Vx A(x) . . . min {fiAo(x) \ xeU, U is finite} 
xeU 

Using similar way, we can substitute the formula with existentially bounded variable 
by disjunction of sentential functions and value of membership function calculate 
by means of operation max: 

3x A(x) ... max {fiAo(x) | x e U, U is finite} . 
xeV 

In future reasoning we shall simplify formulas with successive operations min 

and max, as for example: 

min {.. . ,min { }} = min {..., } 

max { , max {•••}} = max { , . . . } . 

In some instances we may meet a few parenthesis. Expression of the type 

°P e r i {nAo(x), oper2 {nR0(x, y) | y satisfies a condition C.} | 

[ x satisfies a condition C2} 
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(where ope^ and oper2 are operations min and max respectively) is to be understood 
as follows: 

the operation is applied on the range of the function \xAo for all x satisfying a condi­
tion C2 and to this range belong also results of the operation2 when applied on the 
range of the function nR0 for all x satisfying the condition C2 and all y satisfying the 
condition Cx. 

Conditions for class formation mentioned beyond the vertical line | will be mostly 
formulated in natural language with common symbols. These conditions will deal 
with "sharp" entities. That is well satisfying common usage that we first select from 
reality a "sharp" system and afterwards we make a fuzzification. 

In the following reasonings we shall deal with cardinalities of fuzzy classes. These 
cardinalities definitions we have taken from S. Gottwald's conception. As to that, 
every fuzzy class (set) A0 can be divided into subclasses of the type A0(,), i e (0,1> 
as to i values of membership function JXAO for individual elements xeUL: 

A0 = uA 0 ( i ) , i e ( 0 , l > . 

For abbreviation simplicity we omit at individual subclasses for respective elements 
corresponding value of membership function, which is already mentioned in index 
of the type i and instead of term A0(i) we use expression A(,): 

A(i) = {x | ^o(x) = i, i e (0, 1 » . 

Thus cardinality of fuzzy class A0 is defined in this way: 

card*, (A0) = {card (A(i)), i e (0, 1>} . 

E. 2.2. Example. 

Let a fuzzy set A0, after omitting all elements with zero value of membership 
function (abbreviated by |A°|), be defined as follows: 

|A°| = {<x1; 0'5>, <x2, 0-3>, <x2, 0-4>, <x4, 0-5>, <x5, 0-9>, 

<x6, 0-3>, <x7, 0-8>, <x8, 0-5>, <x9, 1>, <x10, 0-4>} 

Sets of levels: 

A(0-3) = { x 2 , x 6 } , A(0'4) = { x 3 , x 1 0 } , A(0'5) = {x 7 }, A(0'9) = {x5} 

A(1) = {x9} . 

Generalized cardinality: 

card^ (A0) = {card (A(0 '3)), card (A(0 '4)), card (A(0 '5)), 

card (A(0-8)), card (A (0 '9)), card (A(1))} = 

= {2o,3> 2 0 ; 4 , 3 0 > 5 , 1 0 ] 8 , 1 0 > 9 , l i | . 
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We shall also meet operation of addition of fuzzy cardinalities. The sum of two 

fuzzy classes cardinalities can be defined like this: 

A ( + )<> B = (card (A(,'> u B(l>)), i e (0, 1> , 

what is perfectly in accordance with common definition of addition from the set 

theory. 

E. 2.3. Example. 

Let a fuzzy class A0 be the same as in E.2.2, and fuzzy set B° defined as follows: 

J5° = {<x u , 0-3>, <x12, 1>, <x13, 0-5>, <x14, 0-3>} . 

card,, (B°) = {card (B(0'3>), card (B(0-5>), card (5(1>)} = {20,3, 10,5, 1.} 

the sum: 

A (+)° B = {card (A(0'3> u £(0'3>), card (A(0-*>), card (A(0'5> u B(0'5>), 

card (A(0>8>), card (A(0'9>), card (A(1) u B(1>)} = 

= {4o,3> 20j4, 4 0 s , 1 0 8 , 1 0 9 , 2..} . 

ACKNOWLEDGEMENT 

The authors wish to express deep gratitude to Prof. RNDr. Otakar Zich, DrSc. for his out­
standing assistance and valuable suggestions concerning this article. 

(Received June 26, 1981.) 
R E F E R E N C E S  

[1] R. Bek, M. Ruzicka: On modelling of large variable systems of higher degree by means 
of language systems. Kybernetika 15 (1979), 6, 408—428. 

[2] R. Bek, Z. Pokorny: Basic terms of the theory of compartmental systems. Kybernetika 17 
(1981), 4, 338-347. 

[31 S. Gottwald: A note on fuzzy cardinals. Kybernetika 16 (1980), 2, 156—158. 
[4] A. Kaufmann: Introduction to the Theory of Fuzzy Subsets. Academic Press, New Y o r k -

San Francisco—London 1975. 
[5] W. Wechler: The Concept of Fuzziness in Automata and Language Theory. Akademie - Ver-

lag, Berlin 1978. 
[6] L. A. Zadeh: Quantitative Fuzzy Semantics. Information Sciences 3, University of California, 

Berkley 1971. 
[7] A. Jirasek: Bolest se stanoviste moderniho chirurga. Sbirka pfednasek Ceske akademie ved 

aumeni ,Praha 1938. 

Doc. Dr. Roman Bek, DrSc, katedra aplikovane matematiky strojnifakulty CVUT(Department 
of Applied Mathematics, Faculty of Mechanical Engineering — Czech Technical University), 
Suchbdtarova 6, 160 00 Praha 6. Czechoslovakia. 
Doc. MUDr. Zdenek Pokorny, CSc, Ustav pathologicke fyziologie fakulty vseobecneho lekarstvi 
UK (Institute of pathological physiology, Medical Faculty — Charles University), U nemocnice 
5, 128 53 Praha 2. Czechoslovakia. 
Dr. Milan Ruzicka, CSc, katedra matematiky strojni fakulty CVUT (Department of Mathe­
matics, Faculty of Mechanical Engineering— Czech Technical University), Karlovo nam. 13, 
121 35 Praha 2. Czechoslovakia. 

246 


		webmaster@dml.cz
	2012-06-05T10:04:40+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




