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KYBERNETIKA CiSLO 6, ROCNIK 5/1969
The Theory of Regular Events II

IvaN M. HAVEL

Part 1 of the survey on regular events* is concerned with some applications of regular events
and regular expressions mainly to the synthesis problem of finite automata. The classification
of regular events is also mentioned.

6. INTRODUCTION

6.1

The principal task of applied automata theory is the design of finite automata
on the basis of a given behaviour, possibly with additional requirements mainly
of economical character. We shall rectrict ourselves to the synthesis of automata,
the behavioural description of which is given by means of regular expressions.

The outlines of problems related to the abstract synthesis are presented below:

(]) The point of departure is a regular expression characterizing the behaviour
of an automaton. The expression may be written using arbitrary operators.

(2) The original expression may be transformed in some or other way. Then the
problems of equivalence of expressions, their canonical representation and reduction
of complexity arise.

(3) When we choose the modular approach, the decomposition of expressions,
corresponding to the decomposition of automata, is desirable.

(4) The proper synthesis procedure applies to a regular expression and yields the
transition table (or equivalent description) of a finite automaton. This may also
involve the reduction of an automaton.

(5) The design in its entirety may be proposed to be carried out with the help
of a computer. The procedures are then desirable to be of exact algorithmic character
without any intuitive step.

* Cf. 1. M. Havel: The theory of regular events 1. Kybernetika 5 (1969), 5, 400—419.



6.2

Before the study of the application of regular expressions it is worth to mention
the relationship of regular events and automata. We have seen that the event A
recognized by an automaton o/ consists just of words leading from the initial state s,
to some of the final states of .«/. Similarly we may attribute to any other state s of &/
an event A, of words leading from s to some of the final states. Now, let w be a word
leading from so to s (i.e. s = 5(sy, w)). You may see that A, is just the left quotient
of 4 by w:

A, =wN4.

s

Thus computing the left quotients of the event 4 we may come to an insight to
a structure of the automaton recognizing A. This very consideration is applied
to the synthesis which will be described in 9.1.

The main problem is that we have to accomplish it in terms of regular expressions
instead of regular events.

The synthesis of automata using this method was firstly described by Brzozowski
[8] and independently by Spivak [114]—[116] (cf. also [104]). An almost exhaustive
presentation of the application of regular expressions to this purpose is comprised
in the monography prepared by Brzozowski [11]. The manuscript of this mono-
graphy was the main source for brief explanations in Sec. 7—9.

In Sec. 10 the decomposition problem is mentioned and in the last Sec. 11 the
classification of events by their special properties and by their complexity (star
height) is discussed.

6.3

In the following we shall not use the concept of abstract Kleenean algebra (see
Part 1 of this paper), but only its special case: the algebra of regular events, and the
appropriate language of regular expressions. The alphabet will be X := {xl, - xk}
(arbitrary but fixed). The language of regular expressions is supposed to be extended
by the complement and intersection and also by any other useful regularity preserving
operation. Two expressions « and f will be called equivalent (written o = ) iff they
denote the same event, i.e. iff [ac] = |[)‘f Similarly we shall use the notation o« < f
in the case when |zx’ c lﬂ|

7. DERIVATIVES OF REGULAR EXPRESSIONS
7.1

The derivatives of expressions provide a very powerful tool for the study of regular
expressions: they correspond to the left quotient of events. As an operation over
regular expressions they were introduced by Brzozowski [8].
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522 First we need a special operator recognizing whether 1 belongs to some event A.

Let us define
A if led,
o(d) := voes
@ otherwise .

We shall definé a similar operator for regnlar expressions resursively as follows:

i. o0 =o(x)=0 (i=1,....k),
oAy =A,

2. . o(ev B) = ofw) v e(B)
o(@B) = olxn B) = e(@) N e(B).
oe*y =A,
o) =Anele)=A- o).

Easily we may verify that
le@] = e(l«))-
The definition of a derivative with respect to the symbol x,; € X is also recursive:
1. _ 0 = A,
0.0 =0, A =0.x;=0 (i +]),
2. - 0 (euB)=08,a00.8,
o, (x ﬁ) =0, 0N3.B8,
0 {(#f) = (00 Bu o) 3B,
e 0F = (0,,0) a*,
0. = (’},,1 .
We extend the definition of the derivative to cover words of arbitrary length:
3. Op = .

4. Let we X*, w = ux;. Then 9,2 = 8,

,0) (it is nothing else than the repeatel
first derivative). ’



Example (over {0, 1}). Let « = 1(00* U 1)* 1. Then
o =9,
9 = (00* L 1)*1,
810 = (5(00* L 1)) (00* U 1)* 1 L P = O*(00* U 1)* 1,
0= (00U 1)*1UA.

An important fact is that derivatives denote the left quotients of events (2.2d)):

[Buer] = w o
(as a matter of fact they were introduced just for this purpose).

72

Knowing the relationship between the left quotients of an event and the states
of a finite automaton we may expect the total number of quotients of a given event
being finite. In other words any regular expression may have only a finite number
of non-equivalent derivatives.

‘We may formulate a somewhat stronger result. Let us call two expressions « and
similar iff they are equivalent and their equivalence can be proved without using
more than the associative, commutative and idempotent laws for union, and the
following properties of @ and A: au @ =o,00 =@ and eA = Aa = « (i.c. the
axioms Al—A3, A7—A9).

Theorem. Any regular expression may have only a finite number of dissimilar
derivatives.

The proof can be accomplished by induction over the number of regular operators:
(Let us denote the number of dissimilar derivatives of « by d,.)

1. dy=1; dy=2; d,=3 (i=1,..,k);
2. dau/} = dad{? 5 dyng S datdﬂ 3
dyp £d,.2%; du<2%—1; dy=4d,.

Let us define the derivative closure 2(x) (in Spivaks’s papers called a basis) of «
as the least set of expressions (up to the similarity) satisfying

(1 ae P w);
(2) CBeP(a) =8, BeD(w), =150 ke il b
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We have seen that @(a) is finite. Moreover, it always can be constructed by taking
derivatives with respect to words of the length not exceeding d, — 1.

As a matter of fact the construction of Z(a) is nothing else than the construction
of finite automaton recognizing |Ot|. We shall return to this in 9.1.

7.3

It may be easily verified that any event can be expanded in terms of its first left

quotients:
k
A=U{x}.x; N4 ug4).

i=1

In the case of regular events we may rewrite it in terms of regular expressions:

(we write 9, instead of d,,). Let 2(x,) = {«;, ..., a,} be the derivative closure of a,.
The elements of 9(&,) then satisfy the following system of equations:

Sr=xdnuvxénv.. uxéyver,

Cr=x& VXV uxu e,

where
éije{éls'-w‘fn}, 1gign, 12j<k;

{él, e én} is a set of indeterminate variables and ¢; is A or § in accordance with
the value of g(a;).

These equations will be called the derivative equations of «, or also the equational
characterization of o, (equations of basis according to Spivak).

Every regular expression can be equationally characterized. Conversely, as we
shall see now, it can be computed (up to the equivalence) from its system of deriv-
ative equations.

Generally it holds that any set of equations of the form

Si=UBit;vy, i=1..n
i=1

with (B;;) = 0, (1 < i,j < n) can be solved for &; uniquely. This solution proceeds
by repeated application of the rule R from 3.1 and substitution.



The special case of such equations is clearly the set of derivative equations of an
expression a. After the solution* we obtain an expression o equivalent to « but
containing only the U, . and * operators. This implies that any regular expression
can be transformed to the so called restricted regular expression.

An important result also follows from the above explanations:

Theorem. An event is regular iff it has a finite number of distinct left (or right)
quotients.
Equations over regular expressions are also studied in [78], [79]. [87], [88], [117].

8. THE EQUIVALENCE PROBLEM
8.1

The testing of equivalence of regular expressions is a very important problem.
It is always solvable trivially by constructing the corresponding automata, reducing
them and testing the isomorphism. There exist, however, also other methods. The
first one described here uses the derivatives of expressions and is essentially related
to the mentioned trivial method (see [11]).

Besides the equivalence we shall also test the inclusion (which otherwise can be
handled also as an equivalence: « < B iff x U ff = ﬂ)‘ The method is based on the
following four statements, which can be easily verified:

1) o =@ iff no derivative of o contains A ,
(2) o« = X* iff all derivatives of o contain A ,
(3) acf iffauf=Xx*,
Q) x=p ilapAB=0.

Thus the testing of equivalence or inclusion of « and f consists in

(a) finding all derivatives, i.e. constructing the derivative closure of the expression
o A\ B or ouU B respectively (some redundancy in the number of derivatives is al-
lowable; the finiteness of the procedure is not affected even if we distinguish only
dissimilar derivatives) and

(b) finding the values of the function ¢ for all the derivatives (the useful tool for
this is the definition of g).

A more convenient method can be used when we have to test the equivalence
of two derivatives of some expression and when the derivative equations are known.
The method resembles the testing of indistinguishability of two states when reducing
the transition table of automaton. With help of this method the so called reduced

* The example of the solution of derivative equations is in 9.2.
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derivative equations may be obtained. We have the important result that every
regular expression can be characterized uniquely by a set of derivative equations
in which all derivatives are distinct and which can be constructed effectively.

8.2

Now we shall mention some further methods of deciding the equivalence, which
are not based on finding the derivatives.

(2) The most exact method is the proving of equations as identities of abstract
Kleenean algebra. Because of the completeness of the axiom system described in 3.1,
this method is by all means general. Its disadvantage is that it usually claims for some
mathematical skill and can be scarcely automatized.

(b) Another technique of deriving equalities is the proof by reparsing [46].
The equivalence is proved in terms of regular events as word sets. Let us demonstrate
it on the example:

We have to prove that e.g. a(fu)* = (af)* o

An arbitrary word we ]a(/ia)*l may be written as w = uo(v,u,) (v,u,), ..., (v.4,)
where u; € |o| and v; e ||. Using associative law for concatenation we obtain w =
= (uovy) (U302)s . o» (Up—y0,) U, € |(ocﬂ)* oc]. Hence o(Bx)* < (af)*«. The converse
inclusion can be obtained similarly. However, this technique is not systematic and
can be used only for special cases.

(c) The last method we shali mention is described by McNaughton [46]. Tt is
based on the fact that regular expressions are easily characterized by the so called
transition graphs. These graphs resemble the state graphs of automata with the
exception that they are non-deterministic and their branches may be labelled also
by the empty word A. The equivalence of expressions are proved by simple trans-
formations of corresponding graphs, as long as the isomorphism of graphs is obvious.
Alternatively the graphs may be processed by easy mechanical procedure [31], [32].
The advantage of this technique consists in the fact that the graph preserves the
structure of the corresponding expression and hence the method is very insightful.

8.3

The most difficult problem in the theory of regular expressions is defining some
canonical representation of regular events. As it is known from Boolean algebra
the existence of canonical or normal formulas is very useful. Till now no general
canonical form of regular expressions has been found. The only results are concerned
with some classes of regular events as e.g. definite events [7] and chain events [85];
for ultimate and symmetric definite events [54], star events [10] and comet events
[13] the representation is canonical only to a certain level (the mentioned classes
of events are described in 11.1). The same holds for the concatenative canonical
expansion of all (nonempty) events studied by Paz and Peleg [55] (cf. also [13]).



9. SYNTHESIS AND ANALYSIS OF AUTOMATA
9.1

We are coming to our principal problem of construction of finite automata from
their regular expressions. We shall, however, see that we have the greatest part of work
already done.

First let us briefly recapitulate our results. We have seen (6.2) that we may associate
with each state of a given automaton an event consisting of all words leading from
this state to some of the final states, and, moreover, this event is the left quotient
of the event associate with the initial state. The latter is the event recognized
by an automaton. Because we put no restriction on the admittable input words
we must consider all possible left quotients of the event (the number of which
is finite, indeed). A transition from one state to another corresponds to any new
symbol coming to the input. Eventually the events associated with the final states
must contain A because it trivially leads from a final state to a final state, namely to
the same state.

But we know (7A1, 7.2) how to construct all derivatives of an expression (the
derivative closure). Besides, all information on transitions in an automaton is involved
in the system of derivative equations, as well as the information about the fact which
expressions contain the empty word.

The synthesis algorithm is then as follows:

(1) Construct the system of derivative equations to the given expression .

(2) Interpret each derivative as a state of an automaton, interpret o as the initial
state.

(3) Define the transition function &(s;, x;) by the derivative d,;, where «; cor-
responds to s;.

(4) The derivatives containing A are the final states.

The described synthesis algorithm, due to Brzozowski and Spivak, has two import-
ant properties: (a) it can be applied to any regular expression without restriction
on the operators used, and (b) if we use only mutually non-equivalent derivatives
the resulting automaton is reduced.

Let us illustrate the synthesis algorithm by an example.

Example. Given « = (0 U 10)* 110* =: a;. The derivatives of a:

Oo; = (0L 10)* 110* =« ,
dy0ty = 0(0 L 10)* 110* U 10* =:
9o%; = (0 U 10)* 110* = a,

Doty = 0* =:a; (Aeoay),
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Oootz = 0% = o3,
doay =0 =20,
ooty = 0y04 = 4 .

The derivative equations:

oy = Oty U Loy,
oc2=011U]13,
oy = Otz U log WA,
oy = Ooty U 1oy .

The state table is in Table 1. The state graph is on Fig. 1.

Table 1.
o
-1 1 2
2 1 3
«3 3 4
4 4 4

9.2

The converse problem is the problem of analysis. This can be accomplished by
solving the derivative equations written in accordance with the state table. We shall
demonstrate it on the same example as above.

Example. The fourth derivative equation is oy = (0 \U 1) a,, using the rule R we have a5 = 0.
We substitute it to the third equation (and again use the rule R):

o3 =0t UPU A= a; =0*A = 0*
similarly

o, = Oy U 10%



and consequently
ay = 0uy U 1(0x, U 10%) = (0 U 10) 2, U 110* =

=0, = (0L 10)* 110* = o .

In this case we have obtained exactly the same expression from which we have started.

The analysis procedure was firstly described by McNaughton and Yamada [50].
Their algorithm starts from the state graph. Similar algorithm was also presented
by Glushkov [91]—[93]. The analysis by solving derivative equations was described
in [8] and [117].

The analysis procedure can be also usefully formalized. For example we may
start from the transition matrix, the size of which is step by step reduced by means
of rules of the type

o = oy U kAJ aikaz‘kak,.

k#j

The result is the desired regular expression (cf. [101]).
93

It should be noted that there exists an alternative approach to finite automata
in terms of regular events, which is to some extent dual to the described one. Let
us call the set

Ay = {w] 8(so, w) = s}

the destination set [11]. It is precisely the set of all words leading from the initial
state to a given state. Now we associate with each state its destination set instead
of the quotient set as before. In the place of derivative equations we obtain now the
so called destination equations of the following form

k
a=Uayx; ve, i=1,..,n,
j=1

where gy = A, ¢, =0fori=2,..,n

Let o be a finite automaton recognizing a regular event 4. If its destination
equations are rewritten to the form of right quotients and reversed, we obtain deriv-
ative equations for the reverse event A. For synthesis techniques from reverse regular
expression see also [20].

9.4

Beside the synthesis procedure using derivatives there exists also a different tech-
nique called the position algorithm. It was developed by McNaughton and Yamada
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[50] and in a modified version presented by Glushkov [90], [92], [93]. We shall
not describe the position algorithm here, but show only its application by the example
(it is the same example as before).

Example. Given o == (0 U 10)* 110*. The so called positions are marked as follows:
7,(01 v 1102)* 12130§ .
The initial positions are: 0, 14, 15,
the terminal positions are: 13, 0.
We construct the set of transitions admitted in the event:
(*0), A1), (1),
(0,00, (04, 15), (04,15),
(02,00, (05,1,), (02.15),

(05,05)
(15,02)
(12, 15)
(15, 05).
Table 2.
|
‘ 0 1
— 1 0y 1, 1, (1)
0, 0, 1, 1, [63]
1,1, 0, 13 )
0 0y I, 1y 1y
<15 0, 0 3)
<0, 0, ) 3
0 0 0 @
-1 1 2
2 1 3
<«-3 3 4
4 4 4

The states of the resulting automaton correspond to sets of positions; the initial state to {l},
the final states to the sets containing some terminal position. The obtained transition table
and its reduced form are in Table 2.



The position algorithm does not necessarily yield the reduced transition table.
Besides, it can be applied only to restricted regular expressions (using only u, ., *).
On the other hand it is easily adaptable for computer processing ([60]).

The following example shows a similar but more objective procedure using the
transition graph (cf. 8.2 (c)):

Fig. 2.

Example. The expression « = (0 U 10)* 110* may be characterized by the transition graph
on Fig, 2.

The states of the automaton are represented by suitably chosen subsets of states of this
graph (Fig. 3).

10. COMPOSITION AND DECOMPOSITION OF AUTOMATA
10.1

The composition and decomposition are usually understood as structural operations
over automata and are studied within the framework of the algebraic theory of auto-
mata (cf. [32]). In this section we shall briefly mention another approach to the problem,
emphasizing the behavioural point of view. When designing large automata it is
desirable to split the problem from the very beginning and to accomplish the syn-
thesis separately. The desired automaton is then a system composed of several
smaller component automata. The system as a whole as well as its components are
studied in terms of their behavioural descriptions rather than their transition func-
tions. Here the theory of regular expressions may be profitable.

‘We shall show the behavioural treatment of composition on the case of Boolean
operations and basic operations of Kleenean algebra described by Copi, Elgot
and Wright [19] and Arden [3] (see also [5], [6], [15], [25], [52]).
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32 In the case of union, intersection and complement the compositions are quite
easy. The automata* are supposed to have one binary output indicating the occurrence
of recognized event by the value 1. We have at our disposal the special small
combinational automata OR gate, AND gate and inverter. The compositions are
shown on Fig. 4a, b, ¢. (The first two compositions are sometimes called parallel
compnsitionsA) Similarly we may obtain all other operations of Boolean algebra.

o 7
SO S S

The situation is more complicated in the case of concatenation and star. We must
assume the following:

Fig. 4.

(1) automata are provided by a special so called starting input. The occurrence
of a value 1 on this input brings the automaton to the initial state and makes it
sensitive to input signals;

Fig. 5.

(2) automata have a special behaviour that Yamada [81] calls the disjunctively
linear behaviour: roughly speaking, if the starting input is excited more times, the
automaton is capable to recognize independently all events formed by “shifting”
the original one in accordance with the starting signals. There are fortunately
no difficulties with construction of such special automata in practice.

Fig. 6.

a*

start

* The automaton is here understood as a realization of an abstract automaton (e.g. by means
of a logical net) rather than the abstract automaton itself.



Under the assumptions stated above we may describe the following compositions — 533
the concatenation (Fig. 5) and the star composition (introduction of the feedback —
Fig. 6):

There is an important fact that the union, concatenation and star composition
preserve the disjunctive linearity of automata (cf. [15], [81]).

It is possible to describe similar compositions for some other regularity preserving
operations but corresponding constructions are rather intricate and a significant
change to the structure of automata is usually required.

10.2

On the other hand there is not known any general operation over regular expres-
sions corresponding to the simple serial composition (written o~ f8) on Fig. 7

aef

(where both input and output alphabets are supposed to be {0, 1}). This composition
may be of great practical interest as it is seen from the following example:

Co) 1= o= [(0*1)]* 0%

(the number of occurrences of « equals to 0, n,2n, 3n, ... — the generalized counter).
We also may generalize this composition to the serio-parallel one (written (a, §) o y

—Fig. 8): (the input alphabet of 7, is supposed to be {0, 1, 2, 13})

Fig. 8.

@ Bey

Example,

(@ B)- (0% 10% 2)* 0*

(the occurence of a and # alternates).

Boolean compositions mentioned above are the special cases:
au B = (o f)e X*(1u2),

(o, B) o X* 2 R

e X*0.

anf

a
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10.3

The problem of composition may be attacked also from the opposite side: investig-
ating the decomposition of regular events (or expressions). The known results
concern only the Kleenean operations and we mention only three recent related
papers: Paz and Peleg [55] study some special concatenative decompositions,
Brzozowski [10] inverses the star operation and computes the so called roots of star
events (cf. 11.1 (8)) and Brzozowski and Cohen [13] factor out the star component
from a given event.

11. CLASSIFICATION OF REGULAR EVENTS
1.1

We shall close our exposition on regular events by several brief remarks on their
classification.

Very often it is helpful to divide our field of study to smaller parts where our
problems may be solved by easier methods. Moreover, in automata theory such dif-
ferentiated approach may bring valuable insights to automata. As for regular events,
it is very convenient to study several classes of events separately. Usually specific
classes of events correspond to specific classes of automata. We shall present some
illustrative examples of such classes below. The diagram of hierarchy of these classes
is on Fig. 9. (Lines denote the inclusion of classes of events; in cases denoted by
the asterisk the inclusion does not apply to the event A.)

(1) Elementary events or atoms and trivial events @ and A were already mentioned.

(2) Finite events (also called initial events) are a very simple class of events.
Algebraically they form a closure [X; U, ., 0, A] of X without the use of the star.
Automata recognizing finite events “finish their work™ after a finite time.

(3) Combinational events are infinite but of a very degenerate structure. They are
of the form X*A4, where A < X. They are realized by combinational circuits and
it is usual to describe them by means of Boolean expressions defining A.

(4) Definite events and corresponding definite automata have been described
by Perles, Rabin and Shamir [56]. Definite events are of the form 4 v X*B, where
A, B are finite. (Special cases: for B = 0 finite events and for 4 = 0 the so called
non-initial definite events.) The canonical expressions for definite events have been
described by Brzozowski [ 7]. Definite events can be further classified by the maximal
length of words in B. The automata recognizing definite events have finite depth
of the memory and can be always realized by the delay (register) and combinational
circuit. Some authors ([ 7], [30]) use also the concept of reverse definite events 4w BX*
(4, B finite) and more general events of the type

4 VUBX*C; (A; B;, C; finite).



We may go further with this generalization and define the

(5) Generalized definite events as the closure of definite events under concaten-
ation or as the closure [X sV, L, 0,A, Q] where ©Q = X* is the universal event.
This class contains e.g. events corresponding to the occurrence of some given se-
quences: X*AX* (4 finite).

regular
two-sided
comets
. reverse
comets non-counting comets
symmetric
definite

reverse
ultimate bounded ultimate
definite definite
generalized
definite
tefini - reverse
definite definite
h / \1 / \ reverse
noninitial noninitial
definite strongly ) definite
bounded commutative X
finite
combinational

elementary = @
(atoms)

>

Fig. 9.
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(6) Non-counting events are the most interesting in the above hierarchy. Alge-
braically they are the closure [X;u,n, ., —, 0] and thus can be described by
extended regular expressions without star (they are also called the star-free events).
These events are exhaustively studied by Papert and McNaughton [53] (see also [18],
[67], [68]). The non-counting events admit equivalent characterizations from many
different aspects:

(a) They satisfy the following condition (for A):

InVu,v,weX*, w"t'wedesu'wed

(this means that they cannot count modulo an integer);

(b) they characterize the ability of an automaton to provide local testing of input
words and recognize their internal order (and nothing more);

(c) they characterize precisely the class of automata, the behaviour of which can
be described within the first-order logic.

(d) they describe the so called group-frec or permutation-frec automata, the
transition function of which permits only trivial permutations inside of all subsets
of the state set;

(e) they correspond to the threshold (neural) nets with only small and excitory
feedback loops.

(7) Ultimate-definite and symmetric definite events, studied by Paz and Peleg [54],
are another generalization of definite (precisely noninitial definite) events. Ultimate-
definite events are of the type X*4 (A arbitrary) and symmetric definite events
are AX*B (A, B arbitrary).

(8) Star events, studied by Brzozowski [10], are events of the type A* for some
regular A. The property of being star event may not be directly seen from the cor-
responding regular expression. But all three following properties of an expression a
are equivalent with the property of a being star: '

(a) o =a*,
(b) a=a?,
(c) Aca and YweX*, A<oo<aSoun.

There is an important fact that for every star event A an expression for its minimal
root V can be found, viz. V= (4 — A} — (4 — A)®* (V is said to be a root of A
iff ¥* = A). In more general case A need not be a star but it may contain subsets
which are stars. An algorithm for finding such subsets is presented in [13].

(9) Comet events [13] can be decomposed to a concatenation 4*B of a star event
A* (not A) and an arbitrary the so called tail event B.



(10) Commutative events ([43]—[45], [109]): An event 4 is commutative iff
with every word w € 4 it contains also all possible permutations of the letter tokens
of w. In other words

uwv'we A< uwowe Ad.

Very often the term commutative closure c(A) of a regular event A is used. Obviously
¢(A4) need not be regular. In [45] a method is presented by which, given any ¢(4)
(by means of a regular expression for A4) it can be decided whether or not ¢(4) is
regular and in this case there is an algorithm for finding the automaton.

(11) Bounded events [28]. An event A is bounded iff there exists a finite number
of words w,, ..., ws such that 4 < w},..., w’. The class of all regular bounded
events is the smallest class which contains finite events, all events w* (w € X*) and
is closed with respect to union and dot (they are the compound closure
(x5 - 0L *]s v . D

An event A is strongly bounded iff there exists a word w € X* such that 4 & w*,
Strongly bounded events are in [28] called commutative (this should not be confused
with the commutative events mentioned above) because of their property:

Yu,ve A, uv=ou.
(12) Chain events are of the form

AoXi, A1 Xy ovor A%, A rzo0,

iplr

where A; are star events the roots of which are subsets of X and X;; e X. Yoeli [85]
has found unique canonical forms for two special subclasses of chain events (normal
where x; ¢ A;_| U A; and regular where x; = x;, = ... = X;)-

Note. The definitions of some classes are valid not only for regular events (particularly (7),
(9)—(11)). However, in the diagram on Fig. 9 we consider only their regular subclasses.

11.2

Now we shall mention one special parameter a enabling classification of regular
events by some measure of complexity.

The star height h(a) of a regular expression o is the length of the longest sequence
of stars in the expression, such that cach star is within the scope of the preceding
star in the sequence. More precise definition is the recursive one:

L h(0) = h(A) = h(x) =0, xeX,

2. . h(x U B) = h{ap) = max (h(x), h(B)),

h(a*) = h(x) + 1

(we are restricted here to regular expressions without complement and intersection).
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Then the star height (or the loop complexit y) h(4) of a regular event A is defined as
h(A) = min {h(e) | |o] = 4}.

Roughly speaking, the star height of an event characterizes the complexity of the
associated state graph by the number of subordinate loops in the graph.

Whereas the star height of regular expressions can be easily determined, the star
height of regular events is difficult to compute. Eggan [24] proved the existence
of events of arbitrarily large star height provided one is willing to extend the alphabet
arbitrarily. Later Dejean and Schutzenberger [23] proved the same over the fixed
alphabet {0, 1} (see also [47]). The corresponding state graph is on Fig. 10.

Fig, 10.

Till the present time no algorithm of computing the star height of regular events
in general is known. Beside some particular cases solved by McNaughton [47]
(see also 3.5, eq. (7)—(10)), the only results are algorithms for two closely related
classes of regular events: (1) regular events with finite intersection property (the inter-
section of every pair of distinct derivatives of an event is finite): Cohen and Brzo-
zowski {17]; (2) pure-group events (each input of the corresponding automaton
yields a permutation of states): McNaughton [49].

An open problem [53] is that of properties of the so called generalized star height
defined on the basis of extended regular expressions (with the complement and
intersection). The only known facts are (a) that events of generalized star heights 0
exist: they are precisely the non-counting events, and (b) that also events of gene-
ralized star height 1 exist (00)* for example).

CONCLUSION

We have tried to present a general discussion of the theory of regular events and
regular expressions. It was not, however, possible to cover all problems and results
connected with this theory. Some of the omitted topics are the following: application
of the synthesis procedure to Mealy automata and multiple output automata {8],
[11],]92], [93], [118] and to incompletely specified automata [106], [ 107]; comput-
er programs dealing with regular expressions [57], [60], [76]; the metric space



of events [89]; regular expressions for linear nets [9] and for asynchronous nets [99];
the input-output translation and generation of output regular expressions [27],
[40], [41], [83], [97]; sequential relations, experiments and transductions [35],
[118], [119]; various generalizations [2], [12], [33], [34], [37], [43]—[45].[48],
[661, [74], [75], [105], [108], events recognized by probabilistic automata [72],
[77], [96]; relationship to other behavioural languages for automata [23], [36], [53];
relationship to algebraic theory of automata [32]—[34], [53], [67]—[69], [75].
to mathematical theory of languages, to graph theory, etc.

(Received July 31st, 1968.)
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VYTAH

Teorie regularnich udalosti IT

IvaN M. HAVEL

Druhd &dst prehledu teorie reguldrnich uddlosti a reguldrnich vyrazd se zabyvd
jejl aplikaci v teorii koneénych automatt. Hlavni pozornost je vénovdna syntéze
kone&nych automatt, a to zejména metodou pouZivajici derivaci reguldrnich vyrazd.
Prdce obsahuje téZ klasifikaci reguldrnich udélosti dle riiznych hledisek.
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