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KYBERNETIKA —VOLUME 12 (1976), NUMBER 4 

New Algorithm for Polynomial Spectral 
Factorization with Quadratic Convergence II 

ZDENEK VOSTRY 

In this paper new efficient algorithm for the numerical spectral factorization of polynomials 
arising continuous optfmality problem is derived. 

INTRODUCTION 

It is known that two cases of the polynomial spectral factorization are used in 
applications: the polynomial "discrete" spectral factorization <p(C)<p((-1) of b(C) 
b(C~1) mentioned in Part I [ l ] , and the polynomial "continuous" spectral factoriza­
tion <p(s) cp(—s) of b(s) b(-s) such that b(s) b( — s) = q>(s) cp( — s) and all roots of the 
polynomial cp(s) have nonpositive real parts. It is supposed that b(s) = b0 + b1s + ... 
... + bks

k, cp(s) = cp0 + <pjS + ... + cpks
k are polynomials with real coefficients. 

This spectral factorization is used in quadratic continuous optimality problems. 

There are known three numerical methods for the computation of the spectral 

factorization cp(s) (p(-s) of a(s2) = b(s) b( — s): 

(i) computation of the roots of a(s2) and their suitable selection, 

(ii) mapping the "continuous" variable s into the "discrete" variable £ by 

S= i^i 
l + C 

and solving the resulting discrete factorization problem and map the solution 
back into the continuous plane [3]. 

(hi) Newton-Raphson method. 

First method is very cumbersome. 
Second method requires more operations than the "discrete" factorization 
problem. 
Third method is very useful and in this paper a new computational approach 
will be derived. 



NEWTON-RAPHSON METHOD 

In the same way as in Part I we obtain the iteration formula 

(1) cp(i)cp(i + 1) + <p(i)(p(i + 1) = a + cp(i)<p(i), i = 0, 1, 2, . . . , 

where i is number of iteration, 

<p(i) ~ <p(i)(s) = cptf + cp?s + ... + cpW, 

(p(i)(S)^cp('\-S), 

a = a(s2) = a0 + aYs2 + ... + aks
2k, a0, au . . . ak real. 

It is known that the polynomial a(s2) can be factorized as (p(s) (p( — s) = a(s2) with 
(p0, cpu ..., (pk real if and only if a( — co2) >j 0 for all real w. We shall consider only 
factorizable polynomials a(s2). 

We say that a polynomial cp with real coefficients is stable if all its roots have 
negative real parts. If cp is a stable polynomial and (pep = a then ( — cp)( — <p) = a 
and - (p is a stable polynomial, too. As the stable spectral factor of a(s2) we define 
a polynomial (p such that cp(p~ = a and the coefficients of the polynomial q> are positive. 

Properties of the sequence cp(0), <p(1), (p (2) generated by (1). 

Theorem 1. For any polynomial (p(i) the next inequality holds 

(2) (p(i+1)(p(i+1) ^ a for 5 =jco, a > e ( - o o , +oo) , i = 1, 2, ... 

Proof . It is evident that (<p(i + 1) - (p(i))((p~(i+1) - <p(0) £ 0 and hence the ine­
quality (2) follows on using (l). 

Theorem 2. Let q>(0) + 0 in the closed right half-plane (CRHP) i.e. (p(0) is a stable 
polynomial, the sequence (p(0), q>(1), ... has the properties: 

(i) (p(i) + 0 in the CRHP implies q>(i+1) + 0 in the CRHP (if <p(i) is stable then 
q>(i+1) is stable, too). 

(ii) q>(0), (p(1), (p(2) ••• converges to a <p such that (pip = a and (p + 0 in the open 
right half plane. 

(iii) For real r e < 0 , oo> the following inequality 

\(p(i\r) < (p(i+1)(r) ^ (p(i)(r), i = 1, 2, . . . 

holds, 

(iv) The convergence is quadratic in nature. 



250 Proof. 

(i) Divide the equation (l) by <p<'V(l) then 

<p(i + 1) cp(i+i)
 = a 1 

<p(i) + cp(i) (p^cpW + 

The function 

9(i+1)(s) 

9
(i\s) 

is analytic in the CRHP, which is bounded by the imaginary axis and the right 
half circle with infinite radius. 

Consider such a stable cp(0) for which <p0
0) = ^ja0, cp(

k
0) = sj\ak\ then <p0

0) = 
= <pV\ cp(

k
0) = <pV> from (1) a n d 

Using (2) 

„, cp(i + l){]co) 1 / a(-co2) \ 1 . , „ 
gt^Z y_z = _ [ v y + 1 ] ^ _ , i = l , 2 , . . . 

«/'>(ja>) 2 V<P(i)(jco>(i)(-jco) j 2 

The function 

<?(i+1)(s) 
<p<')(s) 

is harmonic in the CRHP and hence 

<2>(;)(s) ~ 2 

and <p((+1)(s) 4= 0 in the CRHP, i.e. the <p(i+1) is a stable polynomial, 

(iii) Choosing s = r, r S; 0 real, then from the above inequality it follows 

(3) -_S-^6i-X, for ,-1.2.... 
W 2 ~ <P<')(r) 

(ii) By (3) the sequence <p(1)(r), <p(2)(r), ..., r S: 0 is nonincreasing and bounded 
and hence it converges to q>. From (i) it follows that the root of q> have non-
nonpositive real parts. 



Spectral factorization algorithm 

Consider the substitution 

(4) <P
( ' '+1)=i( (p

( i> + x(i>) 

where x ( l ) is a polynomial, 
then from (l) the polynomial x ( , ) is given as 

(5) <p ( i¥ ; ) + ^ ' V ' = 2a . 

By solving (5) and (4) for a suitable initial polynomial </>(0) and for i = 1, 2 , . . . 
we obtain the sequence <p(0), <p(1), q>(2\ ... This polynomial sequence converges 
to the spectral factor cp of the polynomial a as proved above. The basic problem in this 
spectral factorization algorithm is to solve the symmetric polynomial equation 

(6) <px + <px = 2a . 

This equation is symmteric with respect to the substitution of — s for s. 

Properties of equation (6) 

Denote dx the degree of a polynomial x. In our case 2 dcp = da and, moreover, 
we require dx = dcp. 

If q> is a stable polynomial (it implies that the roots of cp do not lie on the imaginary 
axis) then the equation (6) has only one solution with dx — dcp. 

If (p()(o) = 0 and a( —a>2) = 0 for some real co then the equation (6) have many 
solutions with dx = dcp . 

Example 1. Let 

<p = s3 + s2 + s + 1 = (s2 + 1) (s + 1) 

a = - s 6 - s4 + s2 + 1 = (s2 + 1) ( - s 2 + 1) 

then the polynomial (s2 + 1) can be canceled out of the equation (6) and hence 

(s + 1) x + ( - s + 1) x = 2 ( - s 2 + 1) (s2 + 1) 

gives the solutions 

x = 1 + as + as2 + s3 

where a is any real number. 

This example ilustrates the situation in our algorithm when <p('> is a very good 
aproximation of (p. From the numerical point of view, this is a troublesome case. 



The polynomial equation (6) could be solved by the Euclid algorithm as it is 
shown in [2] but with some complications due to the requirement dx = 8x. Further 
we shall construct high efficiency algorithm for solving (6) with some useful proper­
ties. In particular, the number of operations is reduced to one quarter in comparison 
with the Euclid algorithm. 

Solving the symmetric polynomial equation (6) 

Write the symmetric polynomial equation (6) in the following matrix form 

(?) >„ 0 0 0 0 
ę2 ç>. ę0 0 0 
<?4 <Pъ <?г <Pi <Po 

• • Ч>4 <Pъ <Pг 

<Pk <Pk-l <Pk-2 <Pk-3 <Pk-4 

0 0 (pk % _ ! (pk-2 

0 0 cpk _ 

It is evident that <p0 = ~^/a0,(pk = y/(—if ak imply 

x0 = q>0 , xk= <pk 

x0 a0 

- * 1 a. 

x2 «2 

~x3 _ 
aъ 

(-1)4-2 
-(-lfxk-i 

- (~04 J 

ak-2 

ak-í 

_Ą _ 

Denote 

(8) "a'i " « i <Po 
a'г a2 <Pг 
a'з aъ <?4 x0 -

<Pk-4 

<Pk-2 

_ Й „ - I _ _ f l * - i _ JPk _ 

(-i)Ч 

then for unknown xlt x2,..., xk-l the next equation holds 

(9) r > i <Po 

<P3 <P2 <Pl <P0 

<Pk <Pk-l <Pk-2 <Pk-3 

' <Pk <Pk-iA 

In shortland matrix notation 

(10) _»__ = A'. 

The matrix <P is the so called Hurwitz matrix. 

(-i)4-_ 
-(-i)4-i. 

a„-2 

La'k-i. 



To find the coefficients of the polynomial x from the matrix equation (9) we use 
column elementary transformations on <P instead of row elementary transforma­
tions. Introduce a substitution X = TY in (10), where Yis a k — 1 vector and Tis 
a (k — l) x (k — l) column elementary transformations matrix, such that <PT 
matrix will be low triangular. 

From the special form of the <P matrix it follows that the above column elementary 
transformations are given by the Routh stability test of the polynomial cp. 

Example. 

Let <p = (p0 + cpLs + cp2s
2 + cp3s

3 + <p4s
4, then 

<P\ <Po 0 

<P3 <?2 <P\ 

0 tpA cp3 

Now we construct the Tmatrix in the form T = T!T2, where 

-Ì = 
Г 1 P| o" 

0 1 0 

0 0 1 

ФT. = 

т, = 

cp1 o o 
<p3 <p\ <p\ 
0 cpi cpi 

ì o o ' 
0 1 P 2 

0 0 1 

ФTJ2 = 
<pí 0 0 " 

<Pз cp2 0 
0 <PÍ 9Ì\ 

P\ = ~9>o 

<Pl 

<p\ = ~ l 

<Pз = <Pз 

<P2 = <P2 + <PзP\ 

<PÌ = cp4 

> _ 
2 — 

~<P\ 

<PÌ 

<PÌ = -~<PÌ + <PÌP2 

The Routh test of stability is in this case 

<P0 <Pl <?2 <P3 <P4 

cpl 0 cp3 0 0 I P t P1 = - ^ 
(p1 

0 cp\ cpi cpi cp[
4 

cplO cpiO | P 2 P 2 = ^ 1 . 

: — : — : <?2 
Ч>2 <Pз <Pл 



254 This example shows that we need only four operations (divisions or multiplications) 
to obtain <PT. 

The equation $TY = A' gives Y after simple computation. The vector X is given 
by X = TY as follows 

T,Y = 

Г.Т.У--

Уi Уí 

Уг + P2У3 = y\ 

Уз \_У\\ 

УÌ + PiУf -Xi 

y\ = *2 

y\ — X з_ 

Computing TY requires in this case only two operations. The Routh test of stability 
is in general 

(И) <Po <?i <Pг 9з 

<?i 0 <p3 0 Pi P ľ 

<p\o cplO \P2 p2 = 

-<Po 

<Pг 

П ,Л-3 k-З ,k-3 ,-k-З 
0 ęк-3 <Pк-2 <Pк-l <Pк 

9Ì-Ì 0 ęì^ 0 Pк-2 Pк-2 — 
-cpì-l 

<PÌ~Ì 
к-г к-г к-г 

<Pк-г <Pк-i <Pк 

Pк-2 Pк-2 — 

It is known that the polynomial cp is stable if <p0, <p\, <?\, 
are positive numbers. 

•>\-\ and<pí-í»«PÍ" 

The equations 4>TY = A' can be written 

(12) > i 0 
q>3 ę\ 0 

ęs ęl <PІ 0 

Oęì -5 <PI-Í <P\-\ 
0 <pk

k~
3 <P\Z.\A 

УI ~a[ 
Уг a2 

Уз a'з 

Уk-г a'k-г 

IĽł-J Jik-i-



Hence y%, y2, yk~\ are given by simple computations. The substitution X — TFcan 25; 
be computed by using the following scheme 

(13) j>i )_-4 yk-3 yk-2 yk-i 

o o o yk-i o 1 Pk-2 

y\ yi-4 yl-3 yl-i yl-i 

0 0 3.-2 0 0 1 IV 3 

y\ y2k-4 yl-i yl-i yl-i 

o o yl-z o yl-i o 1 IV4 

y\ yl-5 yl-i yl-3 j _ - _ yl-i 

o . . . . o y3_4 o yt2 o o | pk_5 

4 4 4 4 4 4 

yi yk-s A - 4 yk-3 yk-2 yk-i 

Pi 

y\-2y\-2 "... y\--\y\--\ 

The last row of this scheme gives —x., x2, —x3,..., —(—ifx^y. 

In the first and the second steps of the above scheme only the coefficients y\-2 and 
yl-_ are computed, the others remain the same. In the third and the fourth step 
only the coefficients yl-2, yl-i and yt-3, yt-s are computed, the others remain 
the same etc. 

This simple algorithm gives very good results. The symmetric polynomial equation 
(6) is solved in such a way that the stability of the polynomial q> is tested during 
the solution process. 

This fact is very useful because in our spectral factorization algorithm (see (4), 
(5)) the stability of <p(0 is numerically tested in every iteration. 

The number of operations for solving (6) by the above method is | k 2 + _k — 3 
for k even and \k2 + _k — £ for k odd, where k is the degree of <p. 

Choice of the starting polynomial 

Consider a polynomial g(s) = g0 + gxs + . . . + gks
k, gk =f= 0. It is known that 

a huge range of values gx, i = 0, 1, ..., k is inconvenient from the numerical point 
of view. A common remedy is to use a substitution g = Xp, for real X, in g(s) such 
that the polynomial h(p) = g(Xp) has its coefficients in a substantially smaller 



256 range. This substitution cannot be used in the "discrete" spectral factorization 

problem because it changes the "discrete" stability boundary (the unite circle centred 

at the origin). In the "continuous" spectral factorization problem this substitution 

can be used because it does not change the "continuous" stability boundary (imagina­

ry axis) and X > 0 implies that h(p) is a stable polynomial if and only if g(p) is a stable 

polynomial. 

From numerical experiments it seems that the suitable choice of A is X = (g0j\gk\)ilk. 

For this X, the product of all roots of k(p) is equal to 1. 

Recommended procedure 

Given the polynomial G(s2) = G0 + G^s2 + . . . + Gks
2k, then we compute the 

polynomial 

where 

A(p2) = — G(Xp2) = A0 + AlP

2 + ... + A2p
2k, 

G0 

='Г" 
and spectral factorization of A(p2) = cp(p)(p( — p). The spectral factorization of 

G(s2) = g(s) g(-s) is given as 

g(s) *s 7(oo) (p(^s) , 
where 

"~i-
As the starting polynomial for the factorization of A(p) we choose 

,p(o) , (! + pf . 

In this case q>0

l) = (p^ = x0° = x(

k

l) = A0 = (— l)k Ak = 1. Therefore, k operations 

for solving (7) are saved and only cp[l), cp2

l), ..., cpk'l. are computed in every iteration. 

Stop rule 

The basic problem in the above iterative algorithm is to stop the iteration process 

in such a way that the result is stable in spite of numerical errors and has a maximal 

reachable accuracy. 

The first condition can be guaranteed very simply because the computation of each 

iteration is based on the stability test of the previous iteration. 



The second condition may be satisfied to some extend by testing of the monoto-
nicity of the sequence <f>(1)(l), <p(2)(l), • • -, (see (3)) and inequality <p(')(l)<_(')(l) ;> a(l). 

The result of the iteration process is chosen in the following way 

(i) if (<p(n)(l) > ^ ("_1)(1) or (p{n)(l)(p{n)(l) < a(l) then (if (p{n) is stable then cp = 
= (p(n) else (p = q>{n~y)), 

(ii) if n > 30 or \<p{n)(p{n) - a\\ < 10~ 1 4 | a | then cp = (p{n) (\\a\\ = max \a,\), 
osrgfc 

(iii) if during the computation of (p{,,) the stability test of <p{n~1) does not hold then 
cp = (p{n~2). 

Short description of the algorithm (factorization G(p2) = g(p) g( — p)). 

(1) If the degree of G(jp2) equals 2, k = 1, then g0 = yJG0, gv = ^J — G t . Go to 14. 

(2) If the degree of G(p2) equals 4, k = 2, thengr0 = jG0,g2 = •S/G2, 

flf. = V(2<?o3i - Gx). Go to 14. 

(3) Generate a polynomial A(p2) from the given polynomial G(p2) such that 

Ao>2) = J-G(v), x = ($-T. 
G0 V|&k|/ 

( 4 ) < p ( 0 ) = ( l + ^ . A ' b y ( 8 ) . 

(5) i = 0. 

(6) i = i + 1. Routh test of stability for the polynomial q>{i l) (see (9)). 

(7) If <p(i""1) is not stable then cp = cp{i~2). Go to 12. 

(8) Compute Yfrom <~TY = A' (see (10)). 

(9) X = TY (by scheme (11)). 

(10) « P
( i ) =i( ( ? , ( i - 1 ) + x ( i - 1 ) ) . 

(11) If the stop rule (i) or (ii) is not satisfied then go to 6. 

(12) "-ji-
(13) g(p) = V(G0) <P(PP) • 

(14) END. 

Numerical examples 

Computer IBM 370, 16 decimal digits, program in the PL/I language) 

1. db = 4, bb~ = a, b — accurate spectral factor of a. 

b 24 50 35 10 1 

a 576 - 8 2 0 237 - 3 0 1 



after CPU time O i l s and n — 5 (n — number of iterations) a polynomial b 
is written as 

e2 e3 e 4 

7-1E-15 8-9E-16 0 
-1-7E-13 3-6E-15 0 

e e0 e. 

ę — b 0 7-1E-15 
ęę — a 0 4-0E-13 

2. Õb = 6 
Ъ 1 11 43 

ű 1 - 2 3 169 • 
83 73 25 1 

•1159 1265 -479 1 

after CPU time 0-23 s and n = 8 

q> -b 0 1-8 E-15 7 E-15 1-1E-14 7-1E-15 0 0 

cpčp - a 0 2-5 E-14 5-7 E-14 0 1-3 E-12 0 0 

3. db = 6 
b 1 36 251 485 251 36 1 
a 1 -794 28 583 -111813 28 583 -794 1 

after CPU time 0-30 s and n = 11 

(p - b 0 3-6 E-15 2-8 E-14 5-7 E-14 2-8 E-14 3-6 E-15 0 

<p<p - a 0 2-3E-13 -5-4E-12 2-9E-11 -5-4E-12 2-3 E-13 0 

4. db = 4, b = (s2 + l ) 2 

b 1 0 2 0 1 

a 1 4 6 4 1 

after CPU time 0-50 s and n = 30 

cp - a 0 -5-7E-5 7-3 E-9 -5-7E-5 0 
<p(p~ - a 0 -3-6 E-8 1-8 E-8 -1-8E-8 0 

5. db = 4 

(s2 + 0-2s + l ) 2 

(s2 + 0 002s + l ) 2 

CPU = 0-30 s cp-bO -1-3E-11 -5-3E-13 - 1 - 3 E - 1 1 0 
n = 17 cpčp - aO -5-1E-15 -1-2E-14 -6-9E-15 0 

CPU = 0-41 s (p - b 0 -2-3 E-8 -9-2 E-l l -2-3 E-8 0 
n = 2 4 (p<p - aO -6-7E-16 -2-4E-15 2-2 E-15 0 

<2 , (,nnM , i\2 CPU = 0-49 s <p-b0 -1-4 E-5 -5-6 E-9 -1-4 E-5 0 
(s +0-0002s + l) 2

 n = 2 9 4--0-1-6B-14-3.3E-14-1-7B-140 

fs2 + 0-00002s + ť, 2 C P U = ° ' 5 2 s < p ~ b 0 -V4B~4 ~l'6E~S _ 1 ' 4 E " 4 ° 
(s + 0 00002s + 1) n _ 3 1 ^ _ _ a Q _ 3 ? E 1 0 _ 7 3 E 1 ( ) _ 3 - ? E _ 1 Q Q 



Examples four and five are troublesome cases because the roots of b lie on or close 

to the imaginary axis, see Example 1. 

CONCLUSION 

From many numerical examples it follows that the accuracy of the results depends 

only on the roots nearest to the imaginary axis and on their multiplicity. If the poly­

nomial b has not troublesome roots the polynomial cp is correct to fifteen decimal 

digits. 

(Received November 13, 1975.) 
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