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K Y B E R N E T I K A — V O L U M E 32 ( 1 9 9 6 ) , N U M B E R 2, P A G E S 1 5 9 - 1 7 3 

B E H A V Ю U R OF SIGN T E S T AND ONE 
S A M P L E M E D I A N T E S T AGAINST 
C H A N G E S I N T H E M O D E L 

A L F O N S O G A R C I A - P É R E Z 

The sign test and the test based on the sample median are asymptotically equivalent and 
as a consequence, equivalent from a robustness point of view because the most important 
robust measures in hypotheses testing are asymptotic. However, as this paper proves, 
the behaviour of their power functions against changes in the model, inside a class of 
distribuctions, is appreciably different for finite samples sizes. A new definition of sensitivity 
of tests with respect to the type of the alternative is defined and, with it, we see that the 
one sample median test is less sensitive than the sign test. 

1. INTRODUCTION 

The Neyman-Pearson lemma for maximin tests between neighborhoods of probabil­
ity measures which are dominated by 2-alternating capacities (see [14] and [15]) is, 
basically, the only finite-sample optimality result of robust statistics; related with it 
are [24], [2], [18] and also [4], [5] and [6]. 

Although the application of these results is not straightforward, the usage of sec­
ond order approximations, such as Edgeworth expansion or saddlepoint techniques, 
can increase their possibilities of application. A good book on the first topic is [13] 
and, on the second one, [7] and the paper [23]. 

Other tradit ional solution is to use asymptotic approach. Nevertheless, equivalent 
tests from an (asymptotic) robustness viewpoint can have a remarkable different 
behaviour when we consider finite sample sizes. 

Here, we prove that two of these tests, the sign test and the one sample median 
test, which have the same degree of robustness (for instance with the Rousseeuw 
and Ronchetti approach, [26] and [27], based on the Hampel influence function), 
have a different sensitivity in their power functions when we change the underlying 
distribution. 

To prove this we shall consider tail orderings on distributions. This idea has 
been used extensively in mathematical statistics since Lehmann [21] introduced the 
stochastic ordering, particularly on hypotheses testing (see [3], [25] and [12]). 
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Here we shall use the tail ordering <t defined by Loh [22] which generalizes the 

classical tail orderings ([28], [19] and [1]). 

T h e paper is orgenized as follows. After some preliminaries, in Section 2 we study 

the behaviour of sign test with respect tail ordering <t. We do the same about the 

one sample median test in Section 3 and, finally, in Section 4 we get the main result 

comparing the behaviour of both tests. 

1.1. P r e l i m i n a r i e s 

Let X be a random variable with distribution Fg depending on a location parameter 

eee. 
In this paper we shall consider tests of the null hypothesis HQ : 9 < 9Q against 

Hi : 9 > 0Q, although the results can be extended to other kind of hypotheses. 

We shall suppose that the distribution of X belongs to the class of distributions 

(see [12]) T* — {Fgy. Fgtb is a distribution function ( a ) with density fgj with 

respect to the Lebesgue measure, ( b ) a location in 9 and scale in b family, being the 

scale parameter determined by the condition 

/-.-(*) = c> C1) 
with c a known constant, (c) symmetric in 9, ( d ) strictly increasing in a neigh­

borhood of 0, (e) strongly unimodal}, which includes as a subclass the Box-Tiao 

families with densities 

rf(X)=»г(l + -î*)2^"PН 
x-

1 < / ? < ! , 

The main reason to consider these classes of distributions is that they are ordered 

with respect to the tail ordering <t introduced by Loh [22]. Namely, if F, G 6 T* 

and have the same symmetry center, 9, 

F <tG<=> F6)h(x) > Gey(x), V x > 9 

or 
F <t G <=> Fe,b(x) < Gey(x), V x < 9 

being the uniform and double exponential distributions the extreme distributions of 

T* class. For instance, it is 

Uniform <t Normal <t Logistic <t Double Exponential. 

And, for Box-Tiao families, 

Uniform <t fpl <t f2 <t Double Exponential 

if — 1 < Pi < # 2 < 1. Also <t is location and scale-free. 
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2. BEHAVIOUR OF SIGN T E S T 

Let X\,. .., Xn be a random sample of X. For testing Ho : 9 < 9Q at level a against 
Hi : 9 > Qo, the ordinary sign test rejects Ho when the number, S, of plus signs 
among the n differences X% — 9Q is S > ka, where ka is the smallest integer which 
satisfies 

-. n / s, 

n 1 
õñ _____ ~ , , - < cx. 
2 n __-/ \ x 

X — kr 

In order to achieve the a-level we shall consider only the natural levels (smaller 
than 0'5) for the sign test, i.e., 

a = _ т £ U ) ' í - i . n+Зl 

W '" l 

г = _ ч ' 

2 . 1 . T h e S ign Tes t a n d t h e Tail Order ing < t 

Although the sign test, </>_, is a distribution-free hypothesis test, its power function 
(nondecreasing in 9) 

č * » = E i^)^-Fe(^)]x[Fe(9oT 
x=k_ 

•l-Fв( o) 

(ka- l)\(n-k 
-- / ^-Ҷi-,) 
a)' Jo 

n — ka i 

dx 

is very sensitive to the supposed model Fg. 
For example, if the constant c which determines the scale parameter through 

condition (1) is c = 1/2 and also it is 9Q = 0 and n = 5, the power functions under 
uniform, normal, logistic and double exponential distributions are given in Figure 1 
(<*i = 0.1875) and Figure 2 (a2 = 0.03125). 

In both cases, the sensitivity of the power function can be noted. Moreover, the 
tail ordering between the distributions is preserved. This a general property we 
prove now. 

P r o p o s i t i o n 1 . If F, G G T* and F <t G = > (3^(9) > /?£(#) , V 0 > 90. 

P r o o f . The power function of the sign test, fix (9), is a Beta cumulative distri­
bution function (3(ka , n — ka + I) in 1 — FQ(9O), 

^s(9) = B(l-Fe(90)). 

Since, for the same 9 > 9o , F <t G implies 

F9tb(x)<Ge,b'(x), \/x < 9 
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if x = 0Q, it will be 

1-Гв1ь(во)>1-Св,ь>(во), У9>в0. 

Because of the monotonicity of any cumulative distribution function we get the 
result. • 

0.8 

0.6 

0.4 

0.2 

Fig. 1. A = /?Js
nií; B = /?Js

or; C = /?J°S; D = ^ 

1. 

0.8 

A / Ћy c 
D 

0.6 

0.4 

0.2 

l . 2. 3. 4. 

Fig. 2. A = ßïf; B = /?£or; C = /?J°S; D = ß°ф\ 
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3. BEHAVIOUR OF THE ONE SAMPLE MEDIAN TEST 

For testing Ho : 6 < OQ against Hi : 9 > 9Q, at level a < 0.5 and samples of size n 
odd, the one sample median test, <j)m(M), is defined as 

. . _ / 1 if M >kn 
<!>m(M) - | Q Q t h e r w i s e 

where M is the sample median and kn such that 

Fn-e0(kn) = Pe0 {M < kn} = 1 - a. 

This test is uniformly most powerful if FQ € T* when n = \ and has good 
robustness properties for finite sample sizes ([8], [9]). Also (see [10] and [11]) its 
p-value has an asymptotic normal distribution which allows us to get its influence 
function and qualitative robustness in the sense of Lambert ([16] and [17]). 

Here we shall study the behaviour of its power funtion (nondecreasing in 6) 

y C W = E {n)^-Fe(kn))X[Fe(kn)rx 

>-r -H±l ^ ' 
X— 2 

= — - , / . ( " - D / 2 ( l - . ) ( n - l ) / 2 d a . 

[PPM J* 
against changes in the model. 

3.1. The One Sample Median Test and the Tail Ordering <t 

All the numerical results we have got untill now, confirm for (f)m the same mono-
tonicity property that Proposition 1 established for the sign test. Nevertheless, by 
now we have only a proof for Box-Tiao families; for these we first need a lemma. 

Lemma 1. If F&1, F@2 £ T* are two Box-Tiao families with densities f$x and 
/l32, and with kn and kn as critical points for <f)m, then 

if a < a => ^(kn)>fS:(k2
n). 

P r o o f . The density function of a Box-Tiao familiy can be written as 

x-9 /£(.) = c(/?)expj-í 
Ь(ß) 

Because distributions belong to T*, condition (1) implies c(P) = c, V /?; thus we can 
write 

/fo(Ärn) = C e x p | - І K / ? ) ] 2 | 
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where w(fl) is the function 

w(ß) 
kn(ß)- 0]

1/(1+ß) 

Ь(ß) 
= Hß)] 1/(1+/?) 

(kn(P) > $o> V/?, because a < 0.5). Last equality is used as notation. 
Then, to prove the lemma, it is enough to prove that function w(/3) is increasing. 
Let us observe that w(/?) is differentiate because the functions 

Ь(ß) 
1 

cГ((3 + /?)/2)2(3+W2 

and kn(/3), defined as the inverse of the distribution function of the corresponding 
Box-Tiao family in y = H-1(l — a), are differentiate. 

We have 

<,(*») 
1 — a = 

І(*ЃÏ 
I "° ' «(«-«/'(i-*)(»-Ц/»di 

Jo 

where 
rw(p) r i i 

< ( M = 0 - 5 + r ( ^ ) y e x p | - - z 2 j ( l + /J)z^dz 

and r((3) the function 

r ( / ? ) = r((3 + / J ) / 2 ) 2 ( 3 + W 

Then, if h(y) is the function — increasing and differentiate in (0,1) — 

hly) = 2i__ /" »(»-!)/. (1 _»)(»-»)/» di 
[(«fl)!]2!o 

we can write that 

l - a = A (0.5 + r(/?) 

On differentiating with respect j3, it will be 

f e x p { - ì г 2 } (l + ß)zЫz\ 

Q = ti (0.5 + r(/?) / e x p í - i z 2 } ( l + / i ) ^ dz ] 

r ,«,(/?) 
r'(/?) / e~J / 2 ( l + /5)z^dz + r(/?) 

Jo 

exp I -~-{iv(P)]2\ [w((3)f (1 + (3) w'((3) + j t" '2 z? [1 + (1 + /i) log z] áz 
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and then, 

m = 
w(ß) 

e-'V-V i + a + ̂ i ^ + ь g . 

derivative t h a t will be positive when and only when the integral 

w(ß) 

e-"łV l + ( l + ^ ) ( ^ + І 0 g - (2) 

is negative. 

The function 

e ^ 2 / 2 ^ i + (i+«(q§f+-«' 
is negative untill the point zo = exp{ —1/(1 + /?) — r'(/3)/r((3)}, from which it is 
always positive. If/? in (2) is such t h a t w(f3) < z 0, the integral will be negative. 

If w(/3) > ZQ, we have a negative area (integral till ZQ) plus a positive area, but 
proving t h a t 

f 
Jo 

e~z l2z? i + a+^lт^+ьg- àz < 0 

the positive area will never exceed the negative one, concluding that w'((3) > 0 and 
then proving the lemma. 

Easily we get 

r'(ß) 1 

r(ß) 2 

A nd also that 
rOO 

/ e - 2 / 2 

jo 
z' [l 

ІS equivalent to 

/•OO 

/ e ~ 
Jo 

У/2 y(/í- l ) / 2 

log 2 + Digamma 
3 + /? 

(3) 

l + (l + Ж ^ + log* åz < 0 

1 + (1 + «(тW + 5 l o g ÿ d y < 0 

ì . e . , 

rm+(i+«^r(^)+(i+«[r'(i^)+^(i^)i-2]<» 
replacing now r'(p)/r(0) by (3), the last expresion will be equivalent to 

2 + (l + /?) 2 Digarrima 
1 + /? Digamma 

3 + /? 
<o 
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inequality (Figure 3) that follows from the properties of the digamma function (see 
[20], pages 5 to 8). D 

- 1 . -0.5 

-0.5-

- 1 . 

-1.5 

0.5 1. 

m 
-2.5 

Fig. 3. g(/3) - 2 + (1 + 0) [2Digamma((l + 0)/2) - Digamma((3 + fl)/2)]. 

L e m m a 2. Let F and G be two Box-Tiao families. Then, it holds that 

If F<tG = > Fe(kF)<Ge(k%), V 9 > 90. 

P r o o f . If it is9>kF> 90, then it will be 

Fe(kF)<Ge(kF). 

And because it is kF < &!?, it will be 
П _ П ! 

Fe(kF)<Ge(kF)<Ge(k^) 

getting the inequality. (For all F,G G T*, not necessarily Box-Tiao families.) 
Now let Oo < 9 < kF. 

Fe(kF) < Ge(kn) is equivalent to 

F (kF -(9- o0) -9o)<G (kS -(0- Oo) - 9o) if 90 < 9 < kF 

I . Є . , 

F 0(кғ -x)< Gвo(kS -x), V x Є (0, kғ 

Because kn and k^ are critical points, it will be 

Fn;90(kF) = 1 - a = Gn*0(kS) 
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i.e., 
*? = G^0Fn.i9o(k

F) = G^F9o(k
F) 

and so, F9o(k
F) = Ge0(kn). Moreover, for Lemma 1 it is fe0(k

F) > ge0(kn), then 
there will exist an interval (0, d), such that 

Fe0(k
F-x)<G6o(k^-x), V * € ( 0 , d ) . 

If it is d > kF — 9Q we have finished. Let us suppose it is d < kF — 6Q. Becuase of 
the continuity of functions F9o and Ge0, in the extreme d we shall have the equality 

Fe0(k
F-d) = Ge0(k^-d) 

that will be equivalent to 

Fn.)9o(k
F-d) = Gn-)e0(kn

1-d). (A) 

Considering now, as significance level a', one minus the common value (4), 

1 - a' = Fn.)9o(k
F -d) = Gn]9o(k^ - d), 

kF — d and k^ — d would be the critical points, associated with F and G, for a', say 
kF(a') and k^(a'), and then we should have again 

Fn;e0(k
F(a')) = Gn;do(k^(a')) 

and because of Lemma 1 

fs0(k
F(a'))>g9o(kS(a')). 

Then, there would exist an interval to the left of k* (a') = kF — d in which 

F9o(k
F-x)<GeM-x) 

and then, d would not be the upper extreme of the interval in which we have the 
inequality. Hence, must be d > kF — 9Q. • 

Propos i t ion 2. Let F and G be two Box-Tiao families. Then, it holds that 

If F<tG = > pFJ6)>^J9), V0>00. 

P r o o f . Let 9 > 9Q. The power function of median test, (3FJ9), is the cumulative 
distribution function of a Beta distribution j3((n + l) /2 , (n + l)/2) in 1 — F9(k

F) 

PFJ0) = B(l-F9(k
F)). 

Using Lemma 2, if F <t G it will be 1 - F9(k
F) > 1 - G9(k%), and now we shall 

get the result because of the monotonicity of any cumulative distribution function. 
• 
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4. J O I N T BEHAVIOUR OF SIGN AND ONE SAMPLE MEDIAN TESTS 

Because the sample median M is the Hodges-Lehmann estimator for 9 associated 
with the sign test, the asymptotic behaviour of this test and the one sample median 
test will be the same when we use the traditional robustness measures which have 
an asymptotic character. 

For instance, because of the asymptotic efficacy of both tests is the same, 

eff(S,E) = eff(M,E) = 2 / ( 0 ) , (5) 

the contribution of both tests to the asymptotic relative efficiency will be the same 
when we do comparisons with another test based on a statistic T, 

ARE(S, T) = 
eҖS, F) 

[eҖT,F)\ 

eҖM, F) 

eҖT, F) 
= ARE(M,T) 

and, of course, ARE(S, M ) = 1. 
Also, because of (5), the asymptotic power of both tests will be the same. And, 

of course, the influence function (see [26] and [27]) of both tests will agree: 

TIP ( rp „ x s ign(x- l j ) 

IF4>s(x;T,Fe) = — = IF4>rn(x;T,Fe). 

Thus, the influence functions in the sense of Lambert [16] will also be the same. 

4 . 1 . B e h a v i o u r w i t h F i n i t e S a m p l e s 

In contrast with the identical asymptotic behaviour that we saw in the last para­
graph, the sensitivity to changes in the model of the two tests can be high if the 
sample size is finite. 

For instance, for testing the null hypothesis Ho : 6 < 0 against Hi : 9 > 0, with 
sample size n = 5 and significance level a = 0.1875, the power function of the sign 
test with uniform and double exponential distributions (dotted curves) looks more 
sensitive than the corresponding ones to the one sample median test (solid curves) 

also with uniform and double exponential distributions (Figure 4) that , as we saw 
in Propositions 1 and 2, are the extreme distributions. 

The new measure of robustness, we are going to define, takes into account these 
remarks. It considers only tests that reach power 1 with the aim to avoid tests like 
the trivial one <j>(x) = a Var, which is insensitive to any change of distribution 
although having a constant power a, and also because the two tests considered in 
this paper are more sensitive far away from ljo (for instance, <f)s has a power function 
with first derivative independent of the model in 9 = ljo). 

Def in i t ion 1 . Let &a be the class of level a tests <f> with power function continuous, 
increasing (in 9 such tha t a < fi<p(9) < 1) and that reach power 1, at least when 
lj^oo. 



Behaviour of Sign Test and One Sample Median Test Against Changes in the Model 169 

We shall call sensitivity of a test <f> £ <3>a against changes in the model inside a 
class of distributions T for a given power 7 to 

Aф(y) = sup 
F,G£F 

(ßғ

ФҐ to) - (ŕФ)'" to) 

and we shall say t h a t <f>\ has tail-power more robust than (j)2 against changes in 

models of T class if and only if there exists an interval (/3,1) such that V7 £ (0,1) 

is A*. (7) < A* a (7 ) . 

1 
• 

0.5 • ' ' j / ^~ ÇL. A:/B ^ ^ • •••"" D 

0.8 

0.6 

0.4 

0.2 

Fig. 4. A = fàf ; B = / ? J f ; C = /?J° ; D = fi\ 

R e m a r k 1. A test <f)\ with tail-power more robust than </>2 is not necessarily better 
(in terms of power) than (j>2. For example, let us think in a test <j>\ with a power 
function that increases very slowly to one and with nearly the same power function 
for all distributions in T, and a test <f)2 tha t reaches power one very quickly for all 
distributions in T except for some few of them. 

Considerations of efficiency are being studied in order to get optimal robust tests 
in the sense of find the most powerful inside the class of tests with bounded sensi­
tivity, A^(7) < c. 

Def in i t ion 2 . The sensitivity against changes in the model is easier to obtain in 
tests with ordered power with respect a class of distributions, i.e., in tests 0 such 
that , if -< is a tail-ordering on distributions of a class T, have the following property, 

If F, G e T and F -< G = > 0$(0) > 0$(9), V Q e Q\ 

(or &(B) < f3$(0) V 9 e 0 i ) where 0 i is the alternative hypothesis. 

From Propositions 1 and 2 we get the next result. 
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P r o p o s i t i o n 3 . It holds 

(a) <j)s has ordered power with respect to the T* class and tail-ordering <t, and 
(b) <f>m has ordered power with respect to the Box-Tiao families and tail-ordering </ . 

We conclude the paper with a result that confirms the idea suggested by Figure 4. 

P r o p o s i t i o n 4 . <f>m has tail-power more robust than (j>s against changes in models 
of Box-Tiao families. 

P r o o f . Because <f>m,(f>s € $a and have ordered powers with respect to the Box-
Tiao families, given a power j £ (a, 1), it will be 

ДUт) = (ć&f Г1 (т) - (ÆГ1 (7) 

- 1 
A,.(T) = (# ,T (T) - (# .r (7)-

Because the first alternative, lj™, for which [3V (0m) = 1 is 

1 
?ľ = *ř + 2c 

and the first 6{ in which 0% (9[) = 1 is 

K = o + 
2c 

it will be 9[ < lj™ because a < 0.5; then, there will exist an interval, (/?i,l), in 
which 

W J " 1 ( T ) < ( C ) " 1 ( 7 ) , vTe(/?i,i). 
Moreover, for lj > k%E , it is 

n ! c e<*» B - # °>< n + 1 ) 
ß*J<>) = [(в=l)f J0.-1)/: 

and 

Ä.W = 
n!c 

l _ i e - 2 c ( ö - f c ^ ) 
2 

- , ( n - l ) / 2 
-2c( - 0) 

(n+l)/2 

(ІЬa - l)!(n -*«)!_"-*«" [ 2 

П fcc-1 

1 _ _ e - 2 c ( ö " ö o) , - 2 c ( 0 - 0 0 ) 
-| П —Іc + l 

The first term in both derivatives does not depend on 9. The second one converges 

to 1, 

lim 
-* 00 

l _ І e - 2 c ( ð - ^ - ) 
2 

l ( n - l ) / 2 
= lim 

Ö-.00 

1 _ І e-2c(Ö-Є 0) 
2 

fc«-l 

= 1. 
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And since n — ka + 1 < (n + l ) / 2 the last term in both expressions makes that 
fi'<t>m(Q) g ° e s to zero more quickly than /% (6); then, there exists a 6\ such tha t 

Since also it is 

lim /fym(0) = lim ^ , ( 0 ) = 1 

it must be 

and because both power functions are increasing in 9, there will exist an interval 
(/?2j 1) in which 

WR*)",(7)>(fl8f)"I(7), V7€(A,1). 

Taking /? = m a x j / i ^ f t } , there will exist an interval (/J, 1) in which 

W 1 ( T ) < ( C ) " 1 ( T ) . vTe(/?,i) 

and 

w: jr lw>w?*r1(7). VT6W,I) 
i.e., in which 

A 0 m ( T ) < A 0 S ( T ) 

and the proof follows. • 

R e m a r k 2 . A complementary study, in a future paper, of the behaviour of the 
power and level of these tests would be interesting in order to confirm the result of 
Proposition 4, but now considering "neighborhoods" of a distribution Eb specified 
in terms, for instance, of e-contamination 

Vc = {F\F =(1- e)F0 + eH , H G M} 

where M. is the space of probability measures. Specially with Eo equal to the normal 
distribution. 
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