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K Y B E R N E T I K A - VOLUME 26 (1990), NUMBER 1 

THE UNCERTAINTY PROBLEM IN CONTROL THEORY 

Part I. Models of Theories 

JAROMIR STEPAN 

The main sources of uncertainties in control problems are discussed. Practical control problems 
must mostly start from the measured data given with the low precision, e.g. on two decimal 
places. So the relevance of the present feedback control theory depends above all on the incor­
poration of these data in the formal apparatus. The proposed concept of the theory models, 
which is based on the modified two-values logic (see [4]), creates the framework for the solution 
of this problem. 

1. INTRODUCTION 

The "modern" control theory developed in the 1970's was derived on a precise 
mathematical basis (cf. [3], [20]). It was introduced as a universal intellectual 
framework which was motivated more by mathematical apparatus than by any 
practical problem. It was assumed that systems must have well defined state in a well 
defined state space and the state can be estimated from a set of measurements. Further 
it was assumed that control commands can be expressed in a form computable on 
line from the measurements. All definitions, control laws, stability conditions, etc., 
had to have be formulated in a fully rigorous mathematical framework. Systems with 
uncertain parameters or signals corrupted with different uncertainties were alien 
to this theory (see [20]). 

In the late 1970's the experiments connected with practical tasks on small 
table computers have shown the importance of uncertainties. Simultaneously it 
became clear from these experiments that the methods of the "modern" control 
theory alone cannot lead to the design of controllers which are sufficiently robust 
in the presence of uncertainties (cf. [12], [20]). The explanation of this situation 
can be found in problems connected with the measurement accuracy (cf. [11]). 
The measurement error were imbedded in the modern control theory in a stochastic 
zero-mean component neglecting the fundamental fact that each real measurement 
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instrument generates data corrupted by an unknown bias. Let us illustrate this 
problem on the analysis of large scale systems. These systems have mostly hundreds 
of sensors with different accuracy and reliability characteristics (see [1]). The measu­
red data are mostly given with a precision lower than two decimal places (cf. [11]). 
Just this limited measurement accuracy, i.e. the residual systematic errors, creates 
the basic part of an uncertainty band (see [11], [18]). With respect to this uncertainty 
band it is mostly difficult to get a mathematical description of interactions. So they 
must be included in the uncertainty band and decrease more and more the usable 
information in measured signals. Therefore all problems connected with large scale 
systems must be solved with regard to some uncertainty band and so they are beyond 
the effective reach of the modern control theory. At the present time we have no 
theoretical basis for the solution of these problems (see [1]). What we are lacking 
is a methotology or a theory that combines system dynamics and the uncertainty 
problem. This dilemma, i.e. the gap between the formal theories and practice, can be 
explained with the fact that practically all control theories were introduced as the 
"explanation" theories (cf. [4]). 

The topic of this paper follows from the previous discussion. We focus on the 
relevance of the formal theories. This problem will be analyzed with respect to the 
uncertainty problem. 

Before we pass on to the organization of the paper let us add one remark to the 
uncertainty in mathematics. The applicability of the formal theories resp. the applica­
bility of pure mathematics depends on the ability to include uncertainties in its 
apparatus. Here the crisis of the control theory is closely connected with the crisis 
of mathematics which was not able to explain different anomalies in the numerical 
computation in the presence of a roundoff uncertainty band, e.g. the stability of 
numerical processes, the solution of ill-posed problems, the inversion of ill-con­
ditioned matrices, etc. (see [9]). There were different attempts to solve this problem. 
Unfortunately the fundamental dilemma of all these attempts lies perhaps in the 
classical two-values logic (cf. [4], [7]). If we want to take into account the uncertainty 
band then we must accept neutral statements. But the classical logic knows only two 
values: it holds or it does not hold. From this viewpoint the formal theories based 
on the two-values logic (e.g. the methods of the modern control theory) are not 
compatible with an uncertainty band. 

The organization of the paper is as follows. The system description is introduced 
in Section 2. The main sources of uncertainties in the numerical computation and 
in input data with respect to control problems are discussed in Section 3 resp. 4. 
The concept of the theory models is proposed in Section 5. The internally robust 
procedures are introduced and demonstrated on the DNLS estimator in Section 6 
and 7. 
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2. SYSTEM DESCRIPTION 

Consider a SISO linear continuous system by 

x(t) = A x(t) + P u(t) , y(t) = y x(t) , (2.1) 

where the system triple (A, ft, y) has the appropriate dimension. For the zero initial 
conditions the corresponding transfer function can be written as 

F(s) = y(sl-Ayip=^ (2.2) 
N(s) 

For the sake of simplicity we consider the class A of systems S with M(s) = 1. 
This is the class of the most favourable cases with respect to uncertainties. The perti­
nent model S (S e A) of the system S derived from measured points of the output 
signal y(t) e R is given by the transfer function 

F(s,a) = ^ - (2.3) 
N(s) 

a 
where N(s) = ]T ats

l is the Hurwitz polynomial. 
i = 0 

The output signal y(t, a)e R of the model S can be written in the form of the 
nonlinear regression function (cf. [14], [16]) 

y(t,a) = iaiV^(t), (2.4) 
i = 0 

where the Laplace transforms of the sensitivity functions are 

^{»("(')} = ^7T • (" ) 
N2(s) 

The system identification can start only from measured points of the output resp. 
input signals, i.e. from y = \y(\),y(2), ...,y(q)Y resp u= [u(l),u(2), ...,u(q)Y 
for y(k) — y(tk) resp. u(k) = u(tk). Let us emphasize that we shall consider the 
discrete alternative which is based on the continuous case. The reasons for such 
an approach are (cf. [2], [14], [16]): 

(i) The real systems are continuous in nature and so we obtain rather easily 
physical insights in control problems. 

(ii) The use of z-transformation is connected with numerical errors (cf. [2], 
[17]) and does not allow introducing the nonlinear regression functions in a simple 
way. 

Thus, the discrete form of regression function (2.4) is given by 

y(k) = f atvV(k) (k= l,2,...,q). (2.6) 
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3. THE UNCERTAINTY PROBLEM IN NUMERICAL PROCESSES 

Uncertainty can enter at every step of the formulation and solution of problems. 
Let us discuss briefly the main sources of uncertainties. 

The first source of uncertainty is the formulation of mathematical models. It is 
not possible and practical for a mathematical model to represent every aspect of 
a real problem. A common fallacy in problem solving is the belief that enhancing 
the model will automatically lead to better results (see [9], [15]). 

Most of the methods and software compute things approximately. There are 
different methods for the same problem because their efficiency and accuracy vary 
considerable from example to example (see [6], [8], [9]). 

The error made in truncating an infinite process is the truncation error. In many 
cases, the truncation error is exactly the difference between the mathematical and 
numerical model. 

The main source of uncertainty by the computation are round-off errors. It is 
not easy to know in advance how much precision (i.e. number of digits in the man­
tissa) is needed to obtain satisfactory results from a computation (cf. [8], [9]). So 
the round-off error effects resp. the error propagation must be checked. It is possible 
to show on the case of the quadratic equation that round-off errors can ruin a very 
ordinary computation very quickly (see Paragraph 3.1). 

A mathematical model contains more than equations and relationships; it also 
contains data that must come from the real world. Uncertainties in the data can have 
the largest effect at all. This is the case of control problems as we shall show in the 
next section. 

3.1 The quadratic equation 

The influence of a round-off uncertainty band can be demonstrated on the known 
example — on the quadratic equation (cf. [9]) 

\{/(x) = x2 + 2bx + c (3.1) 

for the subset of cases if/(x) e r with c = 10, and real roots xt = — 10a and x2 = 
= — 10 (1_a ) (a = 1, 2, . . . ) , i.e. for b2 > c. We shall analyze three alternatives: 

(1) b is computed from b = (10a + 10(1-a))/2, 
(2) b is given directly, i.e. for a = 3 we have b = 1000 . 01/2, 
(3) b resp. c is given with the precision two decimal digits in the floating point 

arithmetic, i.e. the precision of initial data is dd = 2. For a = 1 resp. a = 2 we obtain 
b = 11/2 resp. b = 1-0. 102/2. 

The values of the small roots x2k for the considered three alternatives (k = 1, 2, 3) 
and pertinent relative errors 

®k = T^-i I** ~ *2*| 1 0 0% ( f c = 1 > 2 > 3 ) (3-2) 
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were computed on the calculator TI 59 (Texas Instruments 59) which has 13 decimal 
digits arithmetic (dc = 13) (Table 1). For alternative 1 resp. 2 it can be computed 
for a < 4 accurate results, for a < 7 the results with a small error, and for a = 7 

Table 1. 

X 1*2 1 1*211 x 1*221 ®2 1*23 1 б>з 

1 1 1 0 1 0 1 0 

2 1 . K Г 1 1 . 1 0 _ 1 0 1 Л O " 1 0 1-001 . 1 0 _ 1 0 1 

3 1 . 10~ 2 1 . 10~ 2 0 1 . 1 0 ~ 2 0 1-00001 . 1 0 ~ 2 0 0 0 1 

5 1 . 1 0 ~ 4 1-0001 . 1 0 ~ 4 0 0 1 1-0001 . 1 0 ~ 4 0-01 1-0001 . 1 0 ~ 4 0 0 1 

6 1 . 10~'5 1-04. 1 0 ~ 5 4-0 1-01 . 1 0 ~ 5 1 0 1-01 . 1 0 - 5 1-0 

7 1 . ю - 6 
2 . 1 0 ~ б 100 2 . 1 0 ~ б 100 2 . 1 0 ~ б 100 

8 1 . 1 0 ~ 7 6 . 1 0 ~ 5 59900 0 100 0 100 

the error is 100%. The difference between these two alternatives for a = 6 resp. 8 
is given by the fact that 10a is computed approximately. Initial data in alternative 1 
resp. 2 are given with the computation precision, i.e. dd = dc, as it is usual in numerical 
mathematics. Now if we start from initial data given with the precision dd < dc> 

e.g. dd = 2 in alternative 3, then the region of the cases with errorneous results can 
essentially increase (cf. Table 1). This alternative is interesting for the error analysis 
of control problems (see later). The clue to the trouble in the considered example is 
that two nearly equal numbers are subtracted which allows the round-off error to 
become a dominant part of the result. 

Let us add that a simple change in the method might eliminate adverse round-off 
effects. Here the condition xlkx2k = 10 can be used for the regularization of the 
considered method (cf. [9], [12]). 

3.2 Well-posed problems 

The uncertainty is discussed in the literature on numerical mathematics in connec­
tion with the well-posed resp. ill-posed problems. One may also speak of a computa­
tion being ill-posed, and this is the same as saying it is numerically unstable. The 
word stability refers here mostly (for dd = dc) to the fact that the round-off error 
effects are grossly magnified by the method. There were different attempts in the 
literature (see [8], [9]) how to define the well-posed problems. So it was asked 
fulfilling three requirements. The solution of the problem must exist, i.e. the suf­
ficiently reliable result for some simple case can be computed by the pertinent algo­
rithm (e.g. cases for a < 6 in Table 1). The second requirement is that the computa­
tion is unique and the third is that the result of the computation should depend 
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Lipschitz continuously on the data with a constant not too large. Consider the 
point of the signal y(k, a) according to relation (2.6). Here we must ask (cf. [10]) 

\y(k, a) - y(k, a + Aa)\ ^ M\Aa\ (3.3) 

resp. 
дy(k, a) 

£Mft) (i = 0,l,...n), (3.4) 
da-, 

where ||Ja|J ^ £. 

"Small" changes in the coefficients at should result in only "small" changes in the 
computed point y(k, a). We see that a computing problem may be well-posed for 
some data, i.e. for \\Aa\\ ^ £, but not for all data. Let us emphasize that it is not easy 
to obtain or to estimate the Lipschitz constant for more complex problems that 
depend on many variables, e.g. in the considered case given by relation (2.6) for 
n ^ 2 (see [10]). So the given requirements cannot fully characterize the difficulties 
with the error propagation. Therefore the complementary terms reliability and 
robustness were introduced (cf. [9]). 

The program resp. method reliability measures how well the program resp. method 
generates the sufficiently reliable results. The most important is the reliability of use 
(see [9]). A program has reliability of use p if the number of successes in its use 
divided by the total number of uses is p. Reliability is here defined in terms of prob­
ability. If we want to know beforehand whether the software is reliable or not then 
the best way is systematic testing, i.e. executing the program on a large sample 
of problems chosen in some way from the problem space. 

Software robustness is closely connected with software reliability. It measures 
how the performace degrades as other methods or better other subroutines are used 
(cf. [9]). Robustness is also a property of the program and its underlying method 
(cf. alt 1 and 2 for a = 8 in Table 1). The robustness analysis is mathematically 
difficult; in some instances, it is impossible as it follows from the truthful remark 
in the literature (cf. Rice [9], pp. 443): Robustness does not have an easy mathematical 
definition, but it is easier to test a program for robustness. 

At the present time there are not available cook-book procedures for the robust­
ness analysis. So the robustness must be analyzed in the close connection with the 
error analysis as we shall show in Section 5 and 6. 

4. UNCERTAINTIES IN INPUT DATA 

In this section we shall analyze above all the uncertainty connected with the me­
asurement accuracy of signals, i.e. with the special character of control experiments. 
Further we shall try to compare different precision levels used in the control theory 
and practice. 
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4.1 Control experiments 

The control experiments differ from the experiments used by testing the numerical 
procedures, and from physical experiments used for corroborating physical theories. 

The design of experiments in numerical mathematics is mostly based on the 
assumption that the precision of input data dd is near to the computation precision 
dc, i.e. dd = dc, as it was shown by the analysis of the quadratic equation in Para­
graph 3.L On the other side the design of control experiments must always start 
from two different precision levels as we shall show in Paragraph 4.3. 

Now let us discuss the difference between physical and control experiments. 
Here the situation by the feedback control will be assumed. The main properties 
of physical experiments with respect to possible uncertainties are: 

(la) The most accurate measurement instruments are used. 
(2a) The duration of an experiment is not limited. Experiments can be repeated 

to obtain better results, e.g. in sense of mean values. 
(3a) The physical experiment can be prepared a long time, e.g. weeks, to get the 

best starting conditions. 
(4a) An experiment resp. experiments serve for corroborating the hypothetical-

deductive theories. The result should be the theory holds or does not hold (cf. [4], 

[17])-
The control experiments are physical experiments with these special properties: 

(lb) The operational measurement instruments with necessary low precision 
are used as a rule. Now if we control on the required value of the controlled variable 
then for small deviations we must start from practically zero precision. 

(2a) The duration of control experiments is limited. Experiments cannot be 
repeated (see point (4b)). 

(3b) Control experiments are determined with operational conditions. 
(4b) An optimal control if possible must be derived from these experiments, 

i.e. from the evaluation of a small number of measured points, in the time stress 
(see point (2b)). 

It follows from this comparison that it is above all the uncertainty band which 
designs the character of control experiments and in this way the applicability of the 
control theory. Till now the formal control theories were derived as the pure physical 
theories, i.e. the hypothetical-deductive theories (cf. [4], [7]). The fact, that all 
applications of the feedback control theory must start from control experiments, 
was ignored (cf. Introduction). If the control theory is to be applicable then it must 
respect the character of control experiments and so it must be at least partially an 
inductive theory. It means that the validity of formal theories in the presence of 
uncertainties is not given beforehand and so it must be always tested with respect 
to the input data precision. This problem we shall discuss in detail in the next section. 

37 



4.2 Modelling the uncertainty band 

First let us introduce the measured output signal 

y(k) = y(k) + t ni(k) (k = 1, 2,. . . , q) , (4.1) 
i = i 

where nt(k) (I = 1,2,..., g) are the components of an additive noise. This total 
noise describes not only the ideal noise, as it is considered in formal theories, but 
plenty of other errors, e.g. systematic errors of measurement instruments, inter­
actions, approximation error, sampling error, etc. The further limitations must be 
respected by input signals. Only simple well measurable input signals can be used 
for the system identification (see Paragraph 6.2 and Section 7). The total noise 
in relation (4.1) has two parts: the reducible and irreducible errors. The uncertainty 
band is given above all by these irreducible errors. 

Different models of the total noise in relation (4.1) can be found in the literature. 
In this paper we shall use modelling the total noise with the round-off errors. This 
approach has some advantages: 

(i) It can be simply realized on digital computers. It is closely connected with 
the measuring scales and so we obtain the uniform scale for different precision levels. 

(ii) The results of experiments are unambiguous. Experiments can be simply 
repeated. That is the main reason why the classical statistics is not suited. 

(iii) This model work better in the region of data given with a small precision. 
The maximal error is here bounded. 

Let us discuss the relation of this approach to the precision measure co of the 
measuring scale. So we obtain for dd = 2 the precision measure co = 10~d = 10~2. 
The dimensionless scale of the unit signal channel is then given by the following 
levels 

0-00 0-01 002 ... 0-99 1-00. (4.2) 

Mathematically we have an equivalence over the set Q of real numbers on the unit 
interval and sequence (4.2) is the system of the residual class representatives. There­
fore the measured points of signals y(k), i.e. 0 5S y(k) = 1 for k = 1, 2,.. . , q, are 
given with these representatives, i.e. y(dd) e R(y, dd) (see relation (5.1)). We shall 
assume that the sampling error is always smaller then the measurement error. 

Now how this uncertainty — this measurement error — can be incorporated in the 
model of the total noise. Let us explain this problem on an example. Let I be some 
length and lk (k = 1,2,..., q) measured values in millimeters. Then we obtain the 

i 
best possible estimate I = ( £ lk)jq only with an accuracy of millimeters even if the 

fc=i 

experiment will be infinitely times repeated (cf. [10], [11], [12]). So it must exist 
some limit number of experiments qL by which the irreducible errors are respected. 
Let us revert to control problems and let us show how the introduced precision 
measure co is connected with the accuracy of measurement instruments. The instru-
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ment of the accuracy class 1% indicates the measured values y(k) (k = 1, 2, ..., q) 
with the reliability ± 1 % , i.e. the ideal values y(k) (k = 1, 2 , . . . , q) lie in the band 
± 1 % around the indicated values practically safely. So only 50 levels in the unit 
channel, i.e. 50 representatives in sense of sequence (4.2), can be distinguished and 
the limit precision measure is given by coL = 1/50 = 0-02. 

We have obtained the uniform error distribution in both cases. To be able to assess 
the reliability of the estimates at(i = 0, 1, ...,n) the connection of these two models 
to the case with the normal distribution must be at least approximately established. 
We set out from the demand of the same information contents of the rectangular 
and Gaussian error distribution with a standard deviation a resp aL (cf. [10], [11]) 
and we obtain for the total noise 

a = a>ly/(2ne) = 10-d/x/(27te) (4.3) 

resp. for the uncertainty band 

oL = (OLJJ(2KQ) . (4.4) 

Thus we can calculate for the measurement instrument of the accuracy class 1%, 
i.e. for coL = 0-02, the standard deviation aL = 4-84 . 10~3. Then the ideal value 
of the measured parameter will lie in the uncertainty band ±2-Q66aL = +0-01 
around the measured value practically safely. The estimates in the uncertainty band 
are all equivalent with respect to the available information. So the other confidence 
intervals, e.g. ±aL, cannot be used. This is in accordance with the practical control 
tasks. We are here interested only in the conclusion: the derived estimates at (i = 
= 0 , 1 , . . . , n) can or cannot be used for the solution of the goal problem in sense 
of the modified two values logic as we shall show later. 

Let us add that the model of the uncertainty band pertinent to the measurement 
instrument of the accuracy class 1%, i.e. for coL = 0-02, can be derived from the 
signal y(dd = 1), i.e. y(dd = 1) = 10_1/N/(27re), for the limit number of measured 
points 

qL = a2(dd = l)la2
L(coL = 0-02) = 25 . (4.5) 

4.3 The precision levels 

Now we can analyze different precision levels used by the solution of practical 
problems. The most important cases are given in Table 2. Here the number of the 
scale levels D is given by D = ljco. The values aL make sense only in the last three 
rows (cf. relation (4.5)). The formal theories are based on the Cantor set theory, i.e. 
on the absolute measurement precision given by the uncountable infinity K = 2Xo 

where K0 is the countable infinity. Here we can say the absolute measurement 
accuracy. Roughly speaking the uncertainty band in Table 2 is the difference 
between the accuracy and precision. 

The double precision of digital computers is appropriate to the range of possible 
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Table 2. 

D d OL 

Precision of formal theories (CST) 00 oo 0 

Precision of digital double precision 10 1 6 16 (2-4 Л O " 1 7 ) 

computers simple precision 107 7 (2-4 10" 8 ) 

Precision of analog computers 103 3 (2-4 10~4) 

Precision of measurement 
instruments 

0-5% \02 

50 (1-7) 

5% 10 

2-4.10" 

4-8.10" 

2-4. 10" 

physical problems as the experience has had shown. This precision can be simply 
increased. This is the difference to the precision of the control measurement instru­
ments. It shows the values pertinent to the analog computers which establish the 
upper boundary by the signal measurement. So increasing the precision of the me­
asurement instruments is hardly solvable problem. Let us emphasize in this connection 
that if we control some parameter on the required value then we must start for small 
deviations from practically zero precision. 

Now the terms as the uncertainty band resp. robustness, which are used for the 
characterization of the present crisis of the control theory, have clear meaning. 
The key problem of the present control theory is how to apply the formal theories 
starting from the Cantor set theory based on the continuum of real numbers, i.e. from 
infinite precision dd = dc = K, on input data with the precision dd(qL) = ddL = 2 
(cf. relation (4.5)). The present control theory is not able to respect the different 
precision of measurement instruments, i.e. the different situations by the solution 
of practical tasks, as they are given in the last three rows of Table 2. 

5. MODELS OF THE THEORIES 

Let us summarize the results of the last two sections: 

(i) The formal theories are based on the Cantor set theory, i.e. on the absolute 
precision dd = dc = K. 

(ii) We can assume that the double precision, i.e. dc = 16, is mostly an acceptable 
precision level for the solution of practical tasks (in physical sense). 

(hi) The main problem of the present control theory is how to include the input 
data, i.e. data with precision dd = 2, in formal theories. 

The white noise, as it is used in formal control theories, is a mathematical fiction 
(cf. [1]). The engineer usually knows much more about the uncertainty and so he 
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has to make a judgement on how to model uncertainties. There are not available 
cook-book procedures for doing this as it follows from Sections 3 and 4. The success 
of the design depends on the ability of the engineer to know the physics of his problem 
and to subjectively translate this into mathematical models. But this approach is 
not simple on the formal level as it follows from the literature ([4], pp. 63): It is 
consequently impossible, by means of classical logic, to deduce any empirical from 
any theoretical proposition. Briefly, empirical and theoretical discourse are logically 
disconnected. 

Now the measured data in practical tasks are empirical and so we must consider 
empirical inexact classes with neutral candidates for the class-membership. This 
situation is quite foreign to classical two-values logic. So here different ways were 
proposed and used, e.g. fuzzy sets, bounded but unknown uncertainty, etc.. All these 
approaches cannot explain the substance of difficulties with the uncertainty, i.e. the 
difference between the empirical and mathematical propositions. The much more 
promising way in this direction is the use of the modified two-values (MTV) logic 
which is based on the following idea ([4], pp. 35): Classical logic does not admit 
neutral candidates for membership. This does not mean that inexact classes are 
therefore incapable of precise logical treatment. An imprecise logic would be a contra­
diction in terms. A precise logic of inexact classes is not. 

5.1 The MTV logic 

The MTV logic sets out from the following main rules (see [4]): 

(i) It is not important the origin of inexactness and neutrality. 
(ii) If the propositions are not neutral and classes are exact then they reduce 

to the rules of classical logic. 
(hi) Neutrality is not an independent third truth-value. It may be turned into 

either of the other two, i.e. truth or falsehood. This is the difference to the 3-valued 
logic. 

(iv) The MTV logic cannot in general serve as an instrument for deducing from 
neutral statements other such statements in conformity with the usual rules of 
inference — especially by means of modus ponens (cf. [4]). 

Now if P is an inexact class and y0 is the measured signal one of three cases may 
hold: (i) (j?0 e R), i.e. y0 is a member of R; (ii) (y0 £ P.), i.e. y0 is a non-member 
of R; (iii) (y0 e * it), i.e. y0 is a neutral candidate for membership of R. 

The solution of control problems is closely connected with inclusions. Then the 
provisional inclusion [R* cz P ] , which ignores neutral candidates, is defined as follows: 
R and P have at least one common member, and no member of R is a non-member 
of P. The possible final inclusion (R* c p} is defined in the same way as the provisional 
ones, except that now the terms "member" and "non-member" include neutral 
candidates which have be turned into member or non-member respectively. If the 
provisional and final inclusions simultaneously hold then it can be introduced the 
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inclusion (8 c p) or simply K cz P which can be identified with the sub space of 
mathematical functions 

yeR^y(C,aL)cR(y,C,aL), (5.1) 

where aL characterizes the uncertainty band (see Paragraph 4.3), the sign ^ denotes 
the equality in sense of the MTV logic and C are the conditions (e.g. the structure 
of the system pertinent to the class of output signals y, the form of an input signal, 
parameters of a controller, etc.). 

We see that the way from measured data to mathematical formulation is relatively 
complicated. Let us summarize this procedure with respect to the physics. The 
idealization of inexact empirical into exact non-empirical predicates is the price 
we pay for simplifying our inferences (cf. [4]). This conclusion is valid in physics, 
i.e. for physical experiments (cf. Paragraph 4.1), where the sufficiently precise me­
asurement instruments can be used to be able to get near the sample-inclusion 
((R c: P)) which is completely testable inclusion for the considered physical problem. 
This situation cannot be assured in control problems as we have shown in Para­
graph 4.1 (see the conditions for control experiments) and Paragraph 4.3 (see Table 2). 
Here the gap, i.e. the Humean gap (see [4]), between the completely testable inclusion 
((R c: p)) and the incompletely testable idealization R c: P is so broad that the new 
approach must be sought to bridge over this gap. 

This discussion shows that the gap between the theory and practice is broader as 
it is stated in the literature. So the very simple problems are open, e.g. it was not 
explained till now why the classical controllers, i.e. so called Proportional (P) resp. 
Integral (I) resp. Derivative (D) control, are effective without the identification 
of the systems and without the optimization of the control processes. The previous 
discussion together with these remarks explain why the innovation of the present 
control theory is so difficult or better why it is so difficult to speculate on some 
directions in which the field may move on. 

5.2 The uncertainty problem 

The uncertainty band of measured data is directly used above all in identification 
algorithms. The system analysis is the basis for all other control problems and so we 
shall focus on this problem in the rest of this paper. 

Let us demonstrate the uncertainty problem on the use of some estimator. We can 
start from the following relation 

y(C, aL) e R(y, C, aL) & T((-), C, aL, dc) => y(a, aL, dc) e R(y, C, aL, dc) . (5.2) 

This relation describes in the framework of the MTV logic the identification of the 
system with transfer function (2.3) by means of some estimator given by the formal 
theory Tf = T((*), C, aL = 0, dc = K) from the measured signal y(C, aL). We 
assume that the conditions C of the identification experiment are known. 

We obtain for aL = 0 and dc = K mapping R(y, C, aL = 0) => R(y, C, aL = 0, 
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dc = K), i.e. the formal theory — the ideal estimator, which is based on the two-
values logic in sense of the literature ([5], [19]). Let us emphasize that we cannot 
derive some theory by means of the MTV logic as it follows from the discussion 
in Paragraph 5.1. So if we solve some problem by means of the MTV logic then we 
must always set out from the pertinent formal theory. 

The difference between the solution in the literature ([5], [19]) and by means of 
relation (5.2) is given by uncertainties. The estimators in ([5], [19]) are considered 
as the asymptotic theories in sense of the Kolmogorov concept of probability, i.e. all 
errors are imbedded in a stochastic zero-mean component. Therefore the analysis 
by means of relation (5.2) is more realistic with respect to practical tasks. So in 
this paper two new problems with respect to methods resp. theories in the literature 
([5], [19]) will be analyzed. 

The first problem, i.e. the uncertainty of measured data given above all by system­
atic errors (cf. Paragraph 4.2 and 4.3), can be analyzed by means of the MTV logic 
(cf. discussion in Paragraph 5.1). 

The second problem is the stability of numerical processes in sense of the discus­
sion in Section 3. Here we shall speak about the model T((*), C, aL, dc) of the formal 
theory Tf in a strict sense. The notation the model of the theory in broader sense can 
be used for the whole problem, i.e. for all problems connected with relation (5.2). 
As we have shown in Section 3 the stability of numerical processes is an open problem 
and so we shall be interested in the next sections above all in the subspace of problems 
R(y, C, aL > 0) resp. in the subspace of results R(y, C, aL > 0, dc < X) which can 
be deliminated from the spaces R(y, C, aL = 0) resp. R(y, C, aL = 0, dc = X) 
with respect to the given uncertainty band and for which mapping R => R ap­
proximately holds (see later). 

Let us discuss the use of relation (5.2) in detail. The first point with respect to the 
delimination of the subspace of results R must start from the decision that the 
solution of the considered problem, i.e. the estimate y(a, aL, dc), exists for the 
considered uncertainty band given by the limit standard deviation aL. The demarca­
tion of solvable cases in dependence on the precision of measured data can be de­
termined according to the following inclusion for the sufficiently high computation 
precision dc (see later) and for the data precision aL2 > aL1 

R(y(a), C, aL2, dc) £ R(y(a), C, aL1, dc) . (5.3) 

Therefore the subspace of results R(y(a), C, aL, dc) degenerates with decreasing 
the data precision. We can simply find so large limit deviation aL = aLm that the 
subspace R(y(a), C, aLm, dc) is empty, i.e. the solution cannot exist on this informa­
tion level. Here we see the fundamental difference between the formal theories and 
they models. Therefore this conclusion, i.e. R(y(a), C, aLm, dc) = 0, is alien to the 
present formal control theory where problems are solved with respect to the subspace 
R(y(a), dd = dc = K). 

The second point is connected with the delimination of the subspace R with the 
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sufficiently reliable results. Two ways can be used. We can start from the empirical 
propositions of the type ((R c P)) resp. {R c P] which are completely or incom­
pletely testable by observation (expert systems, trial and error methods). The second 
method consists in ideal propositions, grounded in and tested by ideal mathematical 
constructions (cf. [4]). This way should be used preferably by the theory models. 
The concept of the limit identifiability of control systems (see [10], [11], [12]) 
will be useful for the solution of this problem. It is the backwards analysis starting 
from the given limit noise deviation aL in sense of Paragraph 4.2 and the functional 
characteristics of the considered systems. 

The system given by transfer function (2.3) is identifiable if all coefficients at 

(i = 0, 1, ..., n) are identifiable. The coefficient at is identifiable if it holds for the 
pertinent relative standard deviations 

Si(C, aL) = y/(D(at> C, aL))lat = eM , (5.4) 

where D(at, C, aL) is the variance of the coefficient at and eM must be chosen ap­
propriate for the solution of the subsequent synthesis problem. If we start from 
the Ney man-Pears on concept of statistics then we test for eM = 1 by means of the 
null-hypothesis, i.e. for st _ 1 the coefficient at = 0 or the measurement of the 
pertinent signal was not sufficiently accurate to establish its value. In control problems 
we ask at > 0 and so we usually start from the condition sM = 0-5 (see [12], [13]). 

The solution of the third point, i.e. the estimation of the limit standard deviation 
aL of the noise, is the most difficult as it follows from the discussion of relation (4.1). 
So this problem must be solved in practical tasks case by case (see Section 7). The 
success depends on the ability of the engineer to analyze the physical background 
of the considered problem with respect to uncertainties. 

Let us start the discussion of the second part of the uncertainty problem, i.e. the 
stability of numerical processes, with the following definition: 

Definition 5.1. The model T((-), C, dd, dc) of the formal theory Tf = T((-), C, 
dd = dc = K) in a strict sense is given by the precision of input data dd < £ss and by 
the computation precision dc < K. Here (•) in the model T((#), C, dd, dc) denotes 
the numerical algorithm pertinent to the transformation (•) in the formal theory 
Tf and C are the conditions of the pertinent experiments (cf. relation (5.1)). 

So we need some concept for the applicability appreciation of the methods resp. 
theories which are formulated in sense of the robustness as it is discussed in the 
literature (see [9], [17]). The following attempt is based on the Conditionally Robust 
(CR) methods resp. theories. 

Definition 5.2. The theory resp. the pertinent method is conditionally robust with 
respect to the uncertainty band of measured data if the pertinent theory model 
T((«), C, aL, dc) fulfils for problems from the subspace R((#), C, aL) the following 
conditions: 
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(i) the solution of each problem from R((*), C, aL) exists for the double precision, 
i.e. for dd = dc = dcg = 16, 

(ii) this solution is unique, 

(iii) the procedure for testing the stability of numerical processes for dd < dcg 

and dc ^ dcg is known. 

According to this definition the considered theory is the CR theory if the pertinent 

algorithm was successful tested for the condition of Hypothesis (i) and the numerical 

process is convergent. Nearly all present formal theories fulfil these requirements 

for the existing physical problems. So the third point is crucial for the CR theories. 

But here we must state according to the discussion in Section 3 that the error resp. 

the robustness analysis is an open problem. In the next section we shall try to show 

that this problem can be solved under certain assumptions. 

(Received May 4, 1989.) 
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