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K Y B E R N E T I K A - V O L U M E 26 (1990), NUMBER 1  

ESTIMATION OF A CENTRALITY PARAMETER 
AND RANDOM SAMPLING TIME 

Part I. Necessary Conditions for Optimality 

CLAUDE DENIAU, GEORGES OPPENHEIM, MARIE CLAUDE VIANO 

A weakly stationary discrete time process is sampled according a renewal process. A centrality 
parameter is estimated. We establish necessary conditions for the samplig law to be optimal 
w.r.t. a criterion based on the estimator's asymptotic variance. 

0. INTRODUCTION 

Random sampling scheme in the determination of the values of parameters indexing 
observations has been studied in several publications ([4]). 

The random sampling time scheme is defined as a renewal process T = (t^)„eJir, 
independent in probability of the process modelling the observations. 

The results presented here deal with the estimation of centrality parameters 0 
of real discrete time weakly stationary random processes. As an estimator we choose 
the empirical mean or the Gauss-Markov estimator, based on n observations of the 
sampled process. 

Our purpose is the determining of a sampling distribution L0, optimal with respect 
to an asymptotic quadratic criterion in the set 0>m, the sampling rate of which is 
large enough. 

The main difficulty in this problem consists in the non convexity of the function 
we have to optimize. One is then within the framework of a differential programming 
concerned with convex constraints; it makes possible to prove a necessary condition 
of Kuhn-Tucker type ([10], [12]). 

There is a small number of publications about parameter estimation by random 
sampling time methods; we may mention as examples works about estimation of 
diffusion processes parameters ([15], [14], [7]). 
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1. DEFINITIONS AND NOTATIONS 

Afterwards X = (X„)„e% will be a real weakly stationary discrete time random 
process with mean 9, covariance function Cx and correlation function QX. 

Let us denote by T = (t„)„ejir with t0 = 0 a renewal process on Jf, independent 
in probability of X, which we choose to call the Sample Process. The probability 
distribution L of f„+1 — t„\s> defined by: 

Lj = P({tn+l - t„ - / } ) , jeJT* = jr - {0} (1) 

L0 = 0 

(the process always moves forward!) 
The process which has undergone sampling, which we choose to call the Sampled 
Process X = (%„)„zo> is defined by %„ = Xtn, n zjf; it is also a real weakly sta­
tionary random process with mean 6 and with covariance function C% defined by: 

c,(o) = cx(o) 

Cx(k)=tL*k(j)Cx(j), kejr (2) 
j=k 

— L*k is the distribution of t„+k — tn, n ^ 0, k 2£ 1; we set L*k(i) = 0 for k ^ i; 
* represents the convolution. 

m 

— Qrfm) == ]T L**(m), me ./T*, is the potential distribution associated with T; 
fc=i 

QL(m) S l f o r a l l m e ^ T * . 
— I1 is the set of real sequences x = (xn) such that Y]xn\ < °°-
— V° is the set of bounded real sequences; it is the dual space of I1. 
— <, > is the scalar product of the duality (I1, J00). 
— 0> is the set of probability distribution on Jf. 
— 0>m = {Le0>\JjjLJ<m}, m fc 1. 

jeJT 

— <5{ is the Kronecker symbol. 

— <5,- is the Dirac distribution o n j e / . 
— supp L = {j e ,/T | L(j) =j= 0} is the support of L. 
— Card A is the cardinality of a set A. 
— L1 is the set of real sequences X = (Xj) such that 

f j\Xj\ = \\X\\Ll < +oo. 
j = i 

— L°° is the dual space of L1. 
— L? = {Z e L00 | Zj ^ 0, j eJ^}. 

00 

— <^X, Z^> = J^jXjZj is the scalar product of the duality (L1, L00). 
OO J = 1 

— $ L ( 2 ) = Z J ^ j z ' / *s t n e z-transform of the distribution L. 

— &x(z) is the z-transform of Cx. 
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2. THE PROBLEM 

The question is to estimate the mean 6 of X — (Xn)ne^ a real weakly stationary 
random process, by random sampling time of observations, with a renewal process T 
defined in (l). 

For the estimation of 6 we use N observations the instants of observation of which 
are random sampled and measured during a research. 

The chosen estimator is the empirical mean BL(N) denoted: 

N n=l 

The quadratic criterion is: 

a(L) = lim (N var B(N)). (3) 
N-*ao 

The problem is the determination of a distribution L of the sampler Process T 
step that minimizes a(L), where L belongs to a subset of 0> further specified. Now 
we introduce several lemmas. 

Lemma 2.1. If Cxel\ then: 

i) CxelK 
+ 00 

ii) lim (N var B(N)) = C*(l) = £ [Cx(\n\)] - Cx(0) [1 + 2<Qx, QL>] . (4) 
N-*oo n— — oo 

Proof, i) From (2) we prove that: 
p p oo oo p 

VP = 1: £ \Cx(n)\ =Y[1 L*"(k)\Cx(k)\] = £ [\Cx(k)\ £ L*\k)] 
n — 1 n = I fc = n fc=l i = l 

Now:fL*'(/c)^ QL(k)= 1. 

Consequently: Vp 2> 1: ]T |Cj?(w)| ^ J] |Cx(n)| and i) is proved and more: HĈ jj/j — 
<r \\f \\ n = l n = 1 
-= | ! ^ ' X | | I i -

ii) We know (cf. [1], p. 578) that: 
+ 00 

lim(Nvar0„ = £[C*(«)] 
ІV-»oo 

and the last equality is immediately proved. • 

00 

Let m e £%+ and 2Pm = (Le 0> \ J^jLj — m] be the set of sampling distributions 
J = I 

with a sampling rate higher than 1/m with m — I. Now we prove that if the sampling 

rate is higher than 1/m, there is an optimal sampling distribution: 

Lemma 2.2. If Cxe I1, then the restriction to &m of the function F\0>±-+01 defined 
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by: 
E: L^ i6x, QLy (5) 

is at its minimum. 
Proof. We know that 0>

m is a compact subset of ll (cf. [5]); hence is is enough 
to show the continuity of E with regard to the norm of I1. 

\<Qx, QL> ~ <Qx, QM>\ S Z MOI \QL(0 - GM(0|-
i = l 

Now: \QX(I)\ S 1 and QL(i) = 1 for all ieJf and Le 0>m, hence 

\<Qx, QL> ~ <Qx, QM>\ S Z | Q L ( 0 " <2M(0I + 2 I MOI • W 
i = l i = JV+l 

Now Qx^l1, hence we can choose N such that the second term on the right side 
of (6) should be arbitrarily small. Moreover QL(i) is a polynomial expression of 
(L(j))izj£i, consequently: 

ІV 

Е 
IL-AíЦi^O i = l 

Hm [ Z | ß Ł ( 0 - Ôм(0|] = 0- ü 

Lemma 2.2 justifies the choice of the optimality criterion. Indeed we have to solve 
the problem of minimizing a(L) if Le &m. 

Definition 2.1. Let L0 e ^ m ; the sampling distribution L0 is optimal if: 

L0 = arg Inf {Cx(0) (l + 2{Qx, QL» | Le 3Pm] (1) 

The real question in the search of L0 lies in the non convexity of the function E 
defined in (5). Consequently the application of Kuhn-Tucker's results (cf. [12]), only 
leads, in the general case, to a necessary condition for the optimality of L0. 

3. MAIN POINTS 

3.1 Necessary condition of Optimality for L0 

When the correlation function QX converges towards zero, with an exponential 
rate, we give a simple expression for the first and second order derivatives of the 
function E for every element of a ^-sphere Ca including 0> and defined by 

C . - { x 6 / 1 | | x | l i < l / a } > a e ] 0 , l [ . (8) 

The next proposition sets up the rules of computation for the first and second 
order derivatives; their existence inside the ll-sphere Ca, defined in (8) is connected 
with a rate of convergence towards zero of the correlation function of X. We have 
to introduce the assumption: 

H i . There exists a e R*, a < a such that Qx(k) = 0(a'k|). 

Proposition 3.1, Under H l5 the function E is twice Frechet-differentiable on Ca. 
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i) F'xe&(ll,$) is the continuous linear operator such that: 
oo 

K(y) = <Q, Q'x*y> with yel1 and Q'x = £ yx*(k'l) (9) 
* = i 

ii) F"x e ^(l1, &Qi, ffl)) is the continuous bilinear operator such that: 

Fx(y, z) = (Q, Q'x*z*y} with (y, z) e I1 x Z1 and 
oo 

Ql-lKk- l)x*(k"2) (10) 
fe=i 

Proof. (See the appendix.) 

Remark 3.1. All the results of Proposition 3.1 are preserved if L1 takes the place 
of/1. 

The Frechet-differentiability properties, consequently the strict differentiability 
(cf. [2]), lead us to present a necessary condition of existence of an optimal distribution 
L0, under a Kuhn-Tucker form. 

Let b e ] l , l/a[, x = (x^)j€jr*, an element of C defined by 
00 

C = {xetilYJXj = 1, HI,. = b}. 
J = I 

It is easy to prove that C is a closed convex subset of L1 included in Ca. Let Nc(x) 
be the normal cone at x e C and for the restriction to C of E (5), we define VEX = 
= [ ( V ^ ) ( j ) W ^ ^ b y 

F'X(V) = (V,-FX}), VeL1. (11) 

Finally, for each distribution of probability x contained in &m, we define h(x) by: 
oo 

h(x) = (-x, J^jxj - m) . (12) 

This function formalizes the constraints. 

Proposition 3.2. A necessary condition for x — arg Inf (E(x) \ x e C, h(x) < 0} is: 
there exists (r, q) e L+ x ffl+ such that: 

0 rj*j ~ 0 for all j e ^ * 

») « ( I 1 ^ - " » ) = 0 (13) 
J = I 

hi) -i[VFjj)-rJ-q]eJeNc(x) 
J = I 

Proof. We apply results of differentiable programming under a convex set(cf. [10]). 
See the appendix. • 

Theorem 3.1. (Characterization of L0.) Let Le 0>m. A necessary condition for L 
to be optimal is: there exist k e U, p e L+ with sup Pj\j < oo, q e 0t+ such that: 
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i) pjLj = 0 for all jejV* 
oo 

«) ^ ( Z j X J - m ) = 0 
y = i 

m) gL(j) - p} + jq + k - 0 for all 7 e .#"* (14) 
where aL is defined by: 

0iO) = 1(VFL) (/) - ^ % ^ for all j e JT* . (15) 

Proof . It is a simple consequence of the previous results, using the properties 
of the distribution L. Indeed, if Le ^m, then Le C; the normal cone at Le C 

NC(L) = {Z e L° | Vx e C , «JC - L, Z» = 0} 
oo 

is included in the one dimensional vector subspace of L00 generated by: e^ = Z F 1eJ; 
hence every element of NC(L) is colinear t o e ^ . J~1 

Using that (VFL)(j) = j~1gL(f), and noting J>J = jp> we conclude. Q 

Before drawing the outcomes of Theorem 3.1, we will give some properties of 

(9iln))nejr> i-e. the gradient of E. 

Corollary 3.1. Under Hx : 

0 
9L(k) = Z <?*(£ + 0 a(i) for all /c = 1 (16) 

; = o 
and 

a(0) = 1 , a(n) = £ (j + 1) ^ ' ( n ) for all n = 1 . (17) 
y = i 

In addition: 

0 = a(n) = n + 1 for all n = 0 . (18) 

ii) lim gL(n) = 0 . 
n-+oo 

Proof, i) relations (16) and (17) are consequences of the equality: 
oo n 

Z^(")[Z^*(^1)*M)(n)] = 
n = l k=\ 

= Z Qx(n) [M(n) + £ (1+L*"«(» - p) M(p))~ . 
n = l ft = 2 p = l 

We notice that: 

V n = 1: a(n) = QL(n) + Z L(" - k) a(k) , QL(n) = 1 
k = 0 

n - 1 B - l 

Z (k + 1) L(n - k) = n Z ^(n - k) = n 
ft = o ft = o 

and (18) is proved by recurrence. 

ii) is the outcome of i) and of the convergence, with exponential rate, of Qx(n) 
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towards zero, because 

M*)l = i \Qx(k + 01 (' + 1) = t Hk + 01 |* + '| = tj\Qx(j)\ 
i=0 i=0 j=k 

consequently [#£,(&) | is smaller than the remainder of a convergent series. • 

Corollary 3.2. Let L0 be an optimal sampling distribution. 
i) The points {n, fifio(n)}„^i <= ^?2 are lined up a line of slope smaller than zero 

for the elements of supp L0, and above the line for all other points. 
oo 

ii) If YsJ Lo(j) < m, then 
i = i 

a) Vs e supp L0: gLo(s) = — k, a negative constant, and 
b) VneJT*- supp L0: gLo(n) = gLo(s) 

iii) If supp L0 is not finite 
a) Vs e supp L0: gLo(s) = 0 
b) Vn = UgLo(n) = Q 

Proof, i) is obvious by (13, i), because pn = 0 if n e supp L0 and pn = 0 if not. 
00 

ii) a) ]£/L/ — m 4= 0, consequently q = 0 in (14). Let sesuppL0: ps = 0 
j = i 

in (14) consequently gLo(s) + k = 0 for all s e supp L0. 
b) for all n, gLo(n) - p„ + k = gLo(n) - ptt - gLo(s) = 0, with pn = 0. 

iii) by (ii), Corollary 3.1 and (i), Corollary 3.2. D 

Conclusion. In a nice paper [6] the authors discuss some criterions that can 
be used for the comparison of non random sampling schemes. But there are only 
a few papers that try to look for optimal sampling at least as far as a random 
sampling scheme is concerned (cf. e. g. [15], [7]). 

The criterion we choose is connected with the asymptotic variance of the estimator, 
the sampling rate is supposed to be large enough. Other criterions could give results, 
different from the one we proved. It would be worth to study them. 

APPENDIX 

1. Proof of Proposition 3.1. 

a) F is well defined for every x e Ca. 

Let x e Ca; and write Q = QX- Indeed: 

T = l 

|£tol = I l***MI = i 1**1 = i HMience: 
fc=l k = l k=l 
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- 1 -e II II 1 • if x < 1 
•QX(T)\ = <j ||x|| - 1 

T|X||T if 1 S ||x|| < 1/a 

If ||JC|| < 1, then obviously E(x) is well defined; if not 

|E(x)| rg f \Q(X)\ T[X||* = £ T i O«) < oo , by Ht. 
T=I t = i a 

b) E' defined by (8) is a l inear and c o n t i n u o u s funct ion. 

The linearity is obvious, we prove that E' is bounded, i.e. 

sup |<g, Q'x * y}\ < co 
IMlSi-

i) if ||x|| < 1, \\QX\\ < oo and: 

|<e, <2;*y>| < \\Q\\ \\Qx*y\\ < \\Q\\ \\QX\\ \\y\\ < oo. 

ii) if ||x|| e ] l , l /a[ : 

\(ikx*«-»*y)(x)\ < I/cll^ir1 \\y\\ < O(T2) jxir1 M , 
fc=l fe=l 

and hence: 
oo oo 

s^p I kWI [KG; * y) W|] <. sup x |e(T)| O(T2) ixf-1 ||j[ < oo. 
H y | | g l T = l | | , . | | g l T = l 

c) E"defined by (9) is b i l inear and con t inuous . 

We have to prove that: sup { sup |<o, Q'x * y * z>|} < oo i.e. that F", ob-
lbll = i ll-ll = i 

viously bilinear, is bounded. 
oo 

\<Q,Qx*y*z>\^yL\Q(t)\\(Q'x*y*z)\> moreover 
T = l 

(Q'x*y* z) (T) = tk(k- 1) (x* ( t~2) * v * z) (T) 
k = 2 

T 

\(Q'X *y*z) (T)| ^ X fc(fc - 1) I x f " 1 because ||y|| ^ 1 , | |z| < 1 . 
fc=2 

Now in the same way as in b), we investigate the cases where | |x| < 1 and x e 
e ] l , l / a [ . 

d) Calcu lus of der iva t ives . 

1) First order derivative. 
oo 

Let: a,(y) = [l/ | | j; | | <<?, Qx+y> - <Q, Qx> - <<?, £ fe x*(fc-x) * j> | ] and prove that 
lim a^y) = 0. fc=1 

IMI-o 
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We note that for k _ j _ 2: V j = /c2 ( f e _ 2 J , hence if (a, 6) e LR*. x K* : 

(a + bf - ak - kak~xb < b2k2(a + /J)*" 2 (Al) 

Z (kЛ У*J * x*(k~л 
< 

and 

F T ||(x + y)*k - x*k - fex*(k_1) * }>|| = ~ 
IMI IM. 
< ( j _ l + lMl)fc~ 11*11* - _ H ! _ _ . lb II 

and by (Al) we can write: 

— II(x + y)*k - x*k - /<x*(fc-1) * vll < 1 v|| fc2||x + v|l (*~2). (A2) 
| | | | | | \ J J J II — I K II II J li \ / 

IMI 
We now majorate a^y): 

1 oo oo 

«.W s -L I {|eM| |(e»+, - a, - Z *-**-H * y) Ml) s 
ly T = 2 fc=2 

00 f T IIfy 4- lA*fc — Y*fc — t v * ( ' c - I ) * vll ") 

S I ileWI I J - — ^ -jnr-^ ^ S 
>-2 l *-2 | y | J 

00 T 

slMI-(ZK*)l)-(Z*2(H + IMir2) by(Ai) 
T = 2 fc=2 

00 

g|MI-(ZkW|).o(T3).(W + | y | r 2 

T = 2 

and as IM! -+ 0, we can find a neighbourhood of x such that | x | + ||y|[ < Ija, 

then by H x 

Z \Q(T)\ O(T3) [||X|| + H I ] - 2 < + 00 
T = 2 

consequently: lim fli(y) = 0. 

Ibll-o 

2) Second order derivative. 

Let 

« 2W - A ( S U P K+,(-0 - F*(z) -<Q>Ql*y*z>\}; 
||.v|| IbH^1 

by the same technique, we can easily prove that lim a2(y) = 0. 
ll3»H-*0 

The above mentioned results are preserved if we put L1 in place of if1. Indeed: 

L1 c I1 and if x e L 1 , ||x||,i = | |x||Li. Consequently: | |E ; | L , = | |E;||.i and \\Fx\\Li ^ 

= lKhu 
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2. Proof of Proposition 3.2. 

We have to minimize F(x) under the constraint 

{ x e C closed convex subset of L1 

h(x) <. 0 where h defined in (12) is an affine function; 

in particular h'x(y) = h(y), h"x(z, z) = 0. 

The functions E and h are twice differentiable into Car\ L1, an open subset of L1 

such that C - Ca n Ll5 so they are strictly differentiable. 

The end of the proof lies on Pomerol's work. To apply that result we have to prove 
the condition, denoted (S) by the author, of existence of a Kuhn-Tucker vector 
written here as: 

{ i) — x < su 

••\ -£. ^ (A3) 

n) 2-,jXj — m <. ev v y 

i) P roof of (A3). 
— If m = 1, x = e± = (S{)JeJr is the only one possible optimum. 
- If m > 1, let (u, v)el) x U, d e ]1 , m[, 

s- = Z k l < °°» ^I = Z wM < °° 
«„ < o «„ < o 

00 

and let M = (M„)ne>/r* be a probability distribution on Jf* such that ^jMj = 0. 
Define „ = (xn)nejir* by J '= 1 

xB = (1 - ASj.) M„ + X\u„\ 1{U„<0}, " = Jf* 
where 

rO < A < Inf (1/Si, 1, n~ ° if 5 + 0 
J w 2|_i - S^l 
to < A < 1 if Si = 0 

It is easy to prove that xe C. 

Finally, let e be such that: 

inf(A, — 
V \v\ 

0 < є < inffA, A , - ?') if Ü Ф O 

[ 0 < e < A if t> = 0 

For such an e: — x„ ^ e„„ for all n eJf* and (A3, i)) is proved. 

It remains to prove (A3, ii). By a good choice of A and e defined as above: 

m - 6 
— If v 2̂  0 (A3, ii) is proved by noting that A < 

2|_,

1 - 0_\| 

m — 9 
If y < 0 (A3, ii) is proved by noting that 0 < s < 

3b 
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Consequently a necessary condition for x e 0m to be an optimum is: 

(A4): There exists y = (r, q) e L+ x 0t+ such that: 

ii) Vx e C: 0 = Ex(x - x) + </i(x), y}v 

where <, } v is the scalar product of the duality (L1 x M, L00 x J!). Taking the con­
straint in account, let x e 0>m, 

oo oo 

(A4, i)) becomes: - £jryx + 4(Zj'*/ - m) = 0 
J = I j = i 

(A4, ii)) becomes: Vx e C: 0 = F^x - x) + <Ji(x - x), y)v . 
CO 

Substitute h by its expression, write Ex(a) as <a, VE*> and VEX as £ (VEx(j)) e .̂ 
j = i 

Consequently (A4, ii)) is equivalent to: 

Vx e C: 0 = «x - x, £ (VEx-(;) - r,- + «) e;» 
J = I 

00 

and — ^ (VEjc(j) — rj + q) ej e Nc(x) the normal cone in x e C. Consequently 
J = I 

a necessary condition for x e 0m to be a solution of 

x = arg Inf {E(x)/x e C, h(x) = 0} 

is: there exists (r, q)e L+ x M+ which completes the proof of (13). 

(Received April 4, 1988.) 
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