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KYBERNETIKA — VOLUME 11 (1975), NUMBER 1 

A Square Root Filter for Real Time 
Multivariate Regression 

VACLAV PETERKA 

An algorithm is developed which makes it possible to perform multivariate regression in real 
time. The algorithm belongs into the class of square root filters and exhibits outstanding numerical 
characteristics, particularly in ill-conditioned problems. Because of these properties the algorithm 
is well suited for implementation in process computers and special digital devices operating with 
reduced word length. 

1. INTRODUCTION 

The theory of multivariate regression is well elaborated and may be found in 
standard textbooks. See e.g. [1]. The purpose of this paper is to follow the algorithmic 
and numerical point of view. The paper is organized in the following manner. 

The multivariate regression model is defined in section 2 where also some known 
facts are recalled which make the theoretical basis for the rest of the paper. In the 
theory of regression the parameters of the regression model are assumed to be 
constants. However, in many practical applications this assumption is fulfilled only 
approximately. Such situations are often handled by exponential forgetting of old 
data without increasing the complexity of calculation. This technique is briefly 
described in section 3 to make the paper self-contained. In section 4 the recursion 
relations for the estimates of the parameter matrices are derived which are a slight 
generalization of the recursion formulae commonly used in univariate regression. 
They are needed in section 5 where the corresponding square root filter is developed 
and where the main result of this paper may be found. The algorithm derived in 
section 5 is closely related to square root filters which were developed to improve the 
numerical characteristics of the Kalman filters. A survey of these techniques is given 
in [9] . As the problem of regression is somewhat simpler it was possible to bring the 
final algorithm into a more compact and elegant form compared to filters reported 
in [91 



2. REGRESSION MODEL 

The classical problem of multivariate regression which is considered throughout 

this paper can be stated as follows. It is assumed that the relation between the vector 

valued variable y ( t ) of dimension v and the vector-valued variable z ( t ) of dimension 

Q can be described by the regression model 

(2-1) y ( t ) = Prz(z) + e ( t ) 

where P is Q X V — matrix of regression coefficients and e ( t ) is the stochastic term. 

The index T may be interpreted as discrete time. 

It is assumed that the data y ( t ), z ( t ) are given for x = 1, 2, ..., t and the problem is 

to find some estimate P ( I ) of the unknown matrix P. If it can be assumed that {e(r); 

T = 1, 2, ..., r} is a sequence of mutually uncorrelated normal random vectors with 

zero mean and covariance matrix R 

(2-2) 

(2-3) 

(2-4) 

<?e( t ) = 0, 

Лw£) = R, 

г ( t )e[ t_ ; ) = 0 , i Ф 0, 

the maximum likelihood estimation method can be applied and the result is [ l ] 

(2-5) P(t) = L z(t) z(t)] Z(t)Y(t) 

where 

(2.6) Z ( ( ) = Y.,. = i ) ' J ( 0 ~ ) 'd ) 

2) У(2) 

i. 
If also the estimate of the covariance matrix R is required the maximum likelihood 

method gives 

(2.7) IMO K<)^0) ~ IJ(0Z(r)^(f)I,(')J • 

If the random vectors e ( t ), x = 1, 2, ..., f are independent of the vectors z ( t ) for all 

T the estimate F ( ( ) is unbiased, i.e. 

(2.8) - P ] =0 



and the four-dimensional covariance tensor of the estimate is [ l ] 55 

(2-9) £[P(t)-Plr[P(t)-P]js=RrsC(t)U 

where 

(2-10) C ( 0 = [ Z ^ , / ] - 1 . 

Under rather general assumptions the formulae (8) and (9) hold asymptotically also 
in the case of autoregression when the vector z(r) contains delayed vectors y ( r-i), 
i = 1,2,..., n. This was shown by Durbin [2] who considered the univeriate case 
(v = 1) but his results can be well generalized also for multivariate case. 

The regression model (l) may have various special forms according to the structure 
of the vector z(t). Of particular interest for control purposes is the linear regression 
model of a multivariate stochastic dynamic system 

(2A1) y(t) + Z A . - ^ - i ) = _>,«(,-,-) +.«(.) 
i = l i = 0 

where y(r) is the v-vector of outputs and u ( t ) is the /.-vector of inputs. The corres­
ponding vector z ( t ) in (2A) depends on the way the matrix coefficients A,- and Bt are 
arranged in P. One possible arrangement is 

(2.12) F T = [B0, ~AUBU - A 2 , . . . , - 4 . . B J , 

(2.13) zT, = [ul),yl-1),ul„1),yl_i),...,y?t-B),ul-lt)] . 

However, in general the vector z(t) may be any — possibly nonlinear but known — 
vector valued function of w(t), j ' ( t _ 1), ..., u(r_„). 

The classical formula (2.5) may be interpreted by different ways. For instance, it is 
an easy exercise to prove that (2.5) is an estimate minimising the criterion 

i = i 

for any positive definite matrix W and without any assumptions concerning the 
statistical properties of random vectors <?(t). 

On the other hand also the bayessian probabilistic interpretation may be given to 
the formulae listed above. In the theory of control of systems with unknown para­
meters the evolution of the conditional probability density function 

(2-14) p ( i > | z ( 0 ( 2 ( , _ 1 ) ( . . . , z ( 1 ) ) 

plays a fundamental role. The right hand sides of the formulae (2.5) and (2.10) 
determine the mean value and the covariances of the distribution (2.14). This was 



56 shown for univariate case by Astrom and Wittenmark [3]. Under mild assumptions 
concerning the a priori distribution p(P) this holds also in the multivariate case. The 
details will be reported elsewhere. This facts are briefly mentioned here only to 
outline the scope of possible applications of the algorithms developed in next sections. 

3. EXPONENTIAL FORGETTING 

To make the final algorithm more flexible without increasing its complexity the 
exponential forgetting will be introduced in this section. 

The theory of linear regression briefly mentioned in the previous section assumes 
that the parameter matrix P and the covariance matrix R are unknown constants. 
The model (2.1) is well suited for many practical situations, however, only seldom 
it can be guaranteed that the parameters are precisely time-invariant even for a very 
long time period. If the statistical law for the possible variations of the parameter 
matrix P were a priori known the Kalman filtering could be applied. Unfortunately 
this a priori information is often not available and usually all what can be a priori 
assumed is that the parameters vary relatively slowly. Such a situation can be heuris-
tically handled by the technique which is sometimes referred to as "exponential 
forgetting" or "overweighting of last data" [4]. The principle idea is very simple and 
can be explained as follows. 

Let t be the current time while T denotes the past time instant in which the data 
y(z) and z(z) were obtained. The estimates are calculated from a set of equations (2.1) 
for T = t, t — 1, t — 2, If the parameters may vary in time a very old equation in 
this set is less reliable than the most recent one. This fact can be respected by the 
assumption that the variances of the stochastic term e(z) in the old equations (2.1) are 
larger then those in the last one. Specifically 

(3.1) Se(z)eJz) « <p-2('-<>R 

where q> is a scalar factor, <p g 1. By this way the stochastic equation (2.1) is modified 
into the form 

(3-2) y(z) = PTz(z) + ? - < " % , 

or equivalently 

(3-3) <p('-"y(t) = P V ' - ' V ] + v(z) 

where the random vector v(z) has a constant covariance matrix 

(3.4) Sv(z)vJz) = R . 

Notice that the only diference between the original regression model (2.1) and the 
stochastic equation (3.3) is in the factor <p(t-I) g 1 by which the old data are weighted. 



The scalar q> = 1 is sometimes called the factor of exponential forgetting and its 57 

value has to be chosen intuitively. A reasonable choice usually lies in the interval 

0-9 < q> = 1. 

The introduction of exponential forgetting requires only a slight modification of 

the formulae listed in section 2. The matrices Z ( ( ) and Y(f) have to be redefined in the 

following way 

(3.5) Z(t) -

Ф ( ' - 2 ) z ^> 

%l) 

Z(<,J 

Ym - V ' - u Уjl) " 

я> 

Уm 

Уj.-D 

УІ) -

and the formula for the estimate R(f) gets the form 

(3-6) R(t) = -\jwVit)-?l)Zl)Z(t)P(,)-\ 

where 

t - i 

(3.7) x ( f ) = X <P2i = 1 + ^ 2 X(t-n • 
; = o 

Notice that the choice q> = 1 corresponds to the regular regression (no forgetting). 

4. RECURSIVE RELATIONS FOR THE ESTIMATES 

In this section the recursive relations for the real-time updating of the estimates 

Pw, R(() and the matrix C(() will be derived. This recursive relations are a generaliza­

tion of similar relations which are well known for the univariate case. See e.g. [5; 6; 7]. 

They will serve us as the basis for the development of the corresponding square root 

filter in section 5. 

We will now consider the situation when the estimates P ( ( ) , R(f) and the matrix 

C(() are known and new data J> ( ( + 1 ) and z ( f + 1 ) are obtained. The problem is how to 

calculate most effectively the new estimates R(f+1), R(t+i) a n d C ( f + 1 ) . In other words, 

the last estimates have to be updated to incorporate the new data. 

From the definition of the matrices Z and Y(3.5) it follows 

(4-1) 

(4.2) 

(4-3) 

z(t + i)z(t+i) — Ч> Z(t)Z(t) + z(t+i) z(t+i) > 

z(t+D^(t+i) — ч> Z(t)Y(t) + z(t+i).У(t+i) > 

Y(t+i)Y(t+D = Ф Y(t)Y(D + У(t+i)У(t+i) 



58 Using the definition of the matrix C (2A0) the following relation is obtained from 
(4.1) 

(4-4) ^(t+n = *P Q o + z ( t + n z ( i + i ) • 

Assuming that the inverse of the matrix C^,1 = Z[t)Z(t) exists the well known matrix 
identity [8] 

(4.5) [A + BDBT]~l = A"1 - A-^D"1 + BTA-'B]-1 BrA~l 

may be applied to (4.4) 

(4.6) C(, + i) = —j L^ t ) — e(Dz(t + n \<P + z ( t + i ) e ( t + n z ( t + n) z(i + n ^ o ) J -
<P 

Notice that the expression which is to be inverted in (4.5) is a single positive number. 
Thus we have the following recursion formula for the updat ing of the matrix C(r) 

(4.7) C ( r + 1 ) = — C(r) - C(r)z(r+1)z(r+1)C(r) 

<p L ff(t+n J 

where 

(4-8) ff(
2
r + 1) = (p2 + z T

r+1 )C( ,) z( ,+ n • 

F r o m the recursive equation (4.7) the following relation can be derived 

c(t+nz(t+n = —- Q i ) z ( t + n ; C(t)z(t+i)(a(t + l) - q> ) = 
<P L ff(t+n J 

A " ( i + i ) y \ r 
1 2 C ( t ) z ( f + 1 ) > 

<P" \ °"(t+l) / 

(4-9) C(r+1)z(r+1) = — C(()z((+1) . 
ff(.+n 

This useful relation will be exploited for the derivation of the updat ing equations 
for P(t) and R(t). Consider P(t) first. F r o m (2.5) and (210) follows 

(4-10) C(t;PU) = Zjt)Y(t) 

and similarly 

(4-11) c(t+nI,(t+n = 2 ( ( + 1 ) Y ( ( + 1 ) . 



Applying the relation (4.2) we have 

(4A2) C(r+iA+i) = <P2Zjt)YU) + z ( ( + 1 )y
T

 + 1) = 

= cp C(t) PU) + z ( ( + 1 ) } ' ( ! + 1 ) . 

The equation (4.4) gives 

(4.13) cp2Cu; = Cu+1)- zu+1)zl+1). 

The substitution of (4.13) into (4.12) and a simple rearrangement gives one of 
possible alternatives of the recursion formula 

(4.14) Pu+1) = P ( ( ) + C(( + 1 ) z ( ( + 1 ) e
T

 + 1) 

where 

(4A5) eu+1) = yu+1) - Pjt)zu+i). 

Using (4.9) the recursion (4.14) can be written also in the form 

(4A6) P(t+1) = PU) + -r— C(()z((+1)e
T

+1). 
ff(t + i) 

This form of the formula for updating of P ( ( ) is most commonly used in univariate 
regression [5; 6; 7] and in such a case is closely related to the Kalman filter [6]. 

Now the updating of the estimate R(t) will be considered. Rewrite the formula 
(3.6) in the following way 

(4-17) x ( ( )P ( ( ) = Y?t)YU) - PT
( )C ( ( ;P ( ( ) . 

Similarly we have 

\4.1o) ><;(r+l)P(r + l) = YU + 1)Y(I+ 1) — P ( r + i ) C - ( ( + i ) " ( r + l ) 

and using the equalities (4.3) and (4.17) 

(4-19) x(t + 1)Ru+l) = <p Y(()Y(() + .V(.+ i).V(t+i) — P(r+i)C(,+ 1)P(,+ i) = 

= (p Xu)Rlt) + P(t)CU) PU) + }'u+1)yu+1) — P(r+l)c(r+l)P(r+l) • 

The substitution of (4.4) and (4.16) into (4.19) and a cumbersome but straight­
forward rearrangement leads to the following simple result 

(4.20) .X(»+i)-Vn) = V2 *(«Ao + -~T~ ^(«+i/(f+i) • 
L °"(r + D J 



60 Summarizing we thus find that the estimates of the matrix P and the covariance 

matrix R can be computed recursively using the following equations 

(4-21) fl(( + 1) = C(()z(( + 1 ) , 

(4-22) <r(
2
(+1) = cp2 + zjt+1)g(t+1), 

(4-23) ^«+D = y(t+i) ~ IJ(f)z(f+i)> 

(4-24) P ( ( + 1 ) = Pw + — glt+1)ejt+1), 
°"(f+i) 

(4.25) x ( f+D I^( f+ i ) — 9 x(t)R«) H 2 e ( t+ i ) e ( t+ i ) > 
L °"(t+D J 

(4.26) x(t+1) = 1 + cp2x(t), 

(4-27) C(I + 1) = — C(() - — g(t+i)9l + i) • 
<P L °ft+i) J 

The four-dimensional covariance tensor of the estimate P ( t + 1 ) gives the formula 

(4.28) 4 P ( ( + 1 ) - P]„ [E ( (+1) - P ] , s = RrsC((+1)0-. 

As the entries Rrs are rarely a priori known they have to be replaced by their estimates 
obtained from (4.25). 

The starting values P ( 0 ) and C(0) may be interpreted as an apriori estimate of 
P the accuracy of which is characterized by C(0) according to (4.28). If no a priori 
estimate is available C(0) may be a diagonal matrix with sufficiently large numbers 
on the main diagonal. The error caused by this approximation is usually removed 
very fast. This is a standard trick often used also in the univariate case [6]. 

5. SQUARE ROOT FILTER 

Numerical difficulties may be encountered when the recursion equations are 
applied to ill-conditioned estimation problems. Theoretically the matrix C(() mpst be 
allways positive semidefinite. However, due to the rounding errors caused by the 
finite word length of the computing device the matrix C(() calculated by means of 
the recursion equations (4.21), (4.22) and (4.27) may loose this property. This may 
occur when some components of the vectors z( t) are linearly dependent. As an example 
may serve the situation when the.algorithm is used as on-line identifier in a selftuning 
digital regulator and the feed-back converges to a constant control law. Similar 



problems were encountered in the Kalman filtering and motivated the development 61 
of the square root filtering techniques [9]. The regression is somewhat special and 
simpler in comparison to the Kalman filter which makes it possible to bring the 
square root filter to a more compact and elegant form than the filters reported in [9]. 
This will be shown in the sequel. 

The positive definite matrix C(() can be factored into the product 

(5.1) С ( r ) - G ( Г ) G ( Г ) 

where G(() is an upper triangular matrix. The factorization (5.1) is equivalent to the 
Cholesky decomposition [8] of the inversed matrix 

(5.2) G(r) — G(r) G(r) • 

The notation [*] - T = [ ( ' ) _ 1 ] T = [ ( ' ) T ] _ 1 i s u s e c l f°r convenience. 
Notice that the matrix C(() never can become indefinite if its square root G(() is 

propagated instead of C(() itself. This is the fundamental idea of square root filtering. 
With the factorization (5.1) the recursion equation (4.4) can be rewritten in the 

following way 

(5.3) G ( ( + 1 ) G
T

( + 1 ) = [c^G^G^,1 + z ( ( + 1 ) z
T

( + 1 ) ]
_ 1 = 

= —2

 G(r) I + /(r+ 1) ~;/(T+ l) G(r) 
9 L 9 J 

where 

(5-4) f(,+1) = GT

( )z ( ( + 1 ) . 

The inner matrix in (5.3) may be inverted by means of the matrix identity (4.5) 

(5.5) ' G ( ( + 1 ) G
T

( + 1 ) = — G(() J -/« + ! ) — — / ( T + D GT

() 

9 L ff(r+l) J 

where in agreement with (4.8) 

(5-6) 4+1) = <P2 +/T,+!)/(,+l). 

The following rearrangement of the equation (5.5) is the crucial trick in the whole 
procedure. 

(5.7) G( ( + 1 )G
T + 1 ) = iG(()r/!j

/i±i>lUUT 

9 L ff(r+l)J 

where j = yj ~ 1 and U is any orthogonal matrix 

(5.8) UUT = / . 

:f(r+l) 

"•(r+l). 

G ( r ) -
9 



Notice the symmetry of the equation (5.7). It indicates that the recursion G ( r ) 

will be found if it is possible to find an orthogonal matrix U such that 
G( ř +] 

(5.9) KИ л 
-[Я.0] 

where H is a real upper triangular matrix and 0 in (5.9) denotes a vector the com­

ponents of which are all equal to zero. In other words, the orthogonal matrix U has 

to be found such that the imaginary vector in the left-hand side of (5.9) is zeroed. 

The time index is ommited in (5.9) and in the following text where no confusion may 

occur. 

From the equalities (5.7) and (5.9) it follows that the matrix G ( t + 1 ) is given by the 

formula 

(5.10) o(í + ] = iG ( 
(p 

,я. 

As both matrices in the right-hand side of (5.10) are upper triangular their product 

G ( ( + 1 ) is also upper triangular. 

Now it will be shown that the transformation fja ~» H fulfilling the relation (5.9) 

can be performed very effectively without explicite calculation of the orthogonal 

matrix U and operating only with real numbers. Also the matrix product (5.10) may 

be incorporated into the algorithm which removes the necessity of storing the matrix 

H and significantly reduces the requirements for the memory capacity of the com­

puting device. 

From the required equality (5.9) it is evident that the orthogonal matrix U cannot 

be real. Notice that the matrix U is of dimension (g + 1) x (g + l) where g is the 

dimension of the vector z ( ( + 1 ) and thus also of the vector/. Express the orthogonal 

matrix U as a product 

U = u^u^-^ ...U(iK..U(1) 

where U(,) is a generalized elementary matrix of rotation 

(5.ii) U(;) = n 

C; 

Ì 1 

JS; 

-JS, 

11 
C; + 1 

Q + 1 



where only nonzero entries are indicated. The only difference between the ordinary 
elementary matrix of rotation [10] and the matrix (5.11) is that the offdiagonal 
elements of (5.11) are imaginary. The condition of orthogonality (5.8) requires that 

(5.12) c\ - s2 = 1 . 

Consider the first product 

(5.i3) r T i y - i U ( e ) N] 
in the left-hand side of (5.9). Notice that by this matrix multiplication only the last 
two columns of the left-hand factor in (5.13) are changed. It means that in this first 
stage it is fully sufficient to consider the transformation 

(5.14) 

where the notation 

(5-15) 

(5.16) 

:/( 
Jse 

L-J*e 

f(e) _ f _ r_T 
J — J — u ( ř ) z ( ( + l ) 

= фp2+f(в~>rf(Л = ^2+f\ 

was used to indicate the first stage of the procedure. The two parameters of the 
transformation (5.14) are bounded by the orthogonality condition (5.12). Our goal 
is to annul the column jcr~ lf(Q). Therefore the second condition for the determination 
of ce and se will be chosen so that the last component of this vector, namely j<7a~~ 1fe

e), 
be zeroed. This requirement is met when 

(5.17) sя + c, 
ría) 

M- = o. 

The equations (5.17) and (5.12) for se and cQ give 

(5-18) 

(5-19) 

where 

(5.20) 

>e2 - (/r)2\ 

ňe). 

«г_-i 

JГ_ 
<Vi 

<Vi = V*2-(/n2\ = V<p2+ZA2\-



64 It is convenient for further use to generalize this notation 

(5.21) -i = y/cp2+if?\. 
k=l 

Notice that 

(5.22) ff. = V^-i+fA 

and 

(5.23) <r0 = cp . 

The transformation (5.14) with the parameters ce and se determined by (5.18) and 

(5.19) gives the result 

(5.24) [вiл 
Я 2 , ŕ 

f(Є-í)~ 

~в-i 

Я , - i 

Lя ŕ, г 

,8 ъ _ 
where 

(5.25) 

(5.26) 

ř - i ) _ f(e) _ = jГ=Л fûГ k<Q, 

U n = = ^ S n = _ лл for k < Q , 

(5.27) л e , e c e + s e 

The following elementary matrix U(e_1) is exploited to annul the last component 

of the vector j <r~_1

1/
( e - 1 ) (with the index Q — 1) and simultaneously the next column 

of the upper triangular matrix H is obtained. By this way the whole matrix can be 

successively generated operating only with the norms (5.22). In the general i-th step 

of this procedure we have 

(5.28) 

(5.29) 

Я t ; = fJi 
~І~І-I 

Я„ = 

for i < k, 



The general formulae (5.28) and (5.29) make it possible to calculate the matrix 65 
product (5.10) directly. 

(5.30) 
1 j 

G(t+i)ü = - X G(t)ikHkj, 
ę k=i 

(5.31) G(t+iцj ЬU)ІJ 2~~ L Ь(t)ikJk • 
(p crj \ tтj-i *-« j 

If the vector g{m) is introduced defined by 

(5-32) a™' = tG(t)ikfk\ . - 1 , 2 , . . . 

k=i 

(5.33) gf> = 0 ; i > ... , 

the recursion formula (5.31) gets the form 

(5 34) G -I_i__JG fj9^ 
9 a j 

Summing up it is seen that the equations (5.4), (5.22), (5.23), (5.32) and (5.34) 

describe the whole updating procedure. The sequence of calculation may be chosen 

so that the updating G ( ( ) -»• G ( f + 1 ) is performed operating only on one triangular 

matrix and that only one component of each of the vectors <T;, O\ and ft has to be 

stored in the memory. This possibilities are respected in the algorithm REFIL. 

ALGORITHM REFIL 

~0 = Ф 

a\ = (p2 

j = 1 , 2 , . . . > Q 

fj 
J 

= X G(t)ijzu+i)i 
1=1 

a = flj. . /ф 

b = / > 2 - l 

-1 = -j-l + / / 

~J = V'"2 

c = ajffj 

ffj = G«)jjfj 



6 6 G(t+l)jj = CG(t)jj 

i = 1 ,2 , . . . , ; - 1 

d = G(t)i} 

G((+i)u = cid ~ b9,) 

9i = dfj + fl; 

Notice that the variables L-, er2 and tr,- do not need to be indexed. They may be 
considered as scalars in the computer program. The variables a and c may have the 
same identifier and the time indices of the matrix G are superfluous. They are given 
only for better understanding of the algorithm. 

Notice also that the updating algorithm [G(f), z ( f + 1 )] -+ G ( f+1) returns the vector g 
and the scalar rj2 which are required for the updating of the estimates P(t) and R(f) 

according to the formulae (4.23), (4.24) and (4.25) 

<?(f+l) = > ' ( !+! ) — P(t)Z(t+l) J 

P _ ß i 9 ~т 
^(t+1) - ľ(t) + — (í+1) 

<(t)R(t) + ~ ê(t+i 
т 1 
( f + 1 ) 

The careful reader found out that the algorithm REFIL was written in such a way 
that it can be directly transformed into a computer program. The computational 
requirements (measured by the number of arithmetic operations and storage capacity 
required) are for both the square root and conventional implementations approx­
imately the same. 

As was pointed out in [9] the numerical conditioning of the matrix G is generally 
much better than that of the matrix C which is reflected in the effective double precision 
of the square root filter in ill-conditioned estimation problems. This may be appre­
ciated particularly when the process computer or a special digital device (such as 
adaptive digital controller) operates with a reduced word length. 

The necessity of calculating g square roots in each updating period is the price 
which is paid for the excellent numerical properties of the square root filter. The 
experience shows that it pays out. 

(Received May 20, 1974.) 
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