Kybernetika

Miroslav Mleziva
States of affairs as values for formulas

Kybernetika, Vol. 11 (1975), No. 1, (3)--25

Persistent URL: http://dml.cz/dmlcz/124236

Terms of use:

© Institute of Information Theory and Automation AS CR, 1975

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
O digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz


http://dml.cz/dmlcz/124236
http://project.dml.cz

KYBERNETIKA — VOLUME /17 (1975), NUMBER 1

States of Affairs as Values for_Formulas

MIROSLAV MLEZivA

.

States of affairs are constructed as pairs consisting of a (relational) structure S and of a subset
of the set of structures similar to S. This concept is adequate to the intuitively motivated relation
of strong equivalence (identity of states of affairs). Some semantical applications are mentioned.

1. INTRODUCTION

It is generally accepted that the extension of a sentence is its truth-value. But it
is not intuitively adequate that a truth-value is what a sentence speaks about (or
possibly: its denotatum). The sentences, e.g.,

The Earth is round John is human

have the same value, but we feel that they speak about different things.

Many authors have required that there must be some entities as facts or states of
affairs about which sentences speak (Wittgenstein [1], Russell [2; 3], Reichenbach
[4], Baylis [5], etc.). But there is no exact formulation of facts or states.of affairs.

In some earlier papers we have proposed an experimental construction of states
of affairs as ontological correspondents of sentences (closed formulas). In the present
paper a generalized theory for formulas of any kind is developed.

We will prefer that states of affairs are possible states constructed as entities of
the extensional (set-theoretical) ontological domain. The states of affairs are assigned
not only to true and simple (atomic) formulas but — in contrast to B. Russell — to
formulas of any form (atomic, compound, general, etc.) as their state-values.

Our problem consists in answering two questions: 1) when two formulas have the
same state of affairs as their value and 3) what entity is the state of affairs (the con-
structive definition of state of affairs). )
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2. THE LANGUAGE L AND ITS METALANGUAGE

The object of our interest is an arbitrary applied first-order language L of the pred-
icate calculus with identity. The metalanguage ML of L contains the letters

4,B,C, D, 4y, By, Cy, Dy, 4, ...

as variables for expressions of L. ML is essentially the language of set theory with
the following constants:

‘>’ (implication), ‘~’ (negation), v’ (disjunction), ‘&’ (conjunction), ‘=" (equi-
valence), “(...), (E...)’ (universal and existential quantifiers), ‘=" (identity), ‘€’
(membershiprelation), ‘(.2.), {("70) (abstraction-operators), *{...}" (sign of n-tuple),
...’ (sign of ordered n-tuple), ‘ x* (cartesian product), ‘0’ (empty set).

First we use the sign ¢ for construction of names of expressions (both of Land
ML). When this sign is applied to metavariables (or to meta-metavariables) or to
compound expressions containing metavariables, we mean, e.g. by ‘4’,‘4 = B’,‘~ A’
in fact the metavariables: “an arbitrary L-expression A”, ““an arbitrary L-formula of
the form A = B”, “an arbitrary L-formula of the form ~ A4, etc.

The language L now contains the following primitive signs:
logical constants: ‘=", “7°, *+°, ¢, ‘=’ (Y ), (@ ), =73
specific constants (individuals): ‘ay’, ‘ay’, ..., ‘a,’;
(predicates): ‘P, ‘P, ..., P,’;
Variables: TIPS T
We suppose that a predicate constant ‘P;’ is k;-ary. The number of variables is
unlimited.
The concepts of L-formula, L-sentence and other syntactical concepts are defined

in the ordinary manner. The result of replacing ‘B’ by ‘C’ in ‘A’ will be denoted as
follows ‘A(B/CY (analogically in other cases).

3. ONTOLOGY, INTERPRETATION AND VALUATION

Now, we suppose the existence of a domain of objects called ontology constructed
in agreement with principles of set theory. The variables for objects of ontology are
the following: a, B, v, oy, B1, Y1, %25 -+ :

Two truth-values (truth and falsehood) will be denoted as follows:

Lf.

The metalanguage ML is a many-sorted language. We have seen two sorts of
variables. Other sorts will appear later.



Definition 1. The interpretation of L is a function I assigning

1. to every variable the same nonempty set D' (domain of I) and
2. to every constant ‘A’ exactly one entity I(A) (denotatum of ‘A’ inI) such that:
if ‘A’ is an individual constant, then 1(A)e D; if ‘A’ is a k-ary predicate, then
I(4) = D' x ... x D'.
-
k-times
We will use the following symbols as the variables for interpretations:

LK, J,1,K,J, 1, ...

Definition 2. The valuation of variables in I is function V (or V') assigning
to every variable ‘A’ exactly one entity V(A) such that V(A) e D'. The entity V(A)
is called the value of ‘A’ in V.

We will use the following symbols as the variables for valuations in I:
V,UWV, Uy, W, Vs ..

(with index I, K etc., or without index, when the use in a given context is clear).

Now we will define the general concept of the value in I and V for every expression
of L(i.e. constants, variables and formulas of L). We denote this value of ‘4’ in I and
V by ‘vp(A4).

Definition 3.
(1a) If “4’ is a constant, then vi(A) = I(A).
(16) If *4’ is a variable, then vj(A) = V'(A).
(2) If ‘4’ is a k-ary predicate and ‘A, ..., A}’ are individual terms, then
Cop(Ay), - 03 (AR € vp(A) -
(3) If ‘A’ and ‘B’ are individual terms, then

v{,(A = B) =t= v{,(A) = u{,(B) .

oL(A(Aps - A)) = 1

1

(4) If “A’ is a formula, then
vp(14) =t = vp(A) +¢.
(5) If ‘A’ and ‘B’ are formulas, then
WA= B) = 1 = db{A) > ol(B) .
(6) If *A’ is a formula and ‘x; is a variable, then
op(Vx)4) = t = v}(4) = ¢,

or every valuation U' differing from V at most in the value for ‘x;.
y i



(7) If 4’ is a formula, then
(A #t = A) =f.

(For eonjunction, disjunction, equivalence and ‘existential® quantifier the rules
of values are as customary.)

In the known manner other semantical concepts are defined:
Definition 4. If ‘4’ is a formula , then

‘A’ is satisfied by V' = vj(4) = 1;

 VER'(4) = (V) (y(4) = 1) (4 is true inI);
FALS'(4) = (V) (vi(4) = f) (4’ is false in I);
LVER@A) =) (l4) =1) (A is Lotrue);
L-FALS(A) = () (V) (vi(4) = f) (‘4 is L-false);
EQ'(A, B) =4 =B)=1) (‘4’, ‘B’ are equivalent. in I);
L-EQ(4 ,B) =IW) (v,{(A = B)=1) (‘4’,‘B are L-equivalent).

4. THE TRANSLATION OF L-FORMULAS IN ML

The ML-terms ‘vp(a,)’; «.., ‘Op@n)s “Gh(P1)s -vus “OH(Po)s Op(X1), oe OU(Xp)s -o s
etc. will be called I-V-terms.

The ML-sentences constructed from formulas of set theory by replacing variables
by I-V-terms or the term ‘D will be called I-V- sentences.
So called I-V-translations of L-formulas will be defined in the following way:

Definition 5.
(1)If ‘A’ is a k-ary predicate and ‘A, ...,‘A, are individual terms, then the
I-V- translation of ‘A(A,, ..., A,) is the ML-sentence
H(A), ... vp(4i)> € i {A) .
(2)If ‘4’ and ‘B’ are individual terms, then the I-V-translation of ‘A= B’is the
ML-sentence ‘vy(4) = vy(B).

(3)If ‘A’ is a formula and ‘&’ is its I-V-translation, then the I-V-translation of
‘1A’ is the ML-sentence “~ o/’

(4)If ‘A’ and ‘B’ are formulas a ‘s£’ and ‘% are their I-V-translations, then the
I-V-translation of ‘A =B’ is the M L-sentence.‘s{ — #’.



(5)If ‘A’ is a formula, ‘s’ is its I-V-translation and ‘x; is g variable, then the
I-V-translation of ‘(Vx)A’ is the ML-sentence

o) A (opx) o)
o;eD!
We use the following symbols as the variables for metaexpressions
A, B, C, D, Ay, B, 61, Dy, Aoy e

Obviously, to every L-formula there is exactly one I-V-translation of this formula
and vice versa (to every bound L-variable ‘x;’ is assigned the bounded ML-variable
‘a;): The set of I-V-translations is a proper subset of the sét of I-V-sentences.

A fundamental relation between the value of L-formula ‘4’ in I and V and the
I-V-translation of ‘A’ is expressed by. the following theorem: 8
The‘@rgm LIfA is aformu/la and ‘M’vis‘ its I-V-translation, then
() =t=o and
vd) =f=~o.
It follows immediately from Definitions 3 and 5.
Theorem 1 gives the possibility of reformulation of Definition 4.
Theorem 2. If ‘4’ is an L-formula and ‘s’ is its I-V-translation, then
VER'(4) =) «,
FALSYA) = (W) ~ed . . .
L-VER(4) = (1) (V)
L-FALS(4) = (1) (V) ~ o .

Theorem 3. If ‘A’ and ‘B’ are L-formulas and s/’ and ‘®’ are their I-V-transla-
tions, then Vi

EQY4,B) = tV’) (« = 3B),
L-EQ(A, B) = (1) (V)(s/ = B).

The following theorem has an important role in our considerations: -.-.



Theorem 4. If “o/” is a K-U-sentence containing exactly K-U-terms ‘v§(4,), ...
..., ‘vg(A4;) and possibly ‘D*’, then

() (V) [#(D¥, vi{(4y), ... vi(40) (KL U[V)] =
8 (1) - () (DX[B, vE(Ay) [y, .., vE(AL)]o)
B+0 of (o
where ‘o’ is ‘a,e B, if ‘A, is an individual term and ‘O isac fx ... xf

PN ; 2
if ‘A; is a k-ary predicate. K-times

(By ‘«(K/I, U]V) we mean the result of replacing K by I and U by V in the K-U-
sentence ‘2/”).

Proof. Every interpretation I and every valuation V define an infinite sequence
of entities

DY, op(Py), ..., 0 (Po), vi(ay), ., op{a,), vp(xy), - 09(%,)s -

For the I-V-sentence ‘&’ only the values of teyms contained in it are relevant. There-
fore, the validity of ‘«/‘for every I and V means its validity for every (i + 1)-tuple:

D, vp(Ay), .. vp(4y) -
All these (i + 1) tuples have only one common property:

D'+ 0 and
vi(4,) e D', if ‘4, is an individual term and
vy(4,) € D' x ... x D', if ‘4.’ is a k-ary predicate.
N—p————
k-times
Therefore, we can equivalently express the validity of ‘a2’ for every of these (i + 1)-
tuples by the statement on the right side of the proved equivalence.

It follows from Theorems 4 and 2 that we can formulate the concepts of logical
truth and logical falsehood as follows:

Theorem 5. If ‘A’ is an L-formula and ‘s’ is its I-V-translation containing

exactly the terms ‘v}(A,), ..., ‘vy(4,) and possibly ‘D", then

L'VER(A) = (ﬂ) v(ai) e (“i) ‘d(DI/,B.- v{’(Al)/ub s v{"(Ai)/ai) s
B+ 0wp wf
LFALSU) = () (1)---(5) ~ A0 o) o AN
+ 00} '

(The conditions ‘wj?” are the same as in Theorem 4.)




Second part of Theorem 5 is obvious by the equivalence
L-FALS(A) = L-VER(4) = () (V) ~ « .
As a corrollary to Theorem 4 we obtain

Theorem 6. If ‘s’ is a K-U-sentence containing, among its terms, the term ‘v§(A4),
then

O V) [ HA) KL U] = 0 (M [ (@) EEa)/R) (KL UV

Wpr

If we can replace every term in a sentence ‘o’ by a “generalized variable”, then
we can surely replace one term only. Of course, the quatifiers (I) and (V) cannot be
dropped (the sentence contains at least the term for domain DF).

5. STRONG EQUIVALENCE

In the present section an attempt is made to formulate the intuitively adequate
conditions under which two formulas speak about the same state of affairs. In [6]
and [7] the concept of extensional isomorphism of two sentences (in I an V) was
formulated. Now, we must formulate these concepts for formulas of L (which may
be open formulas).

We denote the relation of extensional isomorphism of two formulas ‘4’ and ‘B’ in
I'and V by ‘EIS}(A4, B)".

Definition 6. If ‘4’ and ‘B’ are L-formulas, the EISy(A, B), iff there are constants
or variables free in ‘A’: ‘Ay’, ..., “A; and there are constants or variables free in
‘B’ :‘By’, ..., ‘B, such that
v3(A4,) = vp(B,) and ... and vi(A4,) = v}(B})
and :

‘A" = ‘B(B,[Ay, .., BJALY .

In many cases it seems to agree with our intuition that L-formulas speak about
the same state of affairs, when the first of them results from the second one by replacing
terms with the same value in I and V. But not only such formulas speak about the
same state of affairs. Obviously, the formulas

‘Py(x,) and ‘Py(x,).P,(x,) and ‘Py(y,).Py(y,)
speak about the same state of affairs in I and V, if

U!’/(xl) = U’V(yl)
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holds. The second formula is.a simple “logical transformation”, of: the first one and
the third formula is extensionally isomorphic (in I and V) with the second one.

Therefore, we formulate a generalized concept of identity of states of affairs, namely
the concept of *“+strong equivalence in I and V" (symbohcally +S TREQV) in the
following manner:

‘Definition 7. If ‘A’ and ‘B> are L-formulas, then +STREQ}(A, B), iff there'are
L-formulas ‘C’ and ‘D’ such that: EIS)(A, C) and EIS’(B D) and LEQ(C D).
But this concept is too broad. The formulas '

‘x; =x;,° and ‘x; = x
are +STREQ in I and ¥, when vj(x,) = v5(x,) holds. This seems not-to agree with
intuition. The second sentence is logically true, the first sentence is only satisfied in
I and V. The first formula results from the second one (or vice versa) by replacing
the variable ‘x,” by the variable ‘x,’. But the variable ‘x,’ is “‘essentially contained”
in the first formula, whereas ‘x,’ is contained in the second formula unessentially
(“x,” can be replaced in the second formula — in all its occurrence — by any other
variable “salva veritate™).

Therefore, we define the relation of strong equivalénce in a different manner; but
first we must formulate the concept of éssential and unessentlal occurence of a term
in a formula.

Definition 8. If ‘A’ is an L-formula and ‘B’ is a-constant or variable free in ‘4,
then
‘A’ essentially contains ‘B, iff (EI) (EV) [« £ («) #(vj{B)[)]
) . ' wf)l 4:“
where ‘@}s’ is customary and ‘o’ is the I-V-translation of ‘A’.
The new concept of strong equivalence (STREQ) is now defined as follows:

Definition 9. If ‘A’ and ‘B’ are Lformulas, then STREQV(A B) iff two following
conditions are satisfied:
1. +STREQV(A B) and
2. for every ‘C’ contained essentzally in ‘A’ there is *D’ essentially contamed in ‘B’
. such that v}(C) = vy(D) and vice versa (where ‘C’ is a constant or a variable
free in ‘A’ and ‘D’ is a constant or a variable free in ‘B’ ) *

In contrast to +STREQ the following holds (under condition vj(x,) = v,,(xz))

~STREQ,,(x1 = X5, X; = Xy).

* This concept of strong equlvalence is one of three concepts proposed in [6; 7], where it was
denoted by STREQ,,.




In general, the extensional isomorphism does not imply the strong equivalence of.two
formulas. : : . .

Theorem 7. There are L-formulas ‘A’ and ‘B’ and there are I and V such that:
EIS}(A4, B)& ~STREQ}(4, B).
"Theorem 8. If ‘A’ and ‘B’ are L-formulas, then

L-EQ(A ,B) - STREQ}{4, B),
STREQy(4, B) —+ EQy(4, B), for ebery IandV.

Theorem 9. The relation STREQ is reflexive, symmetric and transitive.

6. ABSTRACTION

In the preceding section we have formulated the criterion of havihg the same state-
values in I and V. We must now give a definition of state of affairs as a set-theoretical
entity. The state of affairs assigned to a formula (in and I and V) is constructed as
as a pair of entities designated by members ‘</” and ‘%’ of “abstraction-form”

AdeR

of the given formula: (more exactly: of “abstraction-form” of the I-V-translation of
the given formula). The known abstraction principle

Aoy, o) = oy, oo 0> €(Bysni, B) oy [Bys - 0if B)

must be used in a different form. It is intuitively adequate that the sentences ‘a, = a,’
and ‘a, = a,” have the same states of affairs as values. But, abstraction-forms of
their I-V-translations have different components
oa), vpa> e (@,8) (= 0),
o, €D &a,e D!
olan), vifay e (@8) (o
a,eD'&a, e D’

o) -

Left-hand sides of these sentences designate different pairs and, therefore, the states
of affairs are different too. But an equivalent form of the second sentence is

. <oplar) ov(a)> € (&15 ) (e =a) =
a,eD’&a,e D’

11




12 in which the left-hand and the right-hand sides both denote the same objects as the
components of the first sentence. This equivalence is justified by a variant of abstrac-
tion-principle:

Ay, oa @) = s ) € (B oor By) A (a[Bro ey B)

where a,, ..., ®,, is a permutation of oy, .oy ;.

We will always use a definite permutation called the lexicographical permutation.
Let the lexicographical order of I-V-terms be given as follows:

L) 03 (Py), ooy 0(Py), viay), -y vay), v5(xy), -y 09(x,), ... etc.
Definition 10. The lexicographical permutation of an i-tuple of I-V-terms
vp(4,), ..., vp(A;)

is its permutation, in which each member on the left precedes in the lexicographical
order (L) each member on the right.
We denote this lexicographical permutation as follows:

on(AL,), - 0W(AL) -

In the abstraction-form of each I-V translation the term ‘D’ occurs in the relation on
the right-hand side (at least in conditions laid down on abstraction operator). There-
fore, we must subject also the term ‘D'’ to the abstraction procedure. The form of
abstraction principle for our purposes will be as follows:

Theorem 10. If ‘</’ is an I-V-sentence containing exactly the terms ‘v;',(Al)’,
«.ws ‘0y(A;)’ and possibly the term ‘D", then
(D', v5(A,), ..., vi(A)) =
= (DY vp(AL,), .o (AL € (Bar, ... 61) (D], vh(A;) |2y, -
B+ 0&of & ... & wp*t

eees U(A)])
« args

where the conditions ‘3" are customary.

The result of this abstraction-transformation applied to an I-V-sentence ‘A’ will be
denoted as ‘4BS"(A)’. It is obvious that

ABS™(s#) = o, under every I and V.

From the abstraction principle mentioned above and from the principle of exten-
sionality it follows:




Theorem 11. If ‘of’ and ‘B’ are K-U-sentences containing the same K-U-terms,
e.g.: ‘vi(A,) ..., ‘v3(A)), then

(B) () ... (o) [A(D¥[B, v5(A)]ts, ... vi(A L)) = B(D¥[B, vi(Ar)a .
B+0 o}

e vi(ADa] = [ (B2, ... &) s(DX[B, vi(A )i ... vi(As)fos) =
B+0&wf&.. . &

= (Bay ..., 8) B(DX[B, vi(A ) g5 ...s v5(A))])] -
B+ 0& S & ... & 0

Because of validity of Theorem 4 the left-hand side of Theorem 11 means a logical
equivalence, i.e. an equivalence holding under every I and V. Therefore, we may
assert (in an abbreviated form):

Theorem 12. Under the same condition as in Theorem 11:

(N (M [(4 = BY(K/LUV)] =

[(B&l ~--&i) o = (ﬁ‘il ---‘ir) ‘@] .
B+ 0& o & ... & wpf B+ 0&af&... & of

7. REDUCTION

It may happen that in I and V the following equality holds:
vp(a)) = vi(as).

The sentences ‘a, = a,” and ‘a; = a,’ are equivalent (and STREQ) in I and ¥, but
the abstraction-forms of their I-V-translations contain on the left-hand sides the
triples:

(DY, vj(a,), v'(ay)y and <D, v'(ay), v'(as))

(the I-V-terms are lexicographically ordered), which represent different triples of
objects. We need a procedure with the result that equivalent I-V-terms (I-V-terms
with the same denotatum in I and V) have the same place in the lexicographical order
of I-V-terms. For these purposes we adopt the operation of I-V- reduction of I-V-terms
and of I-V-sentences.

Definition 11. If ‘o’ and ‘B’ are I-V-terms, then ‘s’ is I-V-reduced term of ‘%',
iff ‘o’ is lexicographically the first member of the set of I-V-terms having the same
denotatum as ‘%’.

For instance, from the example mentioned above, ‘vj(a,) is I-V-reduced term of
‘vy(as) and ‘vy(a,)’ is I-V-reduced term of ‘vj(a,).

13
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Definition 12. If ‘s2” is a I-V-sentence containing exactly “vi{A,Y; ..., *vp(A)
and ‘vy(B,), ..., ‘vj(B.) are their I-V-reduced terms, then the I-V- reduced form of
‘o’ (abbreviated: ‘Ry(s/)’) is the sentence

‘st (0 (A1)]vy(B), -, v(A)on(B)) - '

Clearly, for every I and ¥, Rj(s#/) = o, where ‘s’ is an I-V-sentence.
An interesting case for our purposes is when an interpretation and valuation give
the same reduction as another interpretation and valuation.

Definition 13. I and V define an analogical reduction as K and U, iff for every two
terms it holds that ‘v, (A) is I-V-reduced term of ‘v{,(B) , iff ‘v§(A) is K-U-reduced
term of ‘vfi(B) (abbreviated: ‘R}, = RY’).

We may express the same fact by a ML-condition:

Theorem 13. I and Vdeﬁne an analogwal reductlon asK and U, lfffar every two
L-terms ‘A’ and ‘B’
v{(4) = vy(B) = vu(A) = vv(B)
holds.
Proof. The reduction is determined uniquely by equivalences between I-V-terms.
On the other hand, when stated what is a reduced term for every I-V-term, we can

determine which of I-V-terms has the same denotatum (thc lcxxcographlcal order
is absolute; in no way it depends on I 'and V)

Therefore, we may consider the condition ‘R}, = RE’ as a ML-expression.

Furthermore, a few theorems about reduction will be proved. Evidently, under
given I and V we replace I-V-terms by I- Vreduced terms, mdependently on the form
of sentences; especially:

Theorem 14. If “s2* and ‘B’ are I-V-sentences, then )

Ryt = @) = [RY) = RUA)].
Furthermore, we can state t‘he following théotem:
Theorem 15. If ‘<’ is a K-U-sentence, then

(MR K[LUWV] = (DY) [AKIL U]«

RE = R},

Proof. Let ‘s’ contain exactly K-U-terms ‘vi(A, ), .. +; *vf(4,) and let ‘v(B,),
..., ‘D§(B;)’ be their K-U-reduced terms. : e ‘



‘of? is therefore . ' 15

€ “ (03(A1)s . v5(A))
‘RE(27) is then

@ ‘st (vy(By), ...» v(B)))
and {(RE(=2)) (K/I, U[VY is R

(3) ot (vh(B,), ..., v§(B)) -

(1) The validity of the left-hand side of the equivalence in Theorem 15 means
(@) (1) (V) A (oy(By), -, v}(B) -

For every I and Vthe sentence (3) holds, which is the result of K-U-reduction of (1) and
of replacing of K-U-reduced terms (in (2)) by corresponding I-V-terms.

The condition of validity of (3) for every I and ¥ may be, therefore, the K-U-
reduction. From this fact it follows that the sentence

@ A (v Ay), ... vi(A4)

holds in I and V satisfying the condition R¥ = R}, because exactly in these I and
V the terms ‘vp(A,), ..., ‘vh(A;) are equivalent with terms ‘Dl{(B,)’, ..., ‘v}(B;).
Therefore, it holds “ - .

®. , (O() [#(KL U] ‘

RE=R]

(I1) On the other hand, if (b) holds and if we apply to the sentence ‘#(K[I, U[VY
an I-V-reduction analogical with K-U-reduction, we obtain the sentence (3) holding
for every I and V satisfying R}, = R¥. But this condition was in (3) already satisfied
(all original terms were replaced by reduced terms) and, therefore, it can be dropped.
The validity of (a) follows. =~

Theorem 16. If ‘A’ and ‘B’ are L-formulas and ‘s> and ‘%’ are their K-U-transla-

tions, then .

+STREQy(4, B) = (1) (V) [(Ri(«#) = Ry(#)) (KL, U[V)] .

Proof. (I) The left-hand side of the equivalence means that there are L-formulas
‘C’ and ‘D’ such that EIS§(4, C) and EIS§(B, D) and L-EQ(C, D). Let ‘C* and
‘D* be such L-formulas and let ‘¢* and ‘@* be their K-U-translations. Therefore,
it holds: ’ ' ' ’

(1 EISY(4,C*¥) and EIS§(B, D*) and L-EQ(C*, D¥).
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It is obvious that K-U-reduced translations of L-formulas, which are EIS in K and
U, must be identical:

@ ‘Ry(A) = ‘Ri(&*)
and
) ‘Ry(#) = ‘Ry(2*) .

From (1) it follows also
@ (W) [(e* = 2% (K[L UV)].-

Each reduction can — at most — identify some terms. Therefore, if (4) holds, it
must hold also

() (1 (M [(RY(#*) = Ri(@*)) (K[1, U]V)]

(this can be seen also from Theorem 15 and from obvious specification of (44)).
Because of (2) and (3), from (5) it follows:

() (N (V) [(Ri(=#) = Ry(#)) (K[, U[V)] -

() Let us suppose the validity of the right-hand side of the equivalence (i.c. the
validity of (6)). The K-U-reduced form of ‘e’ and ‘%’ are surely K-U-translations of
some L-formulas. Let us designate the L-formula, the K-U-translation of which is
‘RY() as ‘4* and the L-formula the K-U-translation of which is ‘R{(%)" the
K-U-translation as ‘B*’. Because of (6) we have

© . L-EQ(4*, B¥)

Furthermore, it is obvious that L-formulas ‘4’ and ‘4** on the one hand and ‘B’ and
‘B*’ on the other hand may differ by one aspect only: on the place where one formula
contains a term, the other can at most contain an another but K-U-equivalent term
(a term with the same value in K an U). Therefore, it holds in agreement with the
definition of EIS:

(2) EIS§(A, A¥) and EIS{(B, B*).

If we now consider (1) with (2) together, we can say that
(3) there are L-formulas ‘C’ and ‘D’ (i.e. ‘4* and ‘B*") such that (1) and (2) hold.
The validity of (3) means that

(@) +STREQX(4, B).



.

Theorem 17.1f ‘A’ and ‘B’ are L-formulas and ‘s’ and ‘%’ are their K-U-trans-
lations, then

+STREQy(4, B) = ((V) [(« ='%)(K[L.UV)].

L=R}

This theorem follows immediately from Theorems 16 and 14.

8. ELIMINATION

If we construct the states of affairs from denotata of two components of abstraction-
form of the reduced I-V-translation, we obtain a result not corresponding to our
intuition (such result represents the first variant of the definition of states of affairs
in [7]). First: different states of affairs are assigned to the sentences ‘a; = a,” and
‘a, = a,’, one containing the denotatum of ‘a,’ the second the denotatum of ‘a,’. But
both sentences are logically equivalent and we will say that they speak about the
same thing. Furthermore, the sentence ‘(Py(a,).Py(as)) + Py(a,) is logically
equivalent to ‘P,(a,), but we obtain different states of affairs: the state of affairs
for the first sentence contains the denotatum of ‘a,’ in contrast to the state of affairs
assigned tho the second sentence. But what the first sentence says about the denotatum
of ‘a,’, can be said about everything.

When we take into account only “essential”” occurrences of L-terms, our difficulties
disappear. The sentences ‘a; = a,’ and ‘a, = a,’ contain ‘a,’ and ‘a,’ unessentially.
The first of the last couple of sentences mentioned contains ‘P’ and a, essentially,
but it contains ‘a,’ unessentially. Therefore, we must eliminate the terms contained
unessentially.

We define the meaning of “to contain essentially”” and “to contain unessentially”
for I-V-sentences:

Definition 14. If ‘.o’ is a K-U-sentence and ‘%’ is a K-U-term, then ‘s’ essentially
contains ‘%, iff
(BD) (EV)[(# * («) o#(2]2)) (K]L, U[V)]
(J)f)x

and ‘o’ does not contain essentially ‘%, iff

(DM« = () #(B[) (K]1, U[V)]
where ‘@)’ is customary. "

Definition 15. If ‘o’ is a K-U-sentence and ‘%’ is a K-U-term, then ‘sf’ contains
unessentially ‘®’, iff ‘sf” contains ‘%’ but not essentially.

17
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Definition 16. If ‘o’ is a K-U-sentence containing unessentially exactly the
K-U-terms ‘vi(A;)’, ..., ‘U(A,)’, then the first eliminated form of ‘o’ (abbreviated:
“ELIM,(sf)") is .

(o)) ... () (o (A) ey, -, vE(AD)[y) -

whx  Opx

We must separately define the essential (unessential) occurrence of the term ‘DX’
and its possible elimination, because it can appear in the K-U-sentence first after the
mentioned elimination (we can see this from the conditions ‘¥’ in the first eliminated
form).

Definition 17. If ‘B’ is ‘ELIMl(M)’, where ‘o’ is a K-U-sentence and ‘#’ contains
‘DX, then ‘#’ contains essentially ‘D, iff

(ENEV)[(# = (8) #(D%[B)(K[1,U[V)]
B+0

and ‘P contains unessentially ‘DX, iff

M= = (B A(D%p) (KL U[V)].
B*0

Definition 18, If ‘%’ is ‘ELIMl(.%)’, where ‘s’ is a K-U-sentence, then the second
eliminated form of ‘%@ (abbreviated: ‘ELIM(48)’) is
1. (B) B(DX|B), when ‘@ contains ‘D¥’ unessentially and
B+o0
2. ‘9B’ when ‘@’ does not contain ‘DX’ or contains it essentially.
Instead of “ELIM,(ELIM,(s#)) we will write ‘ELIM(s#)’.
It is obvious that

Theorem 18. If ‘<2’ is a K-U-sentence, then (I) (V)[(ELIM(sZ) = o) (K[I, U[V)].
An auxiliary concept will be usefull:

Definition 19. If ‘¢’ is a K-U-sentence containing exactly K-U-terms ‘v§(4,), ...
..., ‘v§(A;) and possibly ‘DX’ then the totally generalized form of ‘¢’ (abbreviated:
‘TG(£)) is

B (o) - (o) (DB, (A ey, - vE(AD)rs) -
f+0 wp wp'

It is clear that



Theorem 19. If ‘s’ is a K-U-sentence and ‘ELIM(s£) contains no K-U-term and
does not contain ‘DX, it holds:

1. #(K[I, U[V) = TG(), for every I and ¥,
2. ‘ELIM(s£) = ‘TG(<).

We can now reformulate Theorems 4 and § briefly as follows:

Theorem 20. If ‘<7’ is a K-U-sentence, then
1L (W[« (K1L,UlV)y= TG(s£)],
2. (W) [~=(K[1, UIV) = TG(~)].

Theorem 21. If ‘s’ is the K-U-translation of an L-formula ‘s/’, then
1. L-VER(A) = TG(#),
2. L-FALS(A) = TG(~ ).

We now define the analytic and the synthetic formulas as follows:
Definition 20. If ‘</’ is the K-U-translation of a formula ‘A’ then

1. ANAL(4) = TG(of) v TG(~sf),
2. SYNT(4) = ~ANAL(A).

it

9. STATES OF AFFAIRS

We now define the states of affairs in the following manner (the abbreviation
‘#Py(A)y means: the state of affairs assigned to an L-formula ‘4’ under given inter-
pretation J and valuation V):

Definition 21. If ‘4’ is an L-formula and SYNT(A) and ‘s’ is its I-V-translation,
then
FHA) = <o, By, if ‘wep = ‘ABSY(RU(ELIM())Y .

From Theorem 10, exhibiting the operation ABST in detail, we see:

Theorem 22. If ‘A’ is an L-formula and SYNT(A) and ‘s’ is its I-V-translation
then &7(A) is the ordered pair construed of

<DI, U{/(ALl): fees U{/(AL,)>
and of

(Pa, ... &) [(RUELIM(2))) (D']B, vp(A1) s, -, v3(A5)fex;)]
B+ 0& o &... & af*
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where ‘0% is a customary condition and the terms ‘vy(4,), ..., ‘0j(4;) are all

different I-V-terms, which remain in ‘Ry(ELIM(s7)).
The formal justification of the definition shows the following

Theorem 23. If ‘A’ is an L-formula and SYNT(A), then there exists the unique
a such that « = F}(A)

Proof. If*4’is synthetic, then neither ‘TG(.«¢)’ nor ‘TG(~ &£’ holds, i.e.“ELIM(#)’
is different from ‘TG(s/). The sentence ‘ELIM(sf) contains, therefore, at least one
I-V-term or ‘D", This term must remain also after application of reduction (a reduction
can only diminish the number of terms contained, but cannot remove them) and
after application of abstraction. Therefore, there exist the first member and the second
member-of the pair <o, §>. Furthermore, the members « and § are unique, because of
univocality of I-V-translation, elimination, reduction and lexicographical abstraction.

For analytic formulas there are no states of affairs (they “speak’ about the same
thing, namely, “about nothing™). Analytic sentences contain all terms unessentially
(their I-V-translation contains unessentially also ‘D"). All terms and ‘D", therefore,
must be eliminated and we cannot apply the operation of abstraction.

We have seen that a state of affairs is a set-theoretical entity, namely a construct
of relational structures. We call two relational structures

{Booy, ..oy and B, 0

similar, if i = j and if for every «, and « it holds wj* = wj" (these conditions are
customary).
We can state that every state of affairs is a pair consisting of one structure S and
of the set of structures T4:
(84, T

where each structure of T4 is similar to S* and satisfying the formula
(RUELIM()) (D], HA Dt - oA )

(the structure S4 is determined by a formula ‘4, interpretation I and valuation V).

The great disadvantage of our construction of states of affairs is their relative
existence. We can construct a state of affairs only for a given formula under given
I and V. We need “absolute” states of affairs existing independently of formulas.
This will be an object of our further investigations. A possibility of such a formulation
gives us the foregoing note on structures. ’

10. ADEQUACY

The construction of states of affairs is too complicated for an examination from the
point of view of intuitive adequacy. But we have defined the relation of strong
equivalence which represents a proposal of formulation of what we mean when we




say that two sentences speak about the same thing (about the same state of affairs).*

Therefore, we can exhibit some relative intuitive adequacy of our construction of
states of affairs with respect to the relation of strong equivalence. Such an adequacy
states the following theorem:

Theorem 24. (Adcquacy theorem). If ‘A’ and ‘B’ are synthetic L-formulas and
‘of’ and ‘R are their K-U-translations, then

STREQK(A, B) = #¥(4) = &5(B) .

Proof. (I) First we suppose

(1) STREQ{(4, B) .
This means the conjunction of

(2) +STREQ{(A, B)
and »

(3) for every ‘C’ essentially contained in ‘A’ there is a ‘D’ essentially contained in ‘B’
such that v(C) = v5(D) and vice versa (where: ‘C’ is a constant or variable free
in ‘4’ and ‘D’ is a constant or variable free in ‘B’).

The assumption (2) is by Theorem 17 first equivalent to

O] () [(«# = A)(K[1,U[V)]

Ri = R%
and by Theorem 18 to
(s) R(p (VI){ [(ELIM(<#) = ELIM(a)) (K[1, U[V)]

This can be writen equivalently (by Theorems 14 and 15) as:
©) (D) (M [(RH(ELIM()) = RY(ELIM(#))) (K/1, U[V)] .
The second part of assumption (3) holds also for translations:

(7) For every term “v5(C)’ contained essentially in ‘«” there is a term ‘o5(D)’ essen-
tially contained in ‘@ such that v3(C) = v}(D) and vice versa.

The operation ELIM now eliminates the terms contained unessentially and, therefore,
we obtain a result equivalent to (7):

(8) For every term “vf(C)’ contained in ‘ELIM(s#) there is a term ‘v§(D) contained
in ‘ELIM() such that of(C) = vj(D) and vice versa.

* More detailed discussion of these intuitive ideas is in [6] and [7].
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The K-U-reduction now identifies these terms denoting the same thing and, therefore,
we have equivalently:

©) ‘RE(ELIM()) and ‘RE(ELIM(%)Y contain the same K-U-terms.

Let now the terms mentioned in (9) be “wi(4,), ..., ‘vi(4,) and possibly ‘D¥".
From the fact (9) and from the equivalence (6) it follows by Theorem 12 that the
relations obtained by the operation ABS™ on the right-hand sides of abstraction-
forms are identical:

(10) (Bay, ... a.) [(RYELIM(s2))) (DX[B, vi(A4,)]ey, ..., VE(A)2)] =
B+ 0& o & ... & wp
= (B, o) (REELIM(@)) (D[B, vi(A o, -, oS(ADf)]

B+ 0& & .. & it

Furthermore, it follows from (9) that the (i + 1)-tuples on both left-hand sides in
abstraction-forms of sentences mentioned in (9) must be identical and must be
expressed by identical expressions

(11) (DX, Uﬁ(AL])’ ] UE(AL1)>

(they must always exist because the starting sentences are synthetic; in the case
i = 0 they must contain only ‘D).

From this fact and from (10) it follows by means of definition of states of affairs
that

(12) F5(4) = 7X(B).

(11) We must now prove that (12) implies (1). We suppose (12). We denote the
mentioned states of affairs as (o, 8> and (o, #’>. Therefore, it holds

(13) {a, By =<', B>,
ie.
(14) a=o and B=p§.

From the definition of states of affairs #(4) and &§(B) we can sce that the identity

‘B = B” must have the form (10) above and ‘« = «” must have the form of identity

between two identical (i + 1)-tuples, both denoted by the expression (11) above (in
agreement with construction of states of affairs the terms in (11) are reduced and,

therefore, the terms denoting the same objects are the same terms). From (10) and

from the fact that « and o are signed by the same expression (11) the validity of (6)’
follows immediately by Theorem 12 above and (6) is equivalent — as we have seen —

to

(15) +STREQy(4, B).



The statement (9) also holds (it follows from identity of expressions for « and «'),
and is equivalent to (3). These two facts give together the validity of

(16) STREQ}(A, B).

The theorem of adequacy shows that the concept of state of affairs is adequate
with respect to the relation STREQ. If two formulas are STREQ in I and ¥, then the
states of affairs assigned to these formulas in I and V are the same and vice versa.
In [6] and [7] two other variants of the concept of STREQ and of the concept of
state of affairs are exhibited.

11. STATE FUNCTIONS AND FACTS

It is customary to say that each given L-formula ‘4’ represents a truth-value
function, i.e. a function assigning to every pair I and V a truth value. Let ‘A’ contain
two constants or variables ‘B, and ‘B,’. We often express the function mentioned by
the table:

interpretation and valuation ‘ values of ‘B,’, ‘B’ value of “4(By, B,)
v ’ o) (B v}(By) o} (A(By, BY))
kK U | v§(B)  v(By) vK(A(B,, By)
g ow o A(By)  vi(By) v (A(By, B,))

Now, we have a new sort of such semantic functions. Each given synthetic formula
represents a function assigning to each pair I and V a state of affairs. This expresses
the table (where A(B;, B,) is a synthetic formula):

interpretation and valuation f values of ‘B, ‘B’ ’ value of “A(By, B,)
I v (B (B ‘ FL(ABy, By)
kv (B vf(By) FHAB,, B,)
J W vh(B)) vi(By) S ABy, BY))

etc. ‘

We call such functions the state-functions. Each synthetic formula thus represents
a state-function.

When we will study the relation between truth-value functions and state functions,
we must introduce a new concept. Intuitively, not all states of affairs are “real states”.
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Only those are real which correspond to true synthetic sentences (or: which are
assigned to a synthetic formula, when its value is truth). We will call them facts. We
define the class FACT which will have as members these facts.

Definition 22.
xe FACT = (EI) (EV)(EA) [« = 1 (A) & a = (B, 7> & fey]

where ‘A’ is a synthetic formula.

Therefore, facts are such states of affairs {f, 7>, for which § e y. Other states of
affairs are non-facts (i.e. when B ¢ 7).

From our constructions it is easy to see that

Theorem 25. If ‘A’ is a synthetic L-formula and ‘&’ is its I-V-translation, then
P A) e FACT= o =vj(d) =1,
S A) ¢ FACT = ~o = vj(4) = f.

(When we take ‘ABS*(R{(ELIM(s#))y as ‘B €y, itis clear that f € y = &, because
evidently ABS"(RWELIM(«))) = s#; and (B, 7> = &7(4).)

This gives us a new expression for truth-value function represented by synthetic
formulas and we can reformulate semantic definitions as follows:

Theorem 26. If ‘A’ is a synthetic L-formula, then
‘A’ is satisfied in I and V= #}(A)e FACT,
VER'(A) (V)#i(4) e FACT,
FALS'(4) " = (V)¥H(A) ¢ FACT.

It

The truth-functions of propositional logic can be redefined in the case of synthetic
formulas:

Theorem 27. If ‘A’ and ‘B’ are synthetic L-formulas, then

&(A= B)e FACT = &}(A)e FACT » &}(B) e FACT -
P(A.B) eFACT= ¥(4)e FACT & ¥(B)e FACT,
& (A + B)e FACT = #}(A) e FACT v #}(B) e FACT,
(A< B)e FACT = ¥(A) e FACT = &}(B) e FACT,
F(1A4) eFACT = #}(A)¢ FACT.



1t is possible that the mentioned procedure enables us to solve certain questions 25
about so called non-extensional contexts. It is known that the following statements
do not hold: . ’

A <> B = It is necessary that A <> It is necessary that B,
A < B = It is believed that A < It is believed that B .
But what is “necessary” or what is “believed”? Is it a truth value? In my opinion, we
assert that a state of affairs is necessary a fact and it is also an entity which is believed
to be a fact. For synthetic formulas it holds:
STREQ;(A, B) = It is necessary that #}(A4) e FACT =
= It is necessary that &}(B) € FACT,

STREQ;(A, B) = It is believed that #;(A) e FACT =
= It is believed that &1(B) € FACT.
The main direction of our further investigations will be a construction of states of
affairs independently of formulas. This will make possible a reconstruction of the

foundations of logical semantics and many interesting applications.

(Received April 12, 1974.)
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