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K Y B E R N E T I K A — V O L U M E 13 (1977), N U M B E R 2 

Constrained Least Squares Control 

VLADIMÍR KUČERA 

This short paper is to generalize the algebraic approach to the least squares control of discrete 
linear constant systems. The generalization consists in including the quadratic norm of the 
control sequence into minimization. 

PROBLEM FORMULATION 

Let F be an arbitrary subfield of the field of complex numbers. Denote F{z~'} 
the domain of causal rational functions over F, i.e., the set of rational functions 
admitting the representation 

(1) A = aQ + a jz " 1 + a 2 z~ 2 + . . . , a t e F 

and denote F + {z - 1 } the domain of stable rational functions over F, i.e., the set 
of elements (l) for which the sequence {a0, at, a2, ...} converges to zero in F. The 
quadratic norm | A | of an A e F + {z - 1 } is defined by 

(2) Ml2 = £*.«.. 
i = 0 

where a ; stands for the complex conjugate of a;. Defining 

A = a0 + a tz + a2z2 + . . . 

<A> = aQ , the term of A at z° , 

we can write (2) as the following inner product 

(3) lA I 2 = <AA> . 

The set of elements (l) with only a finite number of nonzero coefficients forms 



the domain F[z - 1 ] of polynomials in z - 1 over F. A polynomial a e F[z - 1 ] is said to be 
causal if 1/a e F{z -1} and it is said to be stable if \\a e F + {z - 1 } . We write da to 
denote the degree of ae F [ z - 1 ] ; by convention, 30 = — oo. The symbol (a, b) is 
used for the greatest common divisor of polynomials a, b e F [z - 1 ] . 

Given an a e F [ z - 1 ] , a + 0, then the pair of polynomials a + , a - 6 F[z - 1 ] is 
called the factorization of a if a = a + a~ and a+ is a stable polynomial of largest 
possible degree. If further 

a = a0 + aiz~> + . . . + a„z -" , 

we denote 

(4) a = ~Q + ~xz + . . . + ~nz" 

a = a„ + a„_jZ -1 + . . . + a 0z - 1„ = z~"a 

and 

(5) a* = a + a~ . 

Zfejme plati 

(6) eta = a*a* . 

Now consider a discrete linear constant system &~ characterized by the input/output 
equation 

(7) Y = SU , 

where S e F{z - 1}, S + 0, is the transfer function of £f. The problem of interest is 
to design a discrete linear constant controller 0t, which realizes the feedback control 
law 

(8) U = RE , E = W' - Y 

with ReF{z-1} being the transfer function of M and We F{z - 1}, W 4= 0, being 
a given reference input, such that the feedback system (7), (8) is stable, both error 
E and control U are stable rational functions, and the weighted sum of quadratic 
norms ||/IE||2 + |/<U||2> >̂ '' ~ F, is minimized. 

In order that the systems can be fully described by their transfer functions, we 
assume that _«" and _? are minimal realizations of S and R, respectively. We sacrify 
no generality by this assumption as far as the control problem is concerned. 

The problem formulated above will be referred to as the constrained least squares 
(CLS) problem to contrast the least squares control problem [1, 3, 4] in which only 
| |E |2 is to be minimized. Such a problem becomes evidently a special case of the 
CLS problem for X = 1, \i = 0. 



108 SOLUTION OF THE CLS PROBLEM 

Write S = bja, where a, be F [ z - 1 ] are coprime polynomials and similarly W = 
= qjp, where p, q e F [z - 1 ] are coprime polynomials. Let a0, pa be coprime poly
nomials such that 

a _ OQ 

P Po 
and denote 

(9) <?d = 5jj/.fl + HXb , 

dd* = n , db = m . 

(10) Theorem. The CLS problem has a solution if and only if the equation 

(11) bM + aN=\ 

has a solution M,N e F + {z - 1 } with l/JV 6 {z - 1 } such that 

(12) U = aMW, E = aJViy 

are stable rational functions and M admits the form 

(13) M = 
V~0 

where x0, y0 e F[z _ 1 ] is a solution of the equation 

(14) z~md*x + pa~y = XXz~"Sq*a~ 

satisfying dy0 < Bz~md*. 

The optimal controller is given by 

( i5) R = M 
v ' N 

and the minimized sum of quadratic norms becomes 

(16) \\XEr + \\,Ur = (^ + (wX^XW 

Proof . The feedback system (7), (8) is stable [2, 3] if and only if there exist stable 
rational functions M, N with l/JV causal satisfying the equation ( l l ) ; any controller 
of the form R = MjN then stabilizes the system. Our problem is to find the specific 
form of M and JV which yields the optimal controller. 

Suppose that both error E and control U are stable rational functions, then 



(17) ||XE||2 + ll/iUH2 = <£lx£> + <U/7^U> 

by (3) and the sum of quadratic norms can be minimized by manipulating the sum 

of inner products in (17). 

Write 

E = W- KW/YW, U = KW/UW 

and define £* and U* by 

(18) E* = W* - KW/YW* , U* = KW/UW* , 

where 

Then 
pa0 

E = E * ^ l , U = U * І ^ 
q ã0 q ã0 

and 

(19) £ £ = £*£*, ÜU = U*U* 

hold true. 

In a stable feedback system [2, 3] Kw/r = ЬM and Kw/U = aM. Then (18) takes 
the form 

E* = W* - ЬMW* , U* = aMW* 

and 

(20) E*І1E* + Ü*ЏџU* = 

= W*11W* - W*llbMW* - W*MB11W* + 

+ W*MbllbMW* + W*MapnaMW* = W*1XW* -

- W*lXbMW* - W*MB11W* + W*MďdMW* = 

" ( 
— 1XW* - d*MW*\ (— 11W* - d*MW*\ + W*1XW* - W*l — ^ XW* . 
d* )\d* ) d*d* 

Since 
b 

d* z~md* 

by (4) and (9), and 

EXlb _ a\i\ia 

~a~d*~dr*ď* 



HO by (6) and (9), we obtain 

(21) £*/!;.£* + U*fmU* = QQ + w*ll^-kw*, 
d*d* 

where 

(22) Q = ^ ^ - - d * M ^ - . 
Z md*pa0 pa0 

The last term in (21) is independent of M (and hence of R). As a result, the expres
sion <£*IA£*> + (U*ji(j.U*y or, which is the same by (18), the expression <BXl£> + 
+ <J3jip.Uy attains its minimum for the same controller as the inner product <Oo> 
does. 

Decompose the first term on the right-hand side of (22) as follows 

z~"Bl?.q*a0 y x 

z~md*pa0 z'md* pa0 

Then the polynomials x, y satisfy equation (14). 

Rearranging the terms we get 

e-7-3. + v; 
where 

(23) K = ^ - - d * A f ^ , 
pa0 pa0 

and, therefore, 

17 У 

Any solution of the polynomial equation (14) can be written [1] as 

IP) »--. + ,2-£°~ V 
(z d*, pa0 ) 

(26) y = y--(-laS V» 
(z md*,pa0) 

where 
(27) dya < dz~md* 

and t e F[z _ 1 ] is an arbitrary polynomial. 



Note that 

J'o \ __ y® _-(Sz-»>A*-dy0) 

-md*J d* 

is divisible by the polynomial z _ 1 due to inequality (27), and hence 

>'o \ ( \\ = 0 //_____ ] 
ẑ "V/*j \ z mrf*, pa0 

Thus expression (24) on substituting from (26) reduces to 

(28) 

<^>^(A)(A)) + ((-(^.^))(-,-.,.,P„,) 
The first term on the right-hand side of (28) cannot be affected by any choice 

of M (and hence of R). The best we can do to minimize <__"> is to set 

V J = 0. 
(z md*,pa0) 

In view of (23) it amounts to 

x 

pa~ pa0 (z~md*, pa0) 

However, 

d*M^- 1 = 0 . 

pa0 (z md*,pa0) pa0 

due to (25), and hence M must satisfy relation (13) to yield an optimal controller. 

If, further, 

U =KW/VW= aMW, 

E = KW/EW = aNW 

are stable rational functions, our original assumption related to (17) is satisfied and 
the controller (15) is indeed optimal. 

Expression (16) is a direct consequence of (21), (28) and (6). • 

(29) Remark. For X = 1, /< = 0 we have the least squares control minimizing the 
quadratic norm ||E||2. Then d = b and since 

b- = z-^b-



as seen from (4) and (5), equation (14) reads 

z--g*z-(---»b-x + pa-y = z--b + B-q*a0 

and Cy0 < cz"mfc*. Setting x = x, y = z-"S+$, this equation is equivalent to the 
equation 

(30) b'x + pa0y = B~q*a0 

for polynomials x, y with dy0 < db~, reported in [1]. ~~ 

(31) Remark. For ). = 0, /. = 1 we have the least effort control, i.e., one which 
minimizes the quadratic norm |U | |2 . Then d = a and equation (14) reduces to 

(32) z~-a*x + pa~y = 0 . 

If, moreover, both a and p are stable polynomials, then a* = a, a0 = 1 and equa
tion (31) yields x0 = 0, y0 = 0. Thus R = 0, i.e., no control is the optimal strategy. 

(33) Example. Consider the CLS problem with ). = 1, /i = v/2 for the system with 
transfer function 

S = 

and the reference input 

W = 

1 - z" 

!_ 
1 - z" 

We first compute 

-fifia + bl).b = (1 - z )V2 V2( l - z"1) + z z - ' = 

- ( 1 - 2 2 ) ( 1 - 2 - - ) 

and hence 
d = 1 - 2 z - 1 , d* = - 2 + z"1 

n = 1 , m = 1 . 

Equation (14) then becomes 

z " ' ( l - 2 z " 1 ) x + (l - z - ' ) v = z - ' 

and yields 

x 0 = - 1 , 3'o = 2 z - 1 . 

Using relation (13) in conjunction with equation ( l l ) we compute 

M = , A' = 
2 - z " 1 2 - z - ' 



and (12) implies 

U-—U, .,- 2 

2 _ z - j 2 - г -

Since the four rational functions are stable and 1/JV is causal, the problem has a solu

tion. The optimal controller is given by (15) as 

R = 0.5 

and the minimized norm criterion follows by (16) 

(34) Example. Consider the minimum effort control problem for the system with 

transfer function 

S = 
1 - 2z" 

and the reference input 

W= 1 

1 - 0.5z - 1 

Equation (32) becomes 

z - , ( l - 2 z - 1 ) x + (1 - 0 . 5 z - 1 ) ( l - 2 z - ' ) y = 0 

and yields the solution 

x 0 = (l - 0 . 5 Z - 1 ) T 

>'0 = - Z _ 1 T 

for any number T. Using (13) and ( l l ) we compute 

M _ ( 1 - 0 . 5 Z - ) T (Z-» - 2 ) 2 - Z - 1 ( 1 - 0 . 5 Z - 1 ) T 

( z - 1 - ^ 2 ' ( z - 1 - 2 ) 2 ( l - 2 z - 1 ) 

Since both M and N must be stable rational functions, the numerator on N must be 

divisible by 1 — 2 z - 1 . Hence T must satisfy the equation 

( z - 1 - 2 ) 2 - z - 1 ( l - 0 . 5 Z - 1 ) T = (1 - 2 Z - 1 ) I ; 

for some polynomial t;. It follows 

T = 6, D = 4 - 2 Z - 1 



114 and, in turn, 

M - - 3 - , tf- 2 

2 - z"1 2 - z - ' 

U - 3 LrJ^, £.-_-2_Lii?Ll. 
1 - 0.5Z"1 2 - z" 1 1 - 0.5Z"1 2 - z"1 

Thus the optimal controller (14) is given as 

R = 1.5 

and the minimized effort equals 

HUII2 = 1 2 . • 

(35) Example. Consider the least squares control problem for the system with 
transfer function 

s = — L _ 
2 - z- 1 

and the reference input 

Then equation (30) 

has the solution 

w- l 

3 - z 

x + (3 - z~l)y = 1 

x0 - 1 » >'o -= ° • 

It follows from (13) and ( l l ) that 

M = 1 , JV = 0 . 

Both M and N are stable, but 1/rV is not a causal rational function. Therefore, there 
exists no causal controller (15) and our problem has no solution. • 

CONCLUDING REMARKS 

This paper has generalized the algebraic approach to the solution of least squares 
control problems. The objective is to minimize the weighted sum of quadratic norms 
of both error and control sequences, the weights being arbitrary nonnegative num
bers. 



This approach compares favorably with the classical solution of Wiener in that 

no restrictions on S and W are imposed. Note that Theorem (10) allows for unstable 

systems as well as unstable reference inputs. Moreover, the synthesis procedure is 

reduced to solving a polynomial equation (14), which is computationally attractive. 

(Received August 4, 1976.) 
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