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K Y B E R N E T I K A - VOLUME 27 (1991), NUMBER 6 

ROBUST KALMAN FILTER AND ITS APPLICATION 
IN TIME SERIES ANALYSIS 

TOMÁŠ CIPRA, ROSARIO ROMERA 

A method of robustification of the Kalman filter is suggested in the paper. In general, the 
method provides approximative recursive formulas for robust estimation of the state but in some 
special cases exact recursive formulas can be derived. The steady model and the AR(1) model 
are investigated in more details including a simulation study and the strong consistency of the 
recursive formulas for the robust estimation of the autoregressive parameter. 

1. I N T R O D U C T I O N 

The Kalman filter is a useful instrument for recursive treatment of dynamic 

linear systems (see e.g. [2]) including some popular time series model (nowadays 

there are even various non-linear generalizations of the Kalman filter). 

Let us consider a dynamic system of the form 

xt = F t x . _ , + wt, (1.1) 

}'t = Htxt + vt, (1.2) 
where 

Ew, = 0 , E^ = 0 , E(wsw't) = 5stQt, E(vsv't) = SstRt, E(wsv't) = 0 (1.3) 

and some initial conditions are fulfilled. The state equation (1.1) describes behavior 

of an n-dimensional state vector xt in time while the observation equation (1.2) 

describes relation of the unobservable state xt to an m-dimensional observation 

vector yt. The matrices Ft, Ht, Ot, Rt of appropriate dimensions are supposed to be 

known. 

The Kalman filter gives recursive formulas for construction of the linear minimum 

variance estimator x\ of the state xt and for its error covariance matrix P\ = 

= E(xt — x\) (xt — x\)' in a current time period t using all previous information 

Y* — {yo> yn •••* yt}- These formulas have the form 

x\ = x\-r + Pl-'H&HtP'^m + R,)-1 (yt - Htx\-X), (1.4) 

p\ = p\-' - Pr'H^Pr1^; + Rty
l I^T1» (1-5) 
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where 
x\-x =Ftx\-_\, (1.6) 

V1 = FtP\Z\F't + Qt (1.7) 

are predictive values constructed for time t at time t — 1. 
The standard Kalman filter supposes normal distributions of the residuals wt and 

vt, i.e. 
w, ~ N ( 0 , Q f ) , t , f ~ N ( 0 , R f ) . (1.8) 

Then x\ is even the minimum variance estimator of the state since it holds 

x\ = E(xt | Y<) . (1.9) 

However, the assumption of the normal residuals is not frequently fulfilled in 
practice where one must face various forms of contamination of data. Therefore 
robustification of the Kalman filter is very important from the practical point of 
view. Various robust modifications of the Kalman filter have been suggested in the 
literature (see e.g. [6], [13], [14], [15], [17], [21]). Some of them are connected 
with difficulties when they are applied practically (e.g. the approach in [14] assumes 
that one can construct such linear transform Tf that the transformed residual process 
Tt(yt — Hf£f

-1) has some special distributional properties although the transforma
tion Tf depends on the distribution of the residuals which is not apriori known). 

In Section 2 a robust modification of the Kalman filter is suggested which seems 
to be simple from the numerical point of view. The robustification is based on the 
methodology of the M-estimators (see e.g. [11]) and, in general, it gives approxi
mative recursive formulas for robust estimation of the state. Some special cases which 
enable to construct exact recursive formulas are described in Section 3. Numerical 
examples are given in Section 4. The strong consistency of the recursive formulas 
for robust estimation of the autoregressive parameter in the model AR(l) is proved 
in the Appendix. 

2. ROBUST KALMAN FILTER 

It is known (see e.g. [3]) that the current state estimate x\ in (1.4) can be derived 
from the predictive values $\~ and PJ_1 in (1.6) and (1.7), when a current value 
yt is observed, by the following minimization procedure 

x\ = a r g m i n f ^ r 1 - x.)' (P,""1)"1 (x\~x - xt) + 

+ (yt - Htxt)' R7x(yt - Htxt)} , (2.1) 

where argmin is taken over xt e U". The procedure (2.1) can be looked upon as the 
weighted least squares method and it is equivalent to the (non-weighted) least squares 
method in the linear regression model 

(P\-x)~1/2 x\-x\ _f(Pt'1)-1/2 

R;1/2yt J-\R;í/2Ht JXt + {fí]> {22) 
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where the symbol D 1/2 denotes the square root matrix of an inverse matrix D * 
and the residuals et and r\t fulfil 

Ea, = 0 , E/y, = 0 , vzr(8t\ = I. (2.3) 

Moreover, if one compares (2.2) with (1.1) and (1.2) then one obtains 

St _ (p;-«)-i/a (*;-- _ pA_t _ Wr) , „, _ * r- / - - , , (2.4) 

so that a possible contamination of w, results in a contamination of et without 
affecting r\t and, similarly, a possible contamination of vt results in a contamination 
of r\t without affecting et (in the current time period i). 

Let us rewrite the model (2.2) separately for particular rows as 

where 

Pu = aitxt + eit, i = 1, ..., n , 

Sjt = bjtxt + Y\jt, j = 1, . . . , m , 

(Pr 1)- 1 7 2*;- 1 = ( ; J, R7my< 
\Pntl 

(2.5) 

The model (2.5) has such form that the corresponding least squares method 
n m 

x\ = argmin { _] (pit - aitxt)
2 + _] (sjt - bJtxt)

2} (2.6) 
< = i i = i 

can be easily robustified replacing (2.6) by 
n m 

xl
t = argmin { _] Qu(pit - aitxt) + £ Q2j(sJt - bjtxt)} (2.7) 

. = i j=i 

(argmin is taken over xt e W), where QU and Q2j are suitable robustifying functions 
with derivatives ^/u (i = 1, . . . , n) and \j/2j (j = I, ..., m) used in the methodology 
of M-estimation. According to (2.4) the application of the robustifying functions 
Qu suppresses consequences of a contamination of w and, similarly, the application 
of the robustifying functions Q2J suppresses consequence of a contamination of v. 

The normal equations for x\ corresponding to (2.7) have the form 
n m 

S <t ^u(Ptt ~ M l ) + Z b'jt ifr2j(sjt - bjX) = 0 (2.8) 
( = i j = i 
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and can be solved explicitly only in some special cases (see Section 3). In general, 
one can use the following approximative normal equations 

n m 

I »iuafou - Mo1 + I »2jMsjt - M3 = ° • ( 2- 9) 
i = l J = t 

where the weights wlit (i = 1,..., n) and w2jt (j = 1, ..., m) are defined as 

</>u(j>;r - Oif*}" 1 ) W i 

w 7 ; , = 

л ř - i 
Pří @itXt (2.10) 

<A2j-fet - frgjj _^) 
2 y t _ /i " - t _ 1 

The equations (2.9) follow from (2.8) if we approximate x\ by x\'\ They can be 
considered as a recursive variant of the normal equations from the IWLS (Iterated 
Weighted Least Squares) method which is a popular algorithm for numerical 
calculation of M-estimates (see e.g. [ H ] , [22]). 

Using the approximation (2.9) one obtains after some algebraic treatment the 
following robust modification of the recursive formulas (1.4) and (1.5) 

x\ = x\-! + (p\-yt2 wrt
i(ptt'1)1/2 H'IH^-1)112 w^(p\-y^ H; + 

+ Ry2W2t
1R1

t
l2]-1(yt-Htx\-1), (2.11) 

p\ - (Br1)172 Wu\p\-y2 - (p\-x)112 Wu\p\-yi2. 

. H't[Ht(p\-xyi2 wlt\p\-y12 H; + Rt
,/2W2V^!/2]_1 • 

.Ht(P\-1)^2W1-t
l(P\-1)1/2, (2.12) 

where x1'1, P1'1 are given in (1.6), (1.7) and 

Wlt = diag{w1 ] f, ...,wlnt} , W2t = diag{w2 1 f, ..., w2mt} . 

3. SPECIAL CASES 

In this section some special cases of the model (1.1), (1.2) are given which enable 
to find the explicit solution of the normal equations (2.8). In this way one obtains 
the non-approximative robust modification of the recursive formula (1.4) for the 
state estimate x\. On the other hand, the derivation of the non-approximative re
cursive formula for the corresponding error covariance matrix P\ is usually so 
difficult that we recommend to use the classical formula (1.5). 

One of the most frequent types of contaminated data are s-contaminated normal 
data in which a normal distribution with an acceptable variance is contaminated 
by a small fraction s (e.g. s = 0-05) of a symmetric distribution with heavy tails 
(it is the source of so called outliers). For such data with e-contaminated distribution 
N(0, 1) (the unit variance can be achieved by means of standardization) the Ruber's 
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function \\iH of the form 

i ( \ /z for lzl = c (i i\ 
WH\Z) = \ / \ c v3-1) 

v ' \ c s g n ( z ) for \z\ > c v ' 
gives robust estimates of location which are optimal in the min-max sense, i.e. which 
have the minimal variance over the least favorable distributions (see e.g. [11], [14]). 
The constant c depends on e (e.g. one recommends c = 1-645 for & = 0-05). Consider
ing its practical importance we confine ourselves in the following text to the xj/ func
tions of the type (3.1). In the case without contamination we shall use the classical 
least squares approach with the function 

«ALS(z) = z . (3.2) 

Some of the following models are very popular in time series analysis. 

(a) Kalman filter with c o n t a m i n a t e d scalar obse rva t ions : 

xt = Ftxt„x + wt, (3.3) 

yt = htxt + vt . (3.4) 

It is a special case of (1 A) —(1.3) with m = 1 and 

wt ~ N(0, Qt), vt ~ s-contaminated N(0, rt) . (3.5) 

The normal equations (2.8) with \j/ti = \f/LS (i = 1, ..., n) and \J/21 = \j/H give the 
following robust recursive formulas 

*! = K'1 + P\-%r7^a (
r\{i^X'l)\ , (3.6) 

V htP\ lhf
t + rt ) 

Pt~1h'h P t _ 1 
pt _ pt-\ _ fj ntntrt /T 7 \ 
P'-P' KH-'K + r,' ( V 

where %\~~L and P\~l are given in (1.6) and (1.7). The formula (3.6) can be rewritten 
as 

Pt_1/V 
— ' * (yt-htx\-1) 

*\ = K'1 + ( for \yt - htx\-x\ _ cr^Qi^fX + rt) 
Xxp\-'h'tr;1/2csgn(yt ~- M l " 1 ) (3-8) 

otherwise . 

If one uses a general function \]/ instead of i/t;/ then according to (2.11) and (2.12) 

*? - *r1 + . J}T/f , & - M ? - 1 ) . (3-9) 
htP\ xht + rtjwt 

Pt~1h'h P t _ 1 

P\ = P\~l - ^ * ̂  , (3.10) 
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where 

Hr;l'2(yt-htx\-1)) 

r"1/a(y, - MS - 1) 
V V , = (3.11) 

The case described in (a) is applicable e.g. in the situation when one estimates re
cursively regression parameters xt in a linear regression model (3.4) with contaminat
ed observations yt (in the simplest case one can put Ft = I, Qt = 0, r. = a2). 

(b) F i l t e r ing in s teady model with c o n t a m i n a t e d o b s e r v a t i o n s : 

xt = xt-t + wt, (3-12) 

yt = xt + vt, (3.13) 

where in addition to (1.3) 

wt ~ N(0, qt) , vt ~ s-contaminated N(0, r,) . (3-14) 

The one-dimensional process yt (n = 1), which presents a one-dimensional random 
walk xt (m = 1) observed with an error vt, is called the steady model and has useful 
applications in practical time series analysis (see e.g. [8]). According to (3.6) and 
(3.7) one obtains the following robust recursive formulas for the filtered values 
of the process yt 

x\ = x\Z{+ (P\Z\ + qt) rrI/2 *H fff--* " *Zi)) ' (3-15) 
\P\-\ + q,+ rj 

pt _ (P\-\ +q,)rt , 1 6 ) 

P\Z\+qt+rt
 K ' 

(c) Recursive es t ima t ion in au toregress ive model AR(p) 
with i nnova t ion ou t l i e r s : 

x, = X,-.. , (3.17) 

yt = htxt + vt , (3.18) 

where ht = (yt-u •••> yt-p) an£* m addition to (1.3) 

vt ~ e-contaminated N(0, a2) . (3-19) 

The one-dimensional process yt (n = p, m = 1) is called the autoregressive process 
with innovation outliers (see e.g. [12], [22]). According to (3.6) and (3.7) one obtains 
the following robust recursive formulas for the parameter estimates 

x\ = x\Z\ + P\Z\h't^ ^H ( ^ - ^ l ) . (3-20) 
\htP\Z\h't + a2 J 

Pt~1h'h P f _ t 
pt _ pf-i rt-intntrt-i / 7 0 1 > 

P'~F-1
 T^KTV^

 (3'21) 
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Specially in the model AR(1) one has ht = yt-t so that 

K = K~-\ + P\- \yt-io~1 *_• (^Lf-7 2t~^tZl)\. (3-22) 
V Pt-bf-i + o2 ) 

Pl~Xa2 

P\ = p=£L . (3.23) 
P\'-\yU+a2 K ) 

Various convergence theorems which are mostly based on approaches of the 
stochastic approximation can be proved for the previous recursive formulas (see 
also [4], [5], [9], [10], [16], [18], [19], [23] and others). For demonstration in 
the Appendix we shall give the proof of the following assertion. 

Theorem. Let in the model AR(l) 

yt = &yt-t +vt, t= ..., - 1 , 0 , 1 , . . . (3.24) 

an estimate £, of the parameter <9 be given by means of the recursive formulas 

i t = V i + -V,-iff" ' i>n ( ^ - / ' - * * ' - * ) ) , t = 1, 2, ..., (3.25) 
V Ptyt-i + -2 ) 

Pt = V * 2 _' t=l,2,... (3.26) 
Pt-tylt + a2 

with initial (random) values £0 and P0. Let the following assumptions be fulfilled 

\'\ < 1 ; (3.27) 

vt ~ iid , Evt = 0 , var vt = a2 (0 < a2 < oo) ; (3.28) 
the distribution of vt is symmetric such that E„( — fi) < Fv(s) for each 
e > 0 ; (3.29) 
~xl < oo , P0 > 0 a.s., £0, P0, vt are independent . (3.30) 

Then 
$t -+ 5 a.s. (3.31) 

Remark 1. Under the assumptions of Theorem yt is a stationary AR(l) process 
such that the common distribution of its white noise has a positive mass concentrated 
about zero (specially, this assumption is fulfilled for an e-contaminated normal 
distribution with zero mean). If comparing (3.25) and (3.26) with (3.22) and (3.23) 
Theorem uses the simpler denotation %t and Pt instead of St\ and P\. Moreover, the 
formula (3.25) contains the more actual value Pt instead of Pt-t-

Remark 2. Theorem stays valid if we replace a2 in (3.25) and (3.26) by random 
variables a2 such that 0<k<.a2<.K<co a.s. (k, K are constants). Therefore 
in applications one can use these formulas with a recursive estimate a2 of a2 which is 
trimmed in a suitable way. 

Remark 3. Other generalizations are possible. E. g., one can use a more general 
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function \j/ fulfilling 

| ^ ( x ) | _ s c , - o o < x < c o ; (3.32) 

b j * ^ \]/(u(b + x)) dFv(x) = 0, - o o < / 3 < o o , (2a)-1 < u < a'1 ; 
(3.33) 

if fcr J-oo $(ut(bt + *)) dF„(x) -#• 0 for an arbitrary sequence 

(2a)'1 ^ M, < a'1 then &, -> 0 . (3.34) 

It is also possible to reformulate the problem for non-linear autoregressive models 
ofthe type 

y,-&f,-i(r-'l) + vt (3-35) 
(ft are suitable non-linear functions, see [1]) replacing yt-x by/ f_1(Y f"1) in (3.25), 
(3.26) and assuming in addition to (3.27) —(3.30) 

E[ft(r)]2^K< oo, r = 0,1,...; (3.36) 

i[ft(Y')Yln-*d a.s. (3.37) 
t = 0 

(K, d are constants). 

4. NUMERICAL EXAMPLE 

Example 1. Pen a and Guttman [17] have demonstrated their method of robust 
Kalman filtering based on calculation of posterior probabilities in mixtures of normal 
distributions be means of a simulation example for the steady model (3.12), (3.13) 
with wt -v N(0, 1) and vt ~ N(0, 4). In Table 1 their results are compared with the 
ones provided by the non-robustified Kalman filter (1.4) —(1.7) and by the robust 
formulas (3.15), (3.16) with c = 1-645. Obviously the outlier y20 = 35-00 is not 
suppressed in the non-robust filtering (£20 = 16-76 is strongly biased) while the both 
robust methods give acceptable filtered values (£20 = 6-04 and 6-87). The results 
provided by the both robust methods are comparable but the recursive formulas 
(3.15), (3.16) are simpler numerically. 

Example 2. The process AR(l) of the form yt = 0-5J>*_J + vt with innovation 
outliers vt has been generated for various heavy-tailed distributions contaminating 
the normal distribution. Table 2 contains the results of the recursive estimation 
of the parameter & = 0-5 for vt ~ 0-9N(0, 1) + 0-lC(0, 3) and vt ~ 0-95N(0, 1) + 
+ 0-05R( —25, 25), where C(a, b) denotes the Cauchy distribution with density 

f(x) = (ll(nb)) [1 + ((x — a)lb)2]-1 and R(a, b) denotes the uniform distribution 
on (a, b). The robust recursive estimates x\ = xt according to (3.25), (3.26) with 
a2 = 1, £0 = 0, P0 = 1 are compared with the non-robust estimates according to 
(1.4) —(1.7). If an observation ytQ is a distinct outlier then it can deviate unpleasantly 
the subsequent non-robust estimates x\ (t ^ t0) while the robust estimates are not 
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Table 1. Kalman filter in the simulated steady model (3.12), (3.13) with wt~ N(0, 1), v, 
- N(0, 4). 

Simulated values 
(3.12), (3.13) 

Non-robust filter 
(1.4) —(1.7) 

Robust filter Pefia 
and Guttman [17] 

x* Pí 

Robust filter 
(3.15), (3.16) 

1 ю-oo 8-65 9-66 4 0 9-66 8-7 9 66 4-0 

2 9-83 7-28 8-34 2 2 8-01 3-0 8 34 2-2 

3 9-98 7-44 7-94 1 8 7-73 2-0 7 94 1-8 

4 8-99 11-13 9-25 1 6 9-12 1-9 9 25 1-6 

5 9-36 11-18 10-02 1 6 9-97 1-7 10 02 1-6 

6 8-50 5-45 8-22 1 6 8-46 2-3 8 22 1-6 

7 8-90 6-17 7-42 1 6 7-45 1-9 v 42 1-6 

8 8-20 3-92 6-05 1 6 6-07 1-9 6 05 1-6 

9 8-47 12-32 8-50 1 6 6-91 3-6 8 16 1-6 

10 7-46 6-95 7-90 1 6 6-93 2-2 7 69 1-6 

11 6-49 10-46 8-90 1 6 8-40 2-0 8 77 1-6 

12 7-34 9-54 9-15 1 6 8-88 1-7 9 07 1-6 

13 7-82 7-07 8-33 1 6 8-16 1-7 g 29 1-6 

14 7-06 8-17 8-27 1 6 8-16 1-6 8 24 1-6 

15 6-85 5-59 7-22 1 6 7-18 1-6 7 21 1-6 

16 5-67 5-99 6-74 1 6 6-71 1-6 6 73 1-6 

17 3-69 7-29 6-95 1 6 6-94 1-6 6 95 1-6 

18 3-37 5-94 6-56 1 6 6-55 1-6 6 56 1-6 

19 3-25 1-96 4-76 1 6 5-10 2-2 4 76 1-6 

20 2-81 35-00 16-76 1 6 6-04 3-1 6 87 1-6 

21 2-36 -0-62 9-86 1 6 4-81 5-5 4 76 1-6 

22 2-46 4-13 7-62 1 6 4-40 2-5 4 51 1-6 

23 0-82 -0-84 4-32 1 6 2-61 3-4 2 42 1-6 

24 0-24 2-78 3-72 1 6 2-70 2-1 1 56 1-6 

25 1-62 1-93 3-02 1 6 2-37 1-8 2 32 1-6 

26 1-46 0-45 2-02 1 6 1-60 1-7 1 59 1-6 

27 1-96 2-54 2-22 1 6 1-97 1-6 1 96 1-6 

28 2-62 -0-95 0-98 1 6 0-86 1-7 0 82 1-6 

29 2-95 2-69 1-65 1 6 1-58 1-6 1 55 1-6 

30 1-40 -0-89 0-66 1 6 0-63 1-6 0 60 1-6 

31 2-84 2-83 1-51 1-6 1-48 1-6 1-47 1-6 

affected. E.g., the outlier y419 = -140-97 in the model with vt ~ 0-9N(0, 1) + 

+ 0TC(0, 3) produces the non-robust estimate X479 = 0-950 and deviates the sub

sequent estimates so t h a t . . . , x5

500 — 0-689, ..., %\\% = 0-680, ... against the robust 

,., Jt5

5lo = 0-506,.... Similarly, the out-

~ 0-95N(0, 1) + 0-05R(-25, 25) produces 

the non-robust estimates xll = 0-313, xl0 = 0-330, ..., x\00 = 0-312,... against 

the robust estimates * | 5 = 0-504, x 9 ° = 0-499, ..., x\°0°0 = 0-487, .... 

0-500,...,x5™ 0-507, estimates x 4 7 9 

lier y 8 9 = 15-55 in the model with v 
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Table 2. Recursive estimation in the simulated models AR(1) of the form yt = 0-5j t_ t + vt 

with innovation outliers. 

vt ~ 0-9ìV(0, 1 ) + 0-1 C(0, 3) v t~ 0-95N(0, 1) + 0-05Ä(-25,25) 

t non-robust x\ robust x\ non-robust X robust x\ 

10 -0-310 -0-256 0-700 0-486 

20 0-351 0-316 0-661 0-504 

30 0-365 0-339 0-651 0-502 

40 0-288 0-274 0-622 0-488 
50 0-266 0-277 0-595 0-471 
60 0-563 0-517 0-452 0-466 
70 0-481 0-490 0-421 0-466 
80 0-481 0-491 0-511 0-517 

90 0-481 0-490 0-330 0-499 
100 0-481 0-490 0-312 0-487 

150 0-496 0-495 0-357 0-479 
200 0-496 0-495 0-368 0-480 
250 0-493 0-494 0-368 0-477 
300 0-493 0-494 0-395 0-479 
350 0-493 0-494 0-405 0-480 
400 0-493 0-494 0-434 0-488 
450 0-494 0-495 0-439 0-491 
500 0-689 0-507 0-438 0-489 
550 0-680 0-506 0-452 0-488 
600 0-677 0-506 0-458 0-491 
650 0-677 0-506 0-477 0-497 
700 0-672 0-507 0-476 0-496 
750 0-671 0-507 0-476 0-496 
800 0-668 0-507 0-480 0-499 
850 0-667 0-508 0-480 0-498 
900 0-666 0-508 0-480 0-497 

APPENDIX: PROOF OF THEOREM 

Lemma 1. Let $F0 c= J*7\ a ... c «f be a sequence of tr-algebras in a probability 
space (Q, 2F, P). Let zt,$t,t,t,r\t (t = 0, 1, ...) be non-negative #"-measurable 
random variables such that 

E{zt\^t_l)<(\ + & . - 0 - V , +C*-i - * - i , ' = 1 , 2 , 
OO 00 

]T f$t < co a.s., YJ Ct < °° a-s-
1 = 0 f=0 

Then the sequence zt converges a.s. and 
CO 

y r\t < GO a.s. 
t = 0 

Proof. See [20]. 
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Lemma 2. Let in the model (3.24) an estimate xf of the parameter S be given by 
means of the recursive formulas 

xf = V i + at-1Y*-i^n(ut-i(yt ~ yt-i*t-1)), t =\,2,... (A.4) 

with an initial (random) value x0. Here at and «f (t = 0, 1, ...) are immeasurable 
random variables for #"f = a{x0,vt,vt_u ...} fulfilling 

00 °° 

0 < „ ( 1 ) < a f < a ( 2 ) , _ > t 1 ) = = 0 0 ' X > ( 2 ) ) 2 < o o ; (A.5) 
i^O t=o 

0 < / < < M f < K < o o a.s. (A.6) 

for deterministic sequences a\l), a\2) and constants k, K. Let the assumptions (3.27) 
to (3.30) be fulfilled. Then 

xt -* $ a.s. (A.7) 

Proof. Put 

Xt = X f — XT . 

Then (A.4) can be rewritten to the form 

xt = *r- i - at_1yt_l\l/H(ut_1(yt_xxt_-L - vt)). 

Hence one obtains 

x2 < x2_x - 2af_1yf_1xf_1(/t/Y(Mf_1(xf_1 - vt)) + (a(
t
2_\cyt_l)

2 

(A.S) 
and for the conditional expectations 

E(x2 | iWt_x) < x2_. - 2a f_ij f_ ,*._. E{i]/H(ut_^j;, _ <xf _, - uf)) | J%_ J + 

+ (a?2xcyt-x)
2 . 

Let us apply Lemma 1 for zf = xf, /jf_] = 0, Ct-i = (a(
t-\

cyt-i)
2> Vt-i = 

= 2at_lyt_lxt_l E{ij/H(ut_1(yt_1xt_1 — vt)) | J ^ . f } . The only problem may be to 
verify that t]t > 0 a.s.: Let us denote 

<p(b, u) = -V\l/H(u(b + v)) = J"„ i/ti/(M(̂  + x)) dEv(x) , - c o < /3 < co , 

/c < M ^ K . (A.9) 

Then due to the assumptions (3.28) and (3.29) it even holds 

b<p(b,u)>0, /J + 0 , k = u=K, (A.10) 

which guarantees specially the non-negativeness of r\t. 

According to Lemma 1 there exists a (finite) random variable x such that 

xf -> x a.s. (A-ll) 

From (A.8) it follows for an arbitrary n 
n n 

xl = x2
0 - 2Y,at_1yt_1xt_l\j/H(ut(yt_1xt_1 - vt)) + c2^(a(

tl\yt_x)
2 

í = i 
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and hence 
00 

2 SE{a r_1^-iX .-1^H(« .:-i( .Vf-i**-i ~ vt))} < 
t= i 

^Ex2+(c(ry)2iW2- ,i)2, 
t = i 

where a2 = var yt = E v2. Therefore according to (A.5) one has 
00 

£ - . - 1 E f ^ - i X . - ! ^ - , - ! ^ - ^ . - ! - t>,))} < CO . 
t = 1 

Since XVt
1} = oo a subsequence must exist such that 
oo 

ZE{y .v-i*^i^ff(Mo-1(^0-1*0-1 ~ V*J))} < °° • 
t = 1 

Hence 

ytj. t x ( r . E{IAH("O- 1(^0-1*0-1 _ yo)) I ̂ o - 1 } ~* ° a-s-

or equivalently by means of the denotation (A.9) 

ytj- txtj. x(p(ytj- txtj-1, utJ-1) -> 0 a.s. 

Due to (A.10) it implies 

ytj.txtJ.x-*0 a.s. (A.12) 

Further one can write 

VtjXfj-i = ytj(xtj-i ~ xtJ) + yt.xt. - 8ytJ„1xt.-l . (A.13) 

Since yt are identically distributed and the limit relations (A. 11) and (A.12) hold all 
three summands on the right-hand side of (A.13) converge in probability to zero, i.e. 

vtJxt _ ! —> 0 in probability . (AT4) 

Due to independence of xt t and vt, where vt are identically distributed, and due 
to (A. 11) it implies finally 

xt —• 0 a.s. 

Proof of Theorem. It holds 

Pt - (P7-\ + ylil^r1 = [Pol + (yl + ••• + yli)l«2Tl • 

Hence one obtains that the J%-measurable random variable 

l(Pt+1y; + a2) щ = <j\(Pt+1y
2 + a2), .. = 0 ,1 , . . 

fulfils 

(2a)-1 <ut<a~1 

and further due to the properties of the process yt (see [7], p. 210, Thm. 6) 

tPt -> t r 2 /^ a.s. (A.15) 

Let us choose arbitrary s > 0 and 0 < 5 < a2\a2. With respect to (A.15) there exists 
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to such that 

P( sup \tPt - a2\a2
y\ < 8) > 1 - £ 

t _ t o 

and hence 

Put 

P(n[ | !P t - o2ja2
y\ < 8]) > 1 - £ 

f_to 

/ л f 

/ for t = 0, 1, ..., t0 - 1 

* , = ~—xt-i + Ptyt-i^'^B^t-iiyt - yt-iXt-i)) 
\ for t ^ to, [tP, - (T2/(T2 | < 8 

x._« + t-^trja*)yt-ififiit-^y, - y f _ i * t - i ) ) 
for t ^ t0 , |tP f - cr2/o-;| S> <) . 

Then according to Lemma 2 with a ! 1 } = t~x(a2\ay - 8)a~l,a\2) = t~x(a2\a] + 8). 

.o~x,k- (2a)~x, K - a~x it holds 

x, -» 5 a.s. 

Finally one can write 

P(*, -> $) =• P( n [3c, = *,] n [x, - 5]) = P( 0 [x, = x j ) ^ 
f _ f o f _ t o 

^ p(n[ | !Pt-^ 2KI < 5 ] ) > i - £ . 
t _ f o 

Since £ > 0 can be arbitrary it must be xf -> 5 a.s. • 
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