## Kybernetika

Tomáš Capra; Ma. Rosario Romera Ayllón
Robust Kalman filter and its application in time series analysis

Kybernetika, Vol. 27 (1991), No. 6, 481--494
Persistent URL: http://dml.cz/dmlcz/124292

## Terms of use:

© Institute of Information Theory and Automation AS CR, 1991
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

# ROBUST KALMAN FILTER AND ITS APPLICATION IN TIME SERIES ANALYSIS 

TOMÁŠ CIPRA, ROSARIO ROMERA

A method of robustification of the Kalman filter is suggested in the paper. In general, the method provides approximative recursive formulas for robust estimation of the state but in some special cases exact recursive formulas can be derived. The steady model and the AR(1) model are investigated in more details including a simulation study and the strong consistency of the recursive formulas for the robust estimation of the autoregressive parameter.

## 1. INTRODUCTION

The Kalman filter is a useful instrument for recursive treatment of dynamic linear systems (see e.g. [2]) including some popular time series model (nowadays there are even various non-linear generalizations of the Kalman filter).

Let us consider a dynamic system of the form

$$
\begin{align*}
& x_{t}=F_{t} x_{t-1}+w_{t},  \tag{1.1}\\
& y_{t}=H_{t} x_{t}+v_{t}, \tag{1.2}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{E} w_{t}=0, \quad \mathrm{E} v_{t}=0, \quad \mathrm{E}\left(w_{s} w_{t}^{\prime}\right)=\delta_{s t} Q_{t}, \quad \mathrm{E}\left(v_{s} v_{t}^{\prime}\right)=\delta_{s t} R_{t}, \quad \mathrm{E}\left(w_{s} v_{t}^{\prime}\right)=0 \tag{1.3}
\end{equation*}
$$

and some initial conditions are fulfilled. The state equation (1.1) describes behavior of an $n$-dimensional state vector $x_{t}$ in time while the observation equation (1.2) describes relation of the unobservable state $x_{t}$ to an $m$-dimensional observation vector $y_{t}$. The matrices $F_{t}, H_{t}, Q_{t}, R_{t}$ of appropriate dimensions are supposed to be known.

The Kalman filter gives recursive formulas for construction of the linear minimum variance estimator $\hat{x}_{t}^{t}$ of the state $x_{t}$ and for its error covariance matrix $P_{t}^{t}=$ $=\mathrm{E}\left(x_{t}-\hat{x}_{t}^{t}\right)\left(x_{t}-\hat{x}_{t}^{t}\right)^{\prime}$ in a current time period $t$ using all previous information $Y^{t}=\left\{y_{0}, y_{1}, \ldots, y_{t}\right\}$. These formulas have the form

$$
\begin{align*}
& \hat{x}_{t}^{t}=\hat{x}_{t}^{t-1}+P_{t}^{t-1} H_{t}^{\prime}\left(H_{t} P_{t}^{t-1} H_{t}^{\prime}+R_{t}\right)^{-1}\left(y_{t}-H_{t} \hat{x}_{t}^{t-1}\right),  \tag{1.4}\\
& P_{t}^{t}=P_{t}^{t-1}-P_{t}^{t-1} H_{t}^{\prime}\left(H_{t} P_{t}^{t-1} H_{t}^{\prime}+R_{t}\right)^{-1} H_{t} P_{t}^{t-1}, \tag{1.5}
\end{align*}
$$

where

$$
\begin{align*}
& \hat{x}_{t}^{t-1}=F_{t} \hat{x}_{t-1}^{t-1},  \tag{1.6}\\
& P_{t}^{t-1}=F_{t} P_{t-1}^{t-1} F_{t}^{\prime}+Q_{t} \tag{1.7}
\end{align*}
$$

are predictive values constructed for time $t$ at time $t-1$.
The standard Kalman filter supposes normal distributions of the residuals $w_{t}$ and $v_{t}$, i.e.

$$
\begin{equation*}
w_{t} \sim N\left(0, Q_{t}\right), \quad v_{t} \sim N\left(0, R_{t}\right) . \tag{1.8}
\end{equation*}
$$

Then $\hat{X}_{t}^{t}$ is even the minimum variance estimator of the state since it holds

$$
\begin{equation*}
\hat{x}_{t}^{t}=\mathrm{E}\left(x_{t} \mid Y^{t}\right) \tag{1.9}
\end{equation*}
$$

However, the assumption of the normal residuals is not frequently fulfilled in practice where one must face various forms of contamination of data. Therefore robustification of the Kalman filter is very important from the practical point of view. Various robust modifications of the Kalman filter have been suggested in the literature (see e.g. [6], [13], [14], [15], [17], [21]). Some of them are connected with difficulties when they are applied practically (e.g. the approach in [14] assumes that one can construct such linear transform $T_{t}$ that the transformed residual process $T_{t}\left(y_{t}-H_{t} \hat{x}_{t}^{t-1}\right)$ has some special distributional properties although the transformation $T_{t}$ depends on the distribution of the residuals which is not apriori known).

In Section 2 a robust modification of the Kalman filter is suggested which seems to be simple from the numerical point of view. The robustification is based on the methodology of the M-estimators (see e.g. [11]) and, in general, it gives approximative recursive formulas for robust estimation of the state. Some special cases which enable to construct exact recursive formulas are described in Section 3. Numerical examples are given in Section 4. The strong consistency of the recursive formulas for robust estimation of the autoregressive parameter in the model $\operatorname{AR}(1)$ is proved in the Appendix.

## 2. ROBUST KALMAN FILTER

It is known (see e.g. [3]) that the current state estimate $\hat{x}_{t}^{t}$ in (1.4) can be derived from the predictive values $\hat{x}_{t}^{t-1}$ and $P_{t}^{t-1}$ in (1.6) and (1.7), when a current value $y_{t}$ is observed, by the following minimization procedure

$$
\begin{align*}
& \hat{x}_{t}^{t}=\operatorname{argmin}\left\{\left(\hat{x}_{t}^{t-1}-x_{t}\right)^{\prime}\left(P_{t}^{t-1}\right)^{-1}\left(\hat{x}_{t}^{t-1}-x_{t}\right)+\right. \\
& \left.+\left(y_{t}-H_{t} x_{t}\right)^{\prime} R_{t}^{-1}\left(y_{t}-H_{t} x_{t}\right)\right\}, \tag{2.1}
\end{align*}
$$

where argmin is taken over $x_{t} \in \mathbb{R}^{n}$. The procedure (2.1) can be looked upon as the weighted least squares method and it is equivalent to the (non-weighted) least squares method in the linear regression model

$$
\begin{equation*}
\binom{\left(P_{t}^{t-1}\right)^{-1 / 2}}{R_{t}^{-1 / 2} y_{t}^{t-1}}=\binom{\left(P^{t-1}\right)^{-1 / 2}}{R_{t}^{-1 / 2} H_{t}} x_{t}+\binom{\varepsilon_{t}}{\eta_{t}}, \tag{2.2}
\end{equation*}
$$

where the symbol $D^{-1 / 2}$ denotes the square root matrix of an inverse matrix $D^{-1}$ and the residuals $\varepsilon_{t}$ and $\eta_{t}$ fulfil

$$
\begin{equation*}
\mathrm{E} \varepsilon_{t}=0, \quad \mathrm{E} \eta_{t}=0, \quad \operatorname{var}\binom{\varepsilon_{t}}{\eta_{t}}=I \tag{2.3}
\end{equation*}
$$

Moreover, if one compares (2.2) with (1.1) and (1.2) then one obtains

$$
\begin{equation*}
\varepsilon_{t}=\left(P_{t}^{t-1}\right)^{-1 / 2}\left(\hat{x}_{t}^{t-1}-F_{t} x_{t-1}-w_{t}\right), \quad \eta_{t}=R_{t}^{-1 / 2} v_{t} \tag{2.4}
\end{equation*}
$$

so that a possible contamination of $w_{t}$ results in a contamination of $\varepsilon_{t}$ without affecting $\eta_{t}$ and, similarly, a possible contamination of $v_{t}$ results in a contamination of $\eta_{t}$ without affecting $\varepsilon_{t}$ (in the current time period $t$ ).

Let us rewrite the model (2.2) separately for particular rows as

$$
\begin{align*}
& p_{i t}=a_{i t} x_{t}+\varepsilon_{i t}, \quad i=1, \ldots, n  \tag{2.5}\\
& s_{j t}=b_{j t} x_{t}+\eta_{j t}, \quad j=1, \ldots, m
\end{align*}
$$

where

$$
\begin{aligned}
& \left(P_{t}^{t-1}\right)^{-1 / 2} \hat{x}_{t}^{t-1}=\left(\begin{array}{c}
p_{1 t} \\
\vdots \\
p_{n t}
\end{array}\right), \quad R_{t}^{-1 / 2} y_{t}=\left(\begin{array}{c}
s_{1 t} \\
\vdots \\
s_{m t}
\end{array}\right) \\
& \left(P_{t}^{t-1}\right)^{-1 / 2}=\left(\begin{array}{c}
a_{1 t} \\
\vdots \\
a_{n t}
\end{array}\right), \quad R_{t}^{-1 / 2} H_{t}=\left(\begin{array}{c}
b_{1 t} \\
\vdots \\
b_{m t}
\end{array}\right) \\
& \varepsilon_{t}=\left(\begin{array}{c}
\varepsilon_{1 t} \\
\vdots \\
\varepsilon_{n t}
\end{array}\right), \quad \eta_{t}=\left(\begin{array}{c}
\eta_{1 t} \\
\vdots \\
\eta_{m t}
\end{array}\right)
\end{aligned}
$$

The model (2.5) has such form that the corresponding least squares method

$$
\begin{equation*}
\hat{x}_{t}^{t}=\operatorname{argmin}\left\{\sum_{i=1}^{n}\left(p_{i t}-a_{i t} x_{t}\right)^{2}+\sum_{j=1}^{m}\left(s_{j t}-b_{j t} x_{t}\right)^{2}\right\} \tag{2.6}
\end{equation*}
$$

can be easily robustified replacing (2.6) by

$$
\begin{equation*}
\hat{x}_{t}^{t}=\operatorname{argmin}\left\{\sum_{i=1}^{n} \varrho_{1 i}\left(p_{i t}-a_{i t} x_{t}\right)+\sum_{j=1}^{m} \varrho_{2 j}\left(s_{j t}-b_{j t} x_{t}\right)\right\} \tag{2.7}
\end{equation*}
$$

(argmin is taken over $x_{t} \in \mathbb{R}^{n}$ ), where $\varrho_{1 i}$ and $\varrho_{2 j}$ are suitable robustifying functions with derivatives $\psi_{1 i}(i=1, \ldots, n)$ and $\psi_{2 j}(j=1, \ldots, m)$ used in the methodology of M-estimation. According to (2.4) the application of the robustifying functions $\varrho_{1 i}$ suppresses consequences of a contamination of $w$ and, similarly, the application of the robustifying functions $\varrho_{2 j}$ suppresses consequence of a contamination of $v$.

The normal equations for $\hat{x}_{t}^{t}$ corresponding to (2.7) have the form

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i t}^{\prime} \psi_{1 i}\left(p_{i t}-a_{i t} \hat{\hat{t}}_{t}^{t}\right)+\sum_{j=1}^{m} b_{j t}^{\prime} \psi_{2 j}\left(s_{j t}-b_{j t} \hat{x}_{t}^{t}\right)=0 \tag{2.8}
\end{equation*}
$$

and can be solved explicitly only in some special cases (see Section 3). In general, one can use the following approximative normal equations

$$
\begin{equation*}
\sum_{i=1}^{n} w_{1 i t} a_{i t}^{\prime}\left(p_{i t}-a_{i t} \hat{x}_{t}^{t}\right)+\sum_{j=1}^{m} w_{2 j t} b_{j t}^{\prime}\left(s_{j t}-b_{j t} \hat{x}_{t}^{t}\right)=0 \tag{2.9}
\end{equation*}
$$

where the weights $w_{1 i t}(i=1, \ldots, n)$ and $w_{2 j t}(j=1, \ldots, m)$ are defined as

$$
\begin{align*}
& w_{1 i t}=\frac{\psi_{1 i}\left(p_{i t}-a_{i t} \hat{x}_{t}^{t-1}\right)}{p_{i t}-a_{i t} \hat{x}_{t}^{t-1}},  \tag{2.10}\\
& w_{2 j t}=\frac{\psi_{2 j}\left(s_{j t}-b_{j t} \hat{x}_{t}^{t-1}\right)}{s_{j t}-b_{j t} \hat{x}_{t}^{t-1}} .
\end{align*}
$$

The equations (2.9) follow from (2.8) if we approximate $\hat{x}_{t}^{t}$ by $\hat{x}_{t}^{t-1}$. They can be considered as a recursive variant of the normal equations from the IWLS (Iterated Weighted Least Squares) method which is a popular algorithm for numerical calculation of M-estimates (see e.g. [11], [22]).

Using the approximation (2.9) one obtains after some algebraic treatment the following robust modification of the recursive formulas (1.4) and (1.5)

$$
\begin{align*}
& \hat{x}_{t}^{t}=\hat{x}_{t}^{t-1}+\left(P_{t}^{t-1}\right)^{1 / 2} W_{1 t}^{-1}\left(P_{t}^{t-1}\right)^{1 / 2} H_{t}^{\prime}\left[H_{t}\left(P_{t}^{t-1}\right)^{1 / 2} W_{1 t}^{-1}\left(P_{t}^{t-1}\right)^{1 / 2} H_{t}^{\prime}+\right. \\
& \left.+R_{t}^{1 / 2} W_{2 t}^{-1} R_{t}^{1 / 2}\right]^{-1}\left(y_{t}-H_{t} \hat{x}_{t}^{t-1}\right),  \tag{2.11}\\
& P_{t}^{t}=\left(P_{t}^{t-1}\right)^{1 / 2} W_{1 t}^{-1}\left(P_{t}^{t-1}\right)^{1 / 2}-\left(P_{t}^{t-1}\right)^{1 / 2} W_{1 t}^{-1}\left(P_{t}^{t-1}\right)^{1 / 2} . \\
& . H_{t}^{\prime}\left[H_{t}\left(P_{t}^{t-1}\right)^{1 / 2} W_{1 t}^{-1}\left(P_{t}^{t-1}\right)^{1 / 2} H_{t}^{\prime}+R_{t}^{1 / 2} W_{2 t}^{-1} R_{t}^{1 / 2}\right]^{-1} . \\
& . H_{t}\left(P_{t}^{t-1}\right)^{1 / 2} W_{1 t}^{-1}\left(P_{t}^{t-1}\right)^{1 / 2}, \tag{2.12}
\end{align*}
$$

where $\hat{x}_{t}^{t-1}, P_{t}^{t-1}$ are given in (1.6), (1.7) and

$$
W_{1 t}=\operatorname{diag}\left\{w_{11 t}, \ldots, w_{1 n t}\right\}, \quad W_{2 t}=\operatorname{diag}\left\{w_{21 t}, \ldots, w_{2 m t}\right\} .
$$

## 3. SPECIAL CASES

In this section some special cases of the model (1.1), (1.2) are given which enable to find the explicit solution of the normal equations (2.8). In this way one obtains the non-approximative robust modification of the recursive formula (1.4) for the state estimate $\hat{x}_{t}^{t}$. On the other hand, the derivation of the non-approximative recursive formula for the corresponding error covariance matrix $P_{t}^{t}$ is usually so difficult that we recommend to use the classical formula (1.5).
One of the most frequent types of contaminated data are $\varepsilon$-contaminated normal data in which a normal distribution with an acceptable variance is contaminated by a small fraction $\varepsilon$ (e.g. $\varepsilon=0.05$ ) of a symmetric distribution with heavy tails (it is the source of so called outliers). For such data with $\varepsilon$-contaminated distribution $N(0,1)$ (the unit variance can be achieved by means of standardization) the Huber's
function $\psi_{H}$ of the form

$$
\psi_{H}(z)=\left\langle\begin{array}{lll}
z & \text { for } & |z| \leqq c  \tag{3.1}\\
c \operatorname{sgn}(z) & \text { for } & |z|>c
\end{array}\right.
$$

gives robust estimates of location which are optimal in the min-max sense, i.e. which have the minimal variance over the least favorable distributions (see e.g. [11], [14]). The constant $c$ depends on $\varepsilon$ (e.g. one recommends $c=1.645$ for $\varepsilon=0.05$ ). Considering its practical importance we confine ourselves in the following text to the $\psi$ functions of the type (3.1). In the case without contamination we shall use the classical least squares approach with the function

$$
\begin{equation*}
\psi_{L S}(z)=z \tag{3.2}
\end{equation*}
$$

Some of the following models are very popular in time series analysis.
(a) Kalman filter with contaminated scalar observations:

$$
\begin{align*}
& x_{t}=F_{t} x_{t-1}+w_{t},  \tag{3.3}\\
& y_{t}=h_{t} x_{t}+v_{t} \tag{3.4}
\end{align*}
$$

It is a special case of (1.1)-(1.3) with $m=1$ and

$$
\begin{equation*}
w_{t} \sim N\left(0, Q_{t}\right), \quad v_{t} \sim \varepsilon \text {-contaminated } \quad N\left(0, r_{t}\right) \tag{3.5}
\end{equation*}
$$

The normal equations (2.8) with $\psi_{1 i}=\psi_{L S}(i=1, \ldots, n)$ and $\psi_{21}=\psi_{H}$ give the following robust recursive formulas

$$
\begin{align*}
& \hat{x}_{t}^{t}=\hat{x}_{t}^{t-1}+P_{t}^{t-1} h_{t}^{\prime} r_{t}^{-1 / 2} \psi_{H}\left(\frac{r_{t}^{1 / 2}\left(y_{t}-h_{t} \hat{x}_{t}^{t-1}\right)}{h_{t} P_{t}^{t-1} h_{t}^{\prime}+r_{t}}\right),  \tag{3.6}\\
& P_{t}^{t}=P_{t}^{t-1}-\frac{P_{t}^{t-1} h_{t}^{\prime} h_{t} P_{t}^{t-1}}{h_{t} P_{t}^{t-1} h_{t}^{\prime}+r_{t}} \tag{3.7}
\end{align*}
$$

where $\hat{X}_{t}^{t-1}$ and $P_{t}^{t-1}$ are given in (1.6) and (1.7). The formula (3.6) can be rewritten as

$$
\hat{x}_{t}^{t}=\hat{x}_{t}^{t-1}+\begin{align*}
& \frac{P_{t}^{t-1} h_{t}^{\prime}}{h_{t} P_{t}^{t-1} h_{t}^{\prime}+r_{t}}\left(y_{t}-h_{t} \hat{x}_{t}^{t-1}\right) \\
& \quad \begin{array}{l}
\text { for }\left|y_{t}-h_{t} \hat{x}_{t}^{t-1}\right| \leqq c r_{t}^{-1 / 2}\left(h_{t} P_{t}^{t-1} h_{t}^{\prime}+r_{t}\right) \\
\begin{array}{l}
P_{t}^{t-1} h_{t}^{\prime} r_{t}^{-1 / 2} c \operatorname{sgn}\left(y_{t}-h_{t} \hat{x}_{t}^{-1}\right) \\
\\
\text { otherwise } .
\end{array}
\end{array} \text { (3.8) } \tag{3.8}
\end{align*}
$$

If one uses a general function $\psi$ instead of $\psi_{I}$ then according to (2.11) and (2.12)

$$
\begin{align*}
& \hat{x}_{t}^{t}=\hat{x}_{t}^{t-1}+\frac{P_{t}^{t-1} h_{t}^{\prime}}{h_{t} P_{t}^{t-1} h_{t}^{\prime}+r_{t} / w_{t}}\left(y_{t}-h_{t} \hat{x}_{t}^{t-1}\right),  \tag{3.9}\\
& P_{t}^{t}=P_{t}^{t-1}-\frac{P_{t}^{t-1} h_{t}^{\prime} h_{t} P_{t}^{t-1}}{h_{t} P_{t}^{t-1} h_{t}^{\prime}+r_{t} / w_{t}}, \tag{3.10}
\end{align*}
$$

where

$$
\begin{equation*}
w_{t}=\frac{\psi\left(r_{t}^{-1 / 2}\left(y_{t}-h_{t} \hat{x}_{t}^{t-1}\right)\right)}{r^{-1 / 2}\left(y_{t}-h_{t} \hat{x}_{t}^{t-1}\right)} . \tag{3.11}
\end{equation*}
$$

The case described in (a) is applicable e.g. in the situation when one estimates recursively regression parameters $x_{t}$ in a linear regression model (3.4) with contaminated observations $y_{t}$ (in the simplest case one can put $F_{t}=I, Q_{t}=0, r_{t}=\sigma^{2}$ ).
(b) Filtering in steady model with contaminated observations:

$$
\begin{align*}
& x_{t}=x_{t-1}+w_{t},  \tag{3.12}\\
& y_{t}=x_{t}+v_{t}, \tag{3.13}
\end{align*}
$$

where in addition to (1.3)

$$
\begin{equation*}
w_{t} \sim N\left(0, q_{t}\right), \quad v_{t} \sim \varepsilon \text {-contaminated } \quad N\left(0, r_{t}\right) . \tag{3.14}
\end{equation*}
$$

The one-dimensional process $y_{t}(n=1)$, which presents a one-dimensional random walk $x_{t}(m=1)$ observed with an error $v_{t}$, is called the steady model and has useful applications in practical time series analysis (see e.g. [8]). According to (3.6) and (3.7) one obtains the following robust recursive formulas for the filtered values of the process $y_{t}$

$$
\begin{align*}
& \hat{x}_{t}^{t}=\hat{x}_{t-1}^{t-1}+\left(P_{t-1}^{t-1}+q_{t}\right) r_{t}^{-1 / 2} \psi_{H}\left(\frac{r_{t}^{1 / 2}\left(y_{t}-\hat{x}_{t-1}^{t-1}\right)}{P_{t-1}^{t-1}+q_{t}+r_{t}}\right)  \tag{3.15}\\
& P_{t}^{t}=\frac{\left(P_{t-1}^{t-1}+q_{t}\right) r_{t}}{P_{t-1}^{t-1}+q_{t}+r_{t}} . \tag{3.16}
\end{align*}
$$

(c) Recursive estimation in autoregressive model $\operatorname{AR}(p)$
with innovation outliers:

$$
\begin{align*}
& x_{t}=x_{t-1}  \tag{3.17}\\
& y_{t}=h_{t} x_{t}+v_{t} \tag{3.18}
\end{align*}
$$

where $h_{t}=\left(y_{t-1}, \ldots, y_{t-p}\right)$ and in addition to (1.3)

$$
\begin{equation*}
v_{t} \sim \varepsilon \text {-contaminated } \quad N\left(0, \sigma^{2}\right) . \tag{3.19}
\end{equation*}
$$

The one-dimensional process $y_{t}(n=p, m=1)$ is called the autoregressive process with innovation outliers (see e.g. [12], [22]). According to (3.6) and (3.7) one obtains the following robust recursive formulas for the parameter estimates

$$
\begin{align*}
& \hat{x}_{t}^{t}=\hat{x}_{t-1}^{t-1}+P_{t-1}^{t-1} h_{t}^{\prime} \sigma^{-1} \psi_{H}\left(\frac{\sigma\left(y_{t}-h_{t} \hat{x}_{t-1}^{t-1}\right)}{h_{t} P_{t-1}^{t-1} h_{t}^{\prime}+\sigma^{2}}\right),  \tag{3.20}\\
& P_{t}^{t}=P_{t-1}^{t-1}-\frac{P_{t-1}^{t-1} h_{t}^{\prime} h_{t} P_{t-1}^{t-1}}{h_{t} P_{t-1}^{t-1} h_{t}^{\prime}+\sigma^{2}} . \tag{3.21}
\end{align*}
$$

Specially in the model $\operatorname{AR}(1)$ one has $h_{t}=y_{t-1}$ so that

$$
\begin{align*}
\hat{x}_{t}^{t} & =\hat{x}_{t-1}^{t-1}+P_{t-1}^{t-1} y_{t-1} \sigma^{-1} \psi_{H}\left(\frac{\sigma\left(y_{t}-y_{t-1} \hat{x}_{t-1}^{t-1}\right)}{P_{t-1}^{t-1} y_{t-1}^{2}+\sigma^{2}}\right),  \tag{3.22}\\
P_{t}^{t} & =\frac{P_{t-1}^{t-1} \sigma^{2}}{P_{t-1}^{t-1} y_{t-1}^{2}+\sigma^{2}} . \tag{3.23}
\end{align*}
$$

Various convergence theorems which are mostly based on approaches of the stochastic approximation can be proved for the previous recursive formulas (see also [4], [5], [9], [10], [16], [18], [19], [23] and others). For demonstration in the Appendix we shall give the proof of the following assertion.

Theorem. Let in the model AR(1)

$$
\begin{equation*}
y_{t}=\vartheta y_{t-1}+v_{t}, \quad t=\ldots,-1,0,1, \ldots \tag{3.24}
\end{equation*}
$$

an estimate $\hat{x}_{t}$ of the parameter $\vartheta$ be given by means of the recursive formulas

$$
\begin{align*}
& \hat{x}_{t}=\hat{x}_{t-1}+P_{t} y_{t-1} \sigma^{-1} \psi_{H}\left(\frac{\sigma\left(y_{t}-y_{t-1} \hat{x}_{t-1}\right)}{P_{t} y_{t-1}^{2}+\sigma^{2}}\right), \quad t=1,2, \ldots,  \tag{3.25}\\
& P_{t}=\frac{P_{t-1} \sigma^{2}}{P_{t-1} y_{t-1}^{2}+\sigma^{2}}, \quad t=1,2, \ldots \tag{3.26}
\end{align*}
$$

with initial (random) values $\hat{x}_{0}$ and $P_{0}$. Let the following assumptions be fulfilled

$$
\begin{equation*}
|\theta|<1 \text {; } \tag{3.27}
\end{equation*}
$$

$v_{t} \sim \mathrm{iid}, \quad \mathrm{E} v_{t}=0, \quad \operatorname{var} v_{t}=\sigma^{2} \quad\left(0<\sigma^{2}<\infty\right) ;$
the distribution of $v_{t}$ is symmetric such that $F_{v}(-\varepsilon)<F_{v}(\varepsilon)$ for each
$\varepsilon>0$;
E $\hat{x}_{0}^{2}<\infty, \quad P_{0}>0$ a.s., $\hat{x}_{0}, P_{0}, v_{t}$ are independent.
Then

$$
\begin{equation*}
\hat{x}_{t} \rightarrow \vartheta \quad \text { a.s. } \tag{3.30}
\end{equation*}
$$

Remark 1. Under the assumptions of Theorem $y_{t}$ is a stationary $\operatorname{AR}(1)$ process such that the common distribution of its white noise has a positive mass concentrated about zero (specially, this assumption is fulfilled for an $\varepsilon$-contaminated normal distribution with zero mean). If comparing (3.25) and (3.26) with (3.22) and (3.23) Theorem uses the simpler denotation $\hat{x}_{t}$ and $P_{t}$ instead of $\hat{x}_{t}^{t}$ and $P_{t}^{t}$. Moreover, the formula (3.25) contains the more actual value $P_{t}$ instead of $P_{t-1}$.

Remark 2. Theorem stays valid if we replace $\sigma^{2}$ in (3.25) and (3.26) by random variables $\sigma_{t}^{2}$ such that $0<k \leqq \sigma_{t}^{2} \leqq K<\infty$ a.s. ( $k, K$ are constants). Therefore in applications one can use these formulas with a recursive estimate $\sigma_{t}^{2}$ of $\sigma^{2}$ which is trimmed in a suitable way.

Remark 3. Other generalizations are possible. E. g., one can use a more general
function $\psi$ fulfilling

$$
\begin{align*}
& |\psi(x)| \leqq c, \quad-\infty<x<\infty \\
& b \int_{-\infty}^{\infty} \psi(u(b+x)) \mathrm{d} F_{v}(x) \geqq 0, \quad-\infty<b<\infty, \quad(2 \sigma)^{-1} \leqq u \leqq \sigma^{-1} \tag{3.33}
\end{align*}
$$

if $\quad b_{t} \int_{-\infty}^{\infty} \psi\left(u_{t}\left(b_{t}+x\right)\right) \mathrm{d} F_{v}(x) \rightarrow 0 \quad$ for an arbitrary sequence

$$
\begin{equation*}
(2 \sigma)^{-1} \leqq u_{t} \leqq \sigma^{-1} \quad \text { then } \quad b_{t} \rightarrow 0 \tag{3.34}
\end{equation*}
$$

It is also possible to reformulate the problem for non-linear autoregressive models of the type

$$
\begin{equation*}
y_{t}=\vartheta f_{t-1}\left(Y^{t-1}\right)+v_{t} \tag{3.35}
\end{equation*}
$$

( $f_{t}$ are suitable non-linear functions, see [1]) replacing $y_{t-1}$ by $f_{t-1}\left(Y^{t^{-1}}\right)$ in (3.25), (3.26) and assuming in addition to (3.27)-(3.30)

$$
\begin{align*}
& \mathrm{E}\left[f_{t}\left(Y^{t}\right)\right]^{2} \leqq K<\infty, \quad t=0,1, \ldots  \tag{3.36}\\
& \sum_{t=0}^{n}\left[f_{t}\left(Y^{t}\right)\right]^{2} / n \rightarrow d \quad \text { a.s. } \tag{3.37}
\end{align*}
$$

( $K, d$ are constants).

## 4. NUMERICAL EXAMPLE

Example 1. Peña and Guttman [17] have demonstrated their method of robust Kalman filtering based on calculation of posterior probabilities in mixtures of normal distributions be means of a simulation example for the steady model (3.12), (3.13) with $w_{t} \sim N(0,1)$ and $v_{t} \sim N(0,4)$. In Table 1 their results are compared with the ones provided by the non-robustified Kalman filter (1.4)-(1.7) and by the robust formulas (3.15), (3.16) with $c=1.645$. Obviously the outlier $y_{20}=35.00$ is not suppressed in the non-robust filtering ( $\hat{x}_{20}^{20}=16.76$ is strongly biased) while the both robust methods give acceptable filtered values ( $\hat{x}_{20}^{20}=6.04$ and 6.87 ). The results provided by the both robust methods are comparable but the recursive formulas (3.15), (3.16) are simpler numerically.

Example 2. The process $\operatorname{AR}(1)$ of the form $y_{t}=0 \cdot 5 y_{t-1}+v_{t}$ with innovation outliers $v_{t}$ has been generated for various heavy-tailed distributions contaminating the normal distribution. Table 2 contains the results of the recursive estimation of the parameter $\vartheta=0.5$ for $v_{t} \sim 0.9 N(0,1)+0.1 C(0,3)$ and $v_{t} \sim 0.95 N(0,1)+$ $+0.05 R(-25,25)$, where $C(a, b)$ denotes the Cauchy distribution with density $f(x)=(1 /(\pi b))\left[1+((x-a) / b)^{2}\right]^{-1}$ and $R(a, b)$ denotes the uniform distribution on ( $a, b$ ). The robust recursive estimates $\hat{x}_{t}^{t}=\hat{x}_{t}$ according to (3.25), (3.26) with $\sigma^{2}=1, \hat{x}_{0}=0, P_{0}=1$ are compared with the non-robust estimates according to (1.4)-(1.7). If an observation $y_{t_{0}}$ is a distinct outlier then it can deviate unpleasantly the subsequent non-robust estimates $\hat{x}_{t}^{t}\left(t \geqq t_{0}\right)$ while the robust estimates are not

Table 1. Kalman filter in the simulated steady model (3.12), (3.13) with $w_{t} \sim N(0,1), v_{t} \sim$ $\sim N(0,4)$.

| $t$ | Simulated values$(3.12),(3.13)$ |  | Non-robust filter$(1.4)-(1.7)$ |  | Robust filter Peña and Guttman [17] |  | Robust filter$(3.15),(3.16)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $x_{t}$ | $y_{t}$ | $\hat{x}_{t}^{t}$ | $P_{t}^{t}$ | $\hat{x}_{t}^{t}$ | $P_{t}^{t}$ | $\hat{x}_{t}^{t}$ | $P_{t}^{t}$ |
| 1 | $10 \cdot 00$ | 8.65 | $9 \cdot 66$ | $4 \cdot 0$ | 9.66 | 8.7 | $9 \cdot 66$ | $4 \cdot 0$ |
| 2 | $9 \cdot 83$ | $7 \cdot 28$ | $8 \cdot 34$ | $2 \cdot 2$ | 8.01 | $3 \cdot 0$ | $8 \cdot 34$ | $2 \cdot 2$ |
| 3 | $9 \cdot 98$ | $7 \cdot 44$ | $7 \cdot 94$ | $1 \cdot 8$ | $7 \cdot 73$ | $2 \cdot 0$ | $7 \cdot 94$ | 1.8 |
| 4 | 8.99 | 11.13 | $9 \cdot 25$ | $1 \cdot 6$ | $9 \cdot 12$ | 1.9 | $9 \cdot 25$ | $1 \cdot 6$ |
| 5 | $9 \cdot 36$ | $11 \cdot 18$ | $10 \cdot 02$ | $1 \cdot 6$ | 9.97 | $1 \cdot 7$ | $10 \cdot 02$ | 1.6 |
| 6 | $8 \cdot 50$ | $5 \cdot 45$ | $8 \cdot 22$ | 1.6 | 8.46 | $2 \cdot 3$ | $8 \cdot 22$ | $1 \cdot 6$ |
| 7 | $8 \cdot 90$ | $6 \cdot 17$ | $7 \cdot 42$ | $1 \cdot 6$ | $7 \cdot 45$ | 1.9 | $7 \cdot 42$ | 1.6 |
| 8 | $8 \cdot 20$ | $3 \cdot 92$ | $6 \cdot 05$ | $1 \cdot 6$ | $6 \cdot 07$ | 1.9 | $6 \cdot 05$ | 1.6 |
| 9 | $8 \cdot 47$ | 12.32 | $8 \cdot 50$ | $1 \cdot 6$ | $6 \cdot 91$ | $3 \cdot 6$ | $8 \cdot 16$ | 1.6 |
| 10 | $7 \cdot 46$ | 6.95 | $7 \cdot 90$ | $1 \cdot 6$ | $6 \cdot 93$ | $2 \cdot 2$ | $7 \cdot 69$ | 1.6 |
| 11 | $6 \cdot 49$ | $10 \cdot 46$ | 8.90 | $1 \cdot 6$ | $8 \cdot 40$ | $2 \cdot 0$ | 8.77 | $1 \cdot 6$ |
| 12 | $7 \cdot 34$ | $9 \cdot 54$ | $9 \cdot 15$ | $1 \cdot 6$ | 8.88 | $1 \cdot 7$ | $9 \cdot 07$ | 1.6 |
| 13 | $7 \cdot 82$ | $7 \cdot 07$ | $8 \cdot 33$ | $1 \cdot 6$ | $8 \cdot 16$ | 1.7 | $8 \cdot 29$ | 1.6 |
| 14 | $7 \cdot 06$ | $8 \cdot 17$ | $8 \cdot 27$ | 1.6 | $8 \cdot 16$ | $1 \cdot 6$ | 8.24 | $1 \cdot 6$ |
| 15 | $6 \cdot 85$ | $5 \cdot 59$ | $7 \cdot 22$ | 1.6 | $7 \cdot 18$ | 1.6 | $7 \cdot 21$ | $1 \cdot 6$ |
| 16 | $5 \cdot 67$ | 5.99 | $6 \cdot 74$ | $1 \cdot 6$ | $6 \cdot 71$ | 1.6 | 6.73 | $1 \cdot 6$ |
| 17 | $3 \cdot 69$ | $7 \cdot 29$ | $6 \cdot 95$ | $1 \cdot 6$ | $6 \cdot 94$ | 1.6 | $6 \cdot 95$ | $1 \cdot 6$ |
| 18 | $3 \cdot 37$ | $5 \cdot 94$ | $6 \cdot 56$ | 1.6 | $6 \cdot 55$ | 1.6 | $6 \cdot 56$ | $1 \cdot 6$ |
| 19 | $3 \cdot 25$ | $1 \cdot 96$ | $4 \cdot 76$ | 1.6 | $5 \cdot 10$ | $2 \cdot 2$ | $4 \cdot 76$ | $1 \cdot 6$ |
| 20 | $2 \cdot 81$ | $35 \cdot 00$ | 16.76 | 1.6 | $6 \cdot 04$ | $3 \cdot 1$ | $6 \cdot 87$ | 1.6 |
| 21 | $2 \cdot 36$ | $-0.62$ | $9 \cdot 86$ | $1 \cdot 6$ | $4 \cdot 81$ | $5 \cdot 5$ | $4 \cdot 76$ | $1 \cdot 6$ |
| 22 | $2 \cdot 46$ | $4 \cdot 13$ | $7 \cdot 62$ | 1.6 | $4 \cdot 40$ | $2 \cdot 5$ | $4 \cdot 51$ | 1.6 |
| 23 | $0 \cdot 82$ | $-0.84$ | $4 \cdot 32$ | $1 \cdot 6$ | $2 \cdot 61$ | $3 \cdot 4$ | 2.42 | 1.6 |
| 24 | $0 \cdot 24$ | 2.78 | $3 \cdot 72$ | $1 \cdot 6$ | $2 \cdot 70$ | $2 \cdot 1$ | $2 \cdot 56$ | 1.6 |
| 25 | $1 \cdot 62$ | 1.93 | 3.02 | $1 \cdot 6$ | $2 \cdot 37$ | $1 \cdot 8$ | $2 \cdot 32$ | $1 \cdot 6$ |
| 26 | 1.46 | $0 \cdot 45$ | $2 \cdot 02$ | $1 \cdot 6$ | $1 \cdot 60$ | 1.7 | $1 \cdot 59$ | 1.6 |
| 27 | 1.96 | $2 \cdot 54$ | $2 \cdot 22$ | $1 \cdot 6$ | 1.97 | $1 \cdot 6$ | 1.96 | 1.6 |
| 28 | $2 \cdot 62$ | -0.95 | $0 \cdot 98$ | $1 \cdot 6$ | $0 \cdot 86$ | 1.7 | $0 \cdot 82$ | 1.6 |
| 29 | $2 \cdot 95$ | $2 \cdot 69$ | $1 \cdot 65$ | $1 \cdot 6$ | 1.58 | 1.6 | 1.55 | 1.6 |
| 30 | $1 \cdot 40$ | $-0.89$ | $0 \cdot 66$ | $1 \cdot 6$ | 0.63 | 1.6 | $0 \cdot 60$ | $1 \cdot 6$ |
| 31 | $2 \cdot 84$ | $2 \cdot 83$ | $1 \cdot 51$ | $1 \cdot 6$ | 1.48 | $1 \cdot 6$ | 1.47 | 1.6 |

affected. E.g., the outlier $y_{479}=-140.97$ in the model with $v_{t} \sim 0.9 N(0,1)+$ $+0 \cdot 1 C(0,3)$ produces the non-robust estimate $\hat{x}_{479}^{479}=0.950$ and deviates the subsequent estimates so that $\ldots, \hat{x}_{500}^{500}=0 \cdot 689, \ldots, \hat{x}_{550}^{550}=0 \cdot 680, \ldots$ against the robust estimates $\hat{x}_{479}^{479}=0 \cdot 500, \ldots, \hat{x}_{500}^{500}=0 \cdot 507, \ldots, \hat{x}_{550}^{550}=0.506, \ldots$. Similarly, the outlier $y_{89}=15.55$ in the model with $v_{t} \sim 0.95 N(0,1)+0.05 R(-25,25)$ produces the non-robust estimates $\hat{x}_{89}^{89}=0 \cdot 313, \hat{x}_{90}^{99}=0 \cdot 330, \ldots, \hat{x}_{100}^{190}=0 \cdot 312, \ldots$ against the robust estimates $\hat{x}_{89}^{99}=0.504, \hat{x}_{90}^{90}=0.499, \ldots, \hat{x}_{100}^{100}=0.487, \ldots$.

Table 2. Recursive estimation in the simulated models $\operatorname{AR}(1)$ of the form $y_{t}=0 \cdot 5 y_{t-1}+v_{t}$ with innovation outliers.

| $t$ | $v_{t} \sim 0 \cdot 9 N(0,1)+0 \cdot 1 C(0,3)$ |  | $v_{t} \sim 0.95 N(0,1)+0.05 R(-25,25)$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 10 | $-0.310$ | $-0.256$ | $0 \cdot 700$ | 0.486 |
| 20 | $0 \cdot 351$ | 0.316 | 0.661 | 0.504 |
| 30 | $0 \cdot 365$ | 0.339 | 0.651 | 0.502 |
| 40 | $0 \cdot 288$ | 0.274 | $0 \cdot 622$ | 0.488 |
| 50 | $0 \cdot 266$ | 0.277 | 0.595 | 0.471 |
| 60 | 0.563 | 0.517 | 0.452 | 0.466 |
| 70 | 0.481 | - 0.490 | 0.421 | 0.466 |
| 80 | 0.481 | 0.491 | 0.511 | 0.517 |
| 90 | 0.481 | 0.490 | $0 \cdot 330$ | 0.499 |
| 100 | 0.481 | 0.490 | $0 \cdot 312$ | 0.487 |
| 150 | 0.496 | 0.495 | $0 \cdot 357$ | 0.479 |
| 200 | 0.496 | 0.495 | $0 \cdot 368$ | 0.480 |
| 250 | 0.493 | 0.494 | $0 \cdot 368$ | 0.477 |
| 300 | 0.493 | 0.494 | $0 \cdot 395$ | 0.479 |
| 350 | 0.493 | 0.494 | 0.405 | $0 \cdot 480$ |
| 400 | 0.493 | 0.494 | 0.434 | 0.488 |
| 450 | 0.494 | 0.495 | 0.439 | 0.491 |
| 500 | $0 \cdot 689$ | $0 \cdot 507$ | 0.438 | 0.489 |
| 550 | 0.680 | $0 \cdot 506$ | $0 \cdot 452$ | $0 \cdot 488$ |
| 600 | 0.677 | 0.506 | 0.458 | 0.491 |
| 650 | 0.677 | 0.506 | 0.477 | 0.497 |
| 700 | 0.672 | 0.507 | 0.476 | 0.496 |
| 750 | 0.671 | 0.507 | 0.476 | 0.496 |
| 800 | $0 \cdot 668$ | $0 \cdot 507$ | $0 \cdot 480$ | 0.499 |
| 850 | 0.667 | $0 \cdot 508$ | 0.480 | 0.498 |
| 900 | $0 \cdot 666$ | $0 \cdot 508$ | $0 \cdot 480$ | 0.497 |

## APPENDIX: PROOF OF THEOREM

Lemma 1. Let $\mathscr{F}_{0} \subset \mathscr{F}_{1} \subset \ldots \subset \mathscr{F}$ be a sequence of $\sigma$-algebras in a probability space $(\Omega, \mathscr{F}, P)$. Let $z_{t}, \beta_{t}, \zeta_{t}, \eta_{t}(t=0,1, \ldots)$ be non-negative $\mathscr{F}$-measurable random variables such that

$$
\begin{align*}
& \mathrm{E}\left(z_{t} \mid \mathscr{F}_{t-1}\right) \leqq\left(1+\beta_{t-1}\right) z_{t-1}+\zeta_{t-1}-\eta_{t-1}, \quad t=1,2, \ldots  \tag{A.1}\\
& \sum_{t=0}^{\infty} \beta_{t}<\infty \quad \text { a.s., } \quad \sum_{t=0}^{\infty} \zeta_{t}<\infty \quad \text { a.s. } \tag{A.2}
\end{align*}
$$

Then the sequence $z_{t}$ converges a.s. and

$$
\begin{equation*}
\sum_{t=0}^{\infty} \eta_{t}<\infty \quad \text { a.s. } \tag{A.3}
\end{equation*}
$$

Proof. See [20].

Lemma 2. Let in the model (3.24) an estimate $\hat{x}_{t}$ of the parameter $\vartheta$ be given by means of the recursive formulas

$$
\begin{equation*}
\hat{x}_{t}=\hat{x}_{t-1}+a_{t-1} y_{t-1} \psi_{H}\left(u_{t-1}\left(y_{t}-y_{t-1} \hat{x}_{t-1}\right)\right), \quad t=1,2, \ldots \tag{A.4}
\end{equation*}
$$

with an initial (random) value $\hat{x}_{0}$. Here $a_{t}$ and $u_{t}(t=0,1, \ldots)$ are $\mathscr{F}_{t}$-measurable random variables for $\mathscr{F}_{t}=\sigma\left\{\hat{x}_{0}, v_{t}, v_{t-1}, \ldots\right\}$ fulfilling

$$
\begin{align*}
& 0<a_{t}^{(1)} \leqq a_{t} \leqq a_{t}^{(2)}, \quad \sum_{t=0}^{\infty} a_{t}^{(1)}=\infty, \quad \sum_{t=0}^{\infty}\left(a_{t}^{(2)}\right)^{2}<\infty ;  \tag{A.5}\\
& 0<k \leqq u_{t} \leqq K<\infty \quad \text { a.s. } \tag{A.6}
\end{align*}
$$

for deterministic sequences $a_{t}^{(1)}, a_{t}^{(2)}$ and constants $k, K$. Let the assumptions (3.27) to (3.30) be fulfilled. Then

$$
\begin{equation*}
\hat{x}_{t} \rightarrow \vartheta \text { a.s. } \tag{A.7}
\end{equation*}
$$

Proof. Put

$$
\tilde{x}_{t}=\hat{x}_{t}-\vartheta .
$$

Then (A.4) can be rewritten to the form

$$
\tilde{x}_{t}=\tilde{x}_{t-1}-a_{t-1} y_{t-1} \psi_{H}\left(u_{t-1}\left(y_{t-1} \tilde{x}_{t-1}-v_{t}\right)\right)
$$

Hence one obtains

$$
\begin{equation*}
\tilde{x}_{t}^{2} \leqq \tilde{x}_{t-1}^{2}-2 a_{t-1} y_{t-1} \tilde{x}_{t-1} \psi_{H}\left(u_{t-1}\left(\tilde{x}_{t-1}-v_{t}\right)\right)+\left(a_{t-1}^{(2)} c y_{t-1}\right)^{2} \tag{A.8}
\end{equation*}
$$

and for the conditional expectations

$$
\begin{aligned}
& \mathrm{E}\left(\tilde{x}_{t}^{2} \mid \mathscr{F}_{t-1}\right) \leqq \tilde{x}_{t-1}^{2}-2 a_{t-1} y_{t-1} \tilde{x}_{t-1} \mathrm{E}\left\{\psi_{H}\left(u_{t-1}\left(y_{t-1} \tilde{x}_{t-1}-v_{t}\right)\right) \mid \mathscr{F}_{t-1}\right\}+ \\
& +\left(a_{t-1}^{(2)} c y_{t-1}\right)^{2} .
\end{aligned}
$$

Let us apply Lemma 1 for $z_{t}=\tilde{x}_{t}^{2}, \beta_{t-1}=0, \zeta_{t-1}=\left(a_{t-1}^{(2)} c y_{t-1}\right)^{2}, \eta_{t-1}=$ $=2 a_{t-1} y_{t-1} \tilde{x}_{t-1} \mathrm{E}\left\{\psi_{H}\left(u_{t-1}\left(y_{t-1} \tilde{x}_{t-1}-v_{t}\right)\right) \mid \mathscr{F}_{t-1}\right\}$. The only problem may be to verify that $\eta_{t} \geqq 0$ a.s.: Let us denote

$$
\begin{align*}
& \varphi(b, u)=\mathrm{E}_{v} \psi_{H}(u(b+v))=\int_{-\infty}^{\infty} \psi_{H}(u(b+x)) \mathrm{d} F_{v}(x),-\infty<b<\infty \\
& k \leqq u \leqq K \tag{A.9}
\end{align*}
$$

Then due to the assumptions (3.28) and (3.29) it even holds

$$
\begin{equation*}
b \varphi(b, u)>0, \quad b \neq 0, \quad k \leqq u \leqq K \tag{A.10}
\end{equation*}
$$

which guarantees specially the non-negativeness of $\eta_{t}$.
According to Lemma 1 there exists a (finite) random variable $\tilde{x}$ such that

$$
\begin{equation*}
x_{t} \rightarrow \tilde{x} \quad \text { a.s. } \tag{A.11}
\end{equation*}
$$

From (A.8) it follows for an arbitrary $n$

$$
\tilde{x}_{n}^{2} \leqq \tilde{x}_{0}^{2}-2 \sum_{t=1}^{n} a_{t-1} y_{t-1} \tilde{x}_{t-1} \psi_{H}\left(u_{t}\left(y_{t-1} \tilde{x}_{t-1}-v_{t}\right)\right)+c^{2} \sum_{t=1}^{n}\left(a_{t-1}^{(2)} y_{t-1}\right)^{2}
$$

and hence

$$
\begin{aligned}
& 2 \sum_{t=1}^{\infty} \mathrm{E}\left\{a_{t-1} y_{t-1} \cdot \tilde{x}_{t-1} \psi_{H}\left(u_{t-1}\left(y_{t-1} \tilde{x}_{t-1}-v_{t}\right)\right)\right\} \leqq \\
& \leqq \mathrm{E} \tilde{x}_{0}^{2}+\left(c \sigma_{y}\right)^{2} \sum_{t=1}^{\infty}\left(a_{t-1}^{(2)}\right)^{2}
\end{aligned}
$$

where $\sigma_{y}^{2}=\operatorname{var} y_{t}=\mathrm{E} y_{t}^{2}$. Therefore according to (A.5) one has

$$
\sum_{t=1}^{\infty} a_{t-1}^{(1)} \mathrm{E}\left\{y_{t-1} \tilde{x}_{t-1} \psi_{H}\left(u_{t-1}\left(y_{t-1} \tilde{x}_{t-1}-v_{t}\right)\right)\right\}<\infty
$$

Since $\sum a_{t}^{(1)}=\infty$ a subsequence must exist such that

$$
\sum_{t=1}^{\infty} \mathrm{E}\left\{y_{t_{j}-1} \tilde{x}_{t_{j}-1} \psi_{H}\left(u_{t_{j}-1}\left(y_{t_{j}-1} \tilde{x}_{t_{j}-1}-v_{t_{j}}\right)\right)\right\}<\infty .
$$

Hence

$$
y_{t_{j}-1} \tilde{x}_{t_{j}-1} \mathrm{E}\left\{\psi_{H}\left(u_{t_{j}-1}\left(y_{t_{j}-1} \tilde{x}_{t_{j}-1}-v_{t_{j}}\right)\right) \mid \mathscr{F}_{t_{j}-1}\right\} \rightarrow 0 \quad \text { a.s. }
$$

or equivalently by means of the denotation (A.9)

$$
y_{t_{j}-1} \tilde{x}_{t_{j}-1} \varphi\left(y_{t_{j}-1} \tilde{x}_{t_{j}-1}, u_{t_{j}-1}\right) \rightarrow 0 \quad \text { a.s. }
$$

Due to (A.10) it implies

$$
\begin{equation*}
y_{t_{j}-1} \tilde{x}_{t_{j}-1} \rightarrow 0 \quad \text { a.s. } \tag{A.12}
\end{equation*}
$$

Further one can write

$$
\begin{equation*}
v_{t_{j}} \tilde{x}_{t_{j}-1}=y_{t_{j}}\left(\tilde{x}_{t_{j}-1}-\tilde{x}_{t_{j}}\right)+y_{t_{j}} \tilde{x}_{t_{j}}-\vartheta y_{t_{j}-1} \tilde{x}_{t_{j}-1} . \tag{A.13}
\end{equation*}
$$

Since $y_{t_{j}}$ are identically distributed and the limit relations (A.11) and (A.12) hold all three summands on the right-hand side of (A.13) converge in probability to zero, i.e.

$$
\begin{equation*}
v_{t_{j}}{\tilde{t_{j}-1}} \rightarrow 0 \text { in probability. } \tag{A.14}
\end{equation*}
$$

Due to independence of $\tilde{x}_{t_{j}-1}$ and $v_{t_{j}}$, where $v_{t_{j}}$ are identically distributed, and due to (A.11) it implies finally

$$
\tilde{x}_{t} \rightarrow 0 \quad \text { a.s. }
$$

Proof of Theorem. It holds

$$
P_{t}=\left(P_{t-1}^{-1}+y_{t-1}^{2} / \sigma^{2}\right)^{-1}=\left[P_{0}^{-1}+\left(y_{0}^{2}+\ldots+y_{t-1}^{2}\right) / \sigma^{2}\right]^{-1}
$$

Hence one obtains that the $\mathscr{F}_{t}$-measurable random variable

$$
u_{t}=\sigma /\left(P_{t+1} y_{t}^{2}+\sigma^{2}\right), \quad t=0,1, \ldots
$$

fulfils

$$
(2 \sigma)^{-1} \leqq u_{t} \leqq \sigma^{-1}
$$

and further due to the properties of the process $y_{t}$ (see [7], p. 210, Thm. 6)

$$
\begin{equation*}
t P_{t} \rightarrow \sigma^{2} / \sigma_{y}^{2} \quad \text { a.s. } \tag{A.15}
\end{equation*}
$$

Let us choose arbitrary $\varepsilon>0$ and $0<\delta<\sigma^{2} / \sigma_{y}^{2}$. With respect to (A.15) there exists
$t_{0}$ such that

$$
\mathrm{P}\left(\sup _{t \geqq t_{0}}\left|t P_{t}-\sigma^{2} / \sigma_{y}^{2}\right|<\delta\right)>1-\varepsilon
$$

and hence

$$
\mathrm{P}\left(\bigcap_{t \geqq t_{0}}\left[\left|t P_{t}-\sigma^{2} / \sigma_{y}^{2}\right|<\delta\right]\right)>1-\varepsilon .
$$

Put

$$
\bar{x}_{t}=\left\{\begin{array}{l}
\hat{x}_{t} \begin{array}{l}
\text { for } t=0,1, \ldots, t_{0}-1 \\
\bar{x}_{t-1}+P_{t} y_{t-1} \sigma^{-1} \psi_{H}\left(u_{t-1}\left(y_{t}-y_{t-1} \bar{x}_{t-1}\right)\right) \\
\text { for } t \geqq t_{0},
\end{array}\left|t P_{t}-\sigma^{2} / \sigma_{y}^{2}\right|<\delta \\
\bar{x}_{t-1}+t^{-1}\left(\sigma / \sigma_{y}^{2}\right) y_{t-1} \psi_{H}\left(u_{t-1}\left(y_{t}-y_{t-1} \bar{x}_{t-1}\right)\right) \\
\text { for } t \geqq t_{0},\left|t P_{t}-\sigma^{2} / \sigma_{y}^{2}\right| \geqq \delta .
\end{array}\right.
$$

Then according to Lemma 2 with $a_{t}^{(1)}=t^{-1}\left(\sigma^{2} / \sigma_{y}^{2}-\delta\right) \sigma^{-1}, a_{t}^{(2)}=t^{-1}\left(\sigma^{2} / \sigma_{y}^{2}+\delta\right)$. . $\sigma^{-1}, k=(2 \sigma)^{-1}, K=\sigma^{-1}$ it holds

$$
\bar{x}_{t} \rightarrow \vartheta \text { a.s. }
$$

Finally one can write

$$
\begin{aligned}
& \mathrm{P}\left(\hat{x}_{t} \rightarrow \vartheta\right) \geqq \mathrm{P}\left(\bigcap_{t \geqq t_{0}}\left[\bar{x}_{t}=\hat{x}_{t}\right] \cap\left[\bar{x}_{t} \rightarrow \vartheta\right]\right)=\mathrm{P}\left(\bigcap_{t \geqq t_{0}}\left[\bar{x}_{t}=\hat{x}_{t}\right]\right) \geqq \\
& \geqq \mathrm{P}\left(\bigcap_{t \geqq t_{0}}\left[\left|t P_{t}-\sigma^{2} / \sigma_{y}^{2}\right|<\delta\right]\right)>1-\varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ can be arbitrary it must be $\hat{x}_{t} \rightarrow \vartheta$ a.s.

## ACKNOWLEDGEMENT

We thank to Prof. M. Hušková and Dr. P. Lachout for helpful comments on the proof of Theorem.
(Received July 11, 1970.)

## REFERENCES

[1] K. K. Aase: Recursive estimation in non-linear time series models of autoregressive type. J. Roy. Statist. Soc. Ser. B 45 (1983), 228-237.
[2] B. D. O. Anderson and J. B. Moore: Optimal Filtering. Prentice-Hall, Englewood Cliffs, New Jersey 1979.
[3] A. E. Bryson and J. C. Ho: Applied Optimal Control. J. Wiley, New York 1975.
[4] K. Campbell: Recursive computation of M-estimates for the parameters of a finite autoregressive process. Ann. Statist. 10 (1982), 442-453.
[5] J. E. Englund: Multivariate Recursive M-estimators of Location and Scatter for Dependent Sequences. Research Report, University of Lund and Lund Institute of Technology 1988.
[6] A. A. Ershov and R. S. Liptser: Robust Kalman filter in discrete time. Automat. Remote Control 39 (1978), 359-367.
[7] E. J. Hannan: Multiple Time Series. J. Wiley, New York 1970.
[8] P. J. Harrison and C. F. Stevens: Bayesian forecasting. J. Roy. Statist. Soc. Ser. B 38 (1976), 205-247.
[9] U. Holst: Convergence of a recursive stochastic algorithm with $m$-dependent observations. Scand. J. Statist. 7 (1980), 207-215.
[10] U. Holst: Convergence of a recursive robust algorithm with strongly regular observations. Stochastic Process. Appl. 16 (1984), 305-320.
[11] P. J. Huber: Robust Statistics. J. Wiley, New York 1981.
[12] R. D. Martin: Robust estimation for time series autoregressions. In: Robustness in Statistics (R. L. Launer and G. N. Wilkinson, eds.), Academic Press, New York 1979, pp. 147-176.
[13] C. J. Masreliez: Approximate non-Gaussian filtering with linear state and observation relations. IEEE Trans. Automat. Control AC-20 (1975), 107-110.
[14] C. J. Masreliez and R. D. Martin: Robust Bayesian estimation for the linear model and robustifying the Kalman filter. IEEE Trans. Automat. Control $A C-22$ (1977), 361-371.
[15] R. J. Meinhold and N. D. Singpurwalla: Robustification of Kalman filter models. J. Amer. Statist. Assoc. 84 (1989), 479-486.
[16] M. Pantel: Adaptive Verfahren der stochastischen Approximation. Dissertation, Universität Essen 1979.
[17] D. Peña and J. Guttman: Optimal collapsing of mixture distributions in robust recursive estimation. Comm. Statist. Theory Methods 18 (1989), 817-833.
[18] B. T. Polyak and Ya. Z. Tsypkin: Adaptive estimation algorithms: convergence, optimality, stability (in Russian). Avtomat. Telemekh. (1979), 3, 71-84.
[19] B. T. Polyak and Ya. Z. Tsypkin: Optimal methods of estimation of autoregressive parameters under incomplete information (in Russian). Tekh. kibernet. (1983), 1, 118-126.
[20] H. Robbins and D. Siegmund: A convergence theorem for non negative almost supermartingales and some applications. In: Optimizing Methods in Statistics (J. S. Rustagi, ed.), Academic Press, New York 1971, pp. 233-257.
[21] L. D. Servi and Y. C. Ho: Recursive estimation in the presence of uniformly distributed measurement noise. IEEE Trans. Automat. Control AC-26 (1981), 563-565.
[22] N. Stockinger and R. Dutter: Robust Time Series Analysis: A Survey. Supplement to Kybernetika vol. 23 (1987).
[23] Yu. Sh. Verulava: Convergence of a stochastic approximation algorithm for estimating an autoregressive parameter (in Russian). Avtomat. Telemekh. (1981), 7, 115-119.

RNDr. Tomáš Cipra, CSc., matematicko-fyzikální fakulta UK (Faculty of Mathematics and Physics - Charles University), Sokolovská 83, 18600 Praha 8. Czechoslovakia.
Prof. Rosario Romera, Facultad de Informática, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla de Monte, 28660 Madrid. Spain.

