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K Y B E R N E T I K A — V O L U M E 3 3 (1997), N U M B E R 2, P A G E S 1 8 5 - 2 0 1 

NOTES ON A HIERARCHICAL THEORY OF SYSTEMS 
AND APPLICATIONS 1 

N . P . K A R A M P E T A K I S , A . C . P U G H AND G . E . H A Y T O N 

The action of the full system equivalence transformation on a linear time-invariant 
system which may be considered as an interconnection of other subsystems at a lower level 
is considered. The generalized state space reduction problem of a linear time-invariant 
multivariable system is seen as a direct application of this theory. 

1. INTRODUCTION 

Linear time invariant multivariable systems may be considered as an interconnection 
of other subsystems, which may themselves be considered as an interconnection of 
other subsystems of lower order [7]. Within this hierarchical theory, [7] considered 
some of the implications the transformation of strict system equivalence [6] applied 
to the subsystems has on the subsystems higher up in the hierarchy. However in 
case the impulsive behavior of the systems is under consideration, then an extension 
of the known results is necessary. The reason for this extension is the inadequacy 
of the transfqrmation of strict system equivalence in that it preserves only the finite 
and not the infinite frequency behavior of the system. One objective of this paper 
is therefore to extend the known results of [7], so that the impulsive behavior of the 
system and its subsystem is included. A second objective will be to consider as an 
application of these results the problem of reducing a general linear multivariable 
system to an equivalent generalized state space form. 

2. PRELIMINARIES 

Consider the set P(p, m) of (r+p)x(r-\-m) polynomial matrices with r>max(—p , —m). 
A matrix transformation with many important systems theory implications is the 
following: 

Research is supported by EPSRC (Contract: GR/J87329) and the Greek General Secretarial 
of Industry, Research and Technology. 
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Definition 1. [2] Let Ti(s), T2(s) 6 P(p,m). Then Tx(s) are said to be fully 
equivalent (f. e.) if there exist polynomial matrices M(s), N(s) such that 

(M(s) T2(s)) ( 5jv(i) ) = ° 

where the compound matrices 

(M(s) ЭД); ГiW 
-N (s) 

(2.1) 

(2.2) 

satisfy the following: 

(i) they have full normal rank, 

(ii) they have no finite nor infinite zeros, 

(iii) the following McMillan degree conditions hold 

Ti(s) őм(M(s) T2(s)) = 8м(T2(s)); 8M[ _ ^ } ) = M T i ( « ) ) . (2.3) 

A linear time invariant multivariable system £' may be represented by an (r + 
p) x (r -f- m) (with r > 0) polynomial system matrix 

P(s) = 
A(s) B(s) 

-C(s) D(s) 
(2.4) 

with det[.A(s)] ^ 0 as has been described by Rosenbrock or by the normalized form 
of P(s) 

I 

P(s) = 
T(s) U 
-V 0 

A(s) B(s) 0 : 0 

-C(s) D(s) I : 0 

0 -ï 0 : I 

\ 

\ o 0 -I 

(2.5) 

0/ 

as has been denoted by [9]. Let the set of all such matrices be denoted by P(p, m). 
Then we have 

Definition 2. [3] Pi(s), P2(s) G P(p,m) are said to be full system equivalent 
(f.s.e.) if there exists polynomial matrices M(s), N(s), X(s), Y(s) such that 

M(s) 0 
X(s) I 

Ai(s) B^s) 
-Ci(s) Di(s) 

A2(s) B2(s) \ ( N(s) Y(s) 
-C2(s) D2(s) ) \ 0 / 

Pi(>) P2(S) 

is a f. e. transformation. 
(2.6) 

Some results concerning the transformation of full system equivalence, which are 
indicative of its importance in the generalized study of linear systems behavior, are 
included in the followine. 
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T h e o r e m 1. ([3,4]) 

(i) Full system equivalence is an equivalence relation, 

(ii) Under full system equivalence of the following are invariant 

(a) the generalized order / and the Rosenbrock degree dr, 

(b) the transfer function and thus the finite and infinite transmission poles 
and zeros, 

(c) the sets of finite system poles and zeros, 
(d) the sets of finite and infinite decoupling zeros, 
(e) the controllability and observability indices 

(hi) Every system matrix P(s) is full system equivalent with a generalized state 
space system. 

3. HIERARCHICAL THEORY OF SYSTEMS 
AND FULL SYSTEM EQUIVALENCE 

We shall start this section with a review of the philosophy of the hierarchical theory 
of systems. The hierarchical theory of systems views that every system E may 
be considered as the interconnection of other subsystems E i , E 2 , . . . , E n . Every 
subsystem Ei may then be considered as the interconnection of other subsystems 
Ei,i, E i ^ , . • • ,E i ) n t of lower order. Accordingly in this way we define an hierarchy 
of orders 0,1,2;...,q; the order 0 corresponds to the system E itself, the order 1 
corresponds to the subsystems Ei , the order 2 corresponds to the subsystems E j j 
etc. The order q will be considered as the level of greatest subdivision of E and 
its elements are considered as the fundamental elements of E. In a certain sense 
the level of greatest subdivision can be considered as the level at which the system 
becomes decoupled. 

The above scheme is more theoretic rather than practical and for these reasons 
we shall describe the results as they related to the form of matrices in our specific 
field of linear, t ime invariant, multivariable systems. 

Consider therefore a system E which is formed by the interconnection of subsys­
tems E i , E 2 , . . •, E n which have the following form: 

Ai(p)ßг(t) = Bi(p)щ(t) i = l , 2 t . . . , n 

Уi(t) = Ci(p)ßi(t) + Di(p)щ(t) 
(3.1) 

where A{(p) <E %[p]r>xr', B{(p) e %[p]r'xm>, Q(p) G 9 W x r ' , D{(p) 6 ft[p]r>xm> 
with corresponding system matrices: 

• *W=(-C.W D.W ) e KH ( P • + r ' , > < ( "" + r • , . (3-2) 

The system E corresponds to the linear multivariable system 

A(p)(3(t) = B(p)u(t) 

y(t) = C(p)m-\-D(p)u(t) 
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where A(p) G $[p]rXr, B(p) £ ^ [p ] r X m , C(p) E $[p]pXr, D(p) £ $[p}Pxm with 
Rosenbrock system matrix: 

P(s) A(s) B(s) \ »rci(p+r)x(m+r) 
-C(s) D(s) Є Зfř[í (3.4) 

We wish first to express P(s) explicitly in terms of the subsystems Hi(s), P2(s),... 
. . ., Pn(s) and their interconnections. The specific form of the interconnection equa­
tions we consider is 

«»(*) = - E fy yj(t) + Ki u(t) 
. = i 

y(t) = JTLiyi(t) 
(3.5) 

with Fij 6 ^ m ' x ^ , IU £ r n ' x m , U G 3?pxPl for i = 1, 2 , . . . , n and j = 1, 2 , . . . , n. 
For this purpose, first define 

ß.s(t) = 

( hit) \ 
Ht) 

\ Pn(t) ) 

eҖt) 

ys(t) 

( _ > ) x i . 

í uÁt) \ 
y2(0 

V yn(t) / 

.(0 

/ Ul(t) \ 

u2(t) 

\ -*»« 7 
єад (fг) x i 

Є ЗД V-
fí>)xi 

E r " ) x ( Er> 

A,(s) = block diag(_4i(s), _42(s), . . . , _4n(s)) € &[*] W» 

E - ) X ( E 
_9,(s) = block diag(Hi(s), B2(s), ... , Bn(s)) 6 £[«] ^ = 1 

'EP» )x( E r -
Cs(s) = block diag(Ci(s), C2(s), ... , Cn(s)) 6 ft[«] ^'=1 

L>,(s) = block diag(L»i(s), D2(s), ... , Dn(s)) 6 »[*] 
X > ) X ( E m -

E 

/ Fl.l El,2 ••• El,n \ 

T2,l I^2,2 ' - ' F2 n 

\ £n,\ "n,2 ' ' ' *'n,n ) 

( E m - ) x ( E p -
є»V*--
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K 

I * \ 
K2 

\ Kn ) 

Є 3 ł v = Öг) 

PX £ > , 

L = (LU L2, • • . , £„ )<=& \«-i 

Then the equations Ei, E 2 , . . . , En can be written concisely in the form: 

A,(p)P,(t) = B,(p)u,(t) 

y,(t) = C,(p)P,(t) + D,(p)u,(t) 

which corresponds to the subsystem matrix 

Ps(s) 

(3-6) 

(3.7) 

•C,(s) D,(s) ) e X l s l (3-8) 

In the same way the composite system equations for Ei, E 2 , . . . , En interconnected 
as in (3.5) can be written as 

A.(s) B,(s) 0 \ / (3s(t) \ / 0 \ 
-Cs(s) D,(s) I -u,(t) = 0 u(t) 

0 -I F ) \ ys(t) ) \ K ) 

I Ps(t) \ 
y(t)= ( 0 0 L ) -us(t) 

\ ys(t) ) 

(3.9) 

which corresponds to the system matrix 

i As(s) B,(s) 0 

-C,(s) D,(s) I 
Ps(s) 

0 -I F : K 

\ 0 0 - 1 : 0 / 

( P+Y^(r>+P>+m*) ) * ( ro+^(r,+p.+m,) 

€$[s]\ «•- / \ *•-

(3.10) 

under the assumption that 

/ A,(s) B,(s) 0 \ 
det -C,(s) D,(s) I h - 0 . 

V 0 -I F 
(з.и) 
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It is important to know which properties of S remain invariant under transformations 
of a particular type applied to the subsystem £,-, i = \,2,... ,n. [7] shown that the 
finite pole/zero structures of £ remains invariant under any strict system equivalence 
transformation of the subsystems £,-, i = 1, 2, . . . , n. However some certain questions 
remain concerning the infinite pole/zero structures of S . Answers to these questions 
may be obtained as a consequence of the following 

T h e o r e m 2. Every invariant of £ under full system equivalence is invariant un­

der all transformations of full system equivalence applied to the systems E, i = 

l , 2 , . . . , n . 

P r o o f . Any system matr ix P{(s) which is full system equivalent to the system 
matrices Pi(s) can be written as 

MІ(S) 0 

XІ(S) 

AІ(S) BІ(S) 

-CІ(S) DІ(S) 

4M в>(s) 
-C'І(S) D>(s) 

NІ(S) Щs) 

0 I 

-»/(») 
(3.12) 

where (3.12) is a full system equivalence transformation. Consequently any set of 
such transformations applied to P\(s), P2(s),.. ., Pn(s) can be represented by the 
full system equivalent transformation: 

M(s) 0 

X(s) I 

As(s) Bs(s) 
-Cs(s) Ds(s) 

K(s) B>(s) 
-C's(s) D>s(s) 

N(s) Y(s) 

0 

/here 

P,(*) P'Л») 

M(s) = block diag( Afi(s), M2(s) 

N(s) = block diag( Nx(s), N2(s), 

X(s) = block diag( Xx(s), X2(s), 

Y(s) = block diag( YiO), Y2(s), 

Mn(s) ) 

Nn(s) ) 

Xn(s) ) 

Уn(s) )• 

I 

(3.13) 

(3.14) 

On applying the interconnection defined previously, a composite system matr ix 
Pz(s) is obtained from Pz(s) and it is readily confirmed that 

/ M(s) 0 0 0 

X(s) I 0 0 

0 0 I 0 

0 0 0 I 

\ í 

I / 

As(s) Bs(s) 0 

-Cs(s) Ds(s) I 

0 -I F 

0 0 -L 

\ 

0 / 
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A's(s) B's(s) 0 . 0 

~C's(s) D's(s) I \ 0 

0 -I F : K 

\ 0 0 o ì \ 

N(s) Y(s) 0 0 

0 I 0 0 

0 0 / 0 

0 0 0 / / / 

(3.15) 

is a full system equivalence transformation since the relevant compound matrices of 
the above transformation are related via strict equivalence transformations to 

/ 

V 

M(s) 0 A'8(s) B's(s) 

X(s) I -C's(s) D's(s) 

í M(s) 
X(s) 

V 

0 0 0 0 * 

0 0 0 0 

/ 0 0 0 

0 / 0 0 / 

0 0 0 : Л's(s) B's(s) 

/ 0 0 : -C's(s) D's(s) 

0 / 0 : 0 -I 

0 0 / : 0 0 

/ / o o o o o 
0 / 0 0 0 0 
o o o / / o 
0 0 0 0 0 / 
0 0 / 0 0 0 
0 0 0 / 0 0 
0 0 0 0 0 0 

\ o o o o o o 

0 

/ 

ғ 
-L 

0 

0 

к 

o / 

0 
-/ 

o \ 
0 

-ғ -к 
L 0 
0 0 
0 0 
/ 0 
0 ' / 

(3.16) 

and 

/ As(s) Bs(s) 0 0 \ 
-Cs(s) Ds(s) 0 0 
-N(s) -Y(s) 0 0 

0 - / 0 0 

/ 0 
0 / 
0 0 
0 0 / 

/ / 0 0 0 0 0 0 0 \ 
0 / 0 0 0 0 / 0 
0 0 0 0 / 0 o o 
0 0 0 0 0 / o o 
0 0 0 0 0 o - / o 
0 0 0 0 0 0 o - / 
0 0 / 0 0 - / F K 

\ 0 0 0 / 0 0 - L 0 / 
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/ As(s) 
-Cs(s) 

0 

B,(s) 

Ds(s) 
-I 

0 
/ 
ғ 

0 
0 

к 
0 0 -L 0 

-N(s) 
0 

-Y(s) 
-I 

0 
0 

0 
0 

0 0 - / 0 

V o 0 0 - / 

(3.17) 

/ 
The above compound matrices are constructed from the compound matrices of the 
full equivalent transformation (3.13) via strict equivalence transformations and thus 
satisfy the conditions of full equivalence. Therefore the transformation (3.15) is a 
full system equivalence transformation, which verifies the theorem. • 

It thus follows that any operation of full system equivalence on the subsystems 
£ ; , t = 1 ,2 , . . . , n oi equivalently to the system £ t corresponds to a transformation 
of full system equivalence on the composite system £ . In the case where the matrices 
F, K and L are not constant but polynomial (respectively proper) we observe that 
the compound matrices of the transformation (3.15) satisfy the conditions of full 
equivalence (C U {oo}-equivalence) provided that (3.13) is a transformation of this 
type and therefore Theorem 2 holds true. 

This theorem shows that any property of E which is invariant under full sys­
tem equivalence is unaffected by the particular choice of representation (within full 
system equivalence) of the subsystems £t-. Thus we can show the following 

T h e o r e m 3 . Let a linear, t ime invariant, multivariable system E which arises 
from the interconnection of the linear, time invariant, multivariable systems £ ; , i = 
1,2, . . . , n (see (3.9)). Then there exists a generalized state space description £ r 

of £ which is full system equivalent with the composite system E, and which is an 
interconnection of subsystems in generalized state space form. 

P r o o f . Let £(• be a full system equivalent generalized state space system of E t 

under the following full system equivalence transformation [4]: 

MІ 

0 

Ms) Bi(s) 
-CІ(S) DІ(S) 

SEІ - AІ 

-CІ 

BІ 

0 
NІ(S) Щs) 

0 / 

(3-18) 
then, according to relation (3.15), we shall obtain the following full system equiva­
lence transformation 

/ м 0 0 0 

0 / 0 0 

0 0 / 0 

0 0 0 / 

\ / A,(s) B,(s) 

-C,(s) D,(s) 

0 - / 

0 

/ 

ғ 

l) \ 0 0 

0 

к 

o / 
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sEs - At 

-Cs 

0 

Bs 

0 

0 

/ 

ғ 

0 

0 

к 

\ 

where 

sEs - As 

Bs 

Cx 

0 0 - L : 0 / 

= block diag (sE\ — A\, sE2—A2, 

= block diag (Hi, B2, ...,Bn) 

= block diag (C\, C2, .. ., Cn ) 

M = block diag (Mi, M2, . . . 

N(s) = block diag (N i(s), N2(s), 

Y(s) = block diag (Yi(s), Y2(s), 

N(s) Y(s) 0 0 

0 I 0 0 

0 0 / 0 

0 0 0 / 

(3.19) 

II 

• • j sŁn — An j 

M„) 
• •,Nn(s)) 

••-,Yn(s)) 

(3.20a) 

(3.20b) 

which verifies that the generalized state space description 

E r : I - C , 0 / I x(t) = 
pEs - A s B s 0 

-Cs 0 / 
0 -IF (3-21) 

y(t)= ( 0 0 L )x(t) 

is full system equivalent to the system E. D 

T h e o r e m 4. The linear, time invariant, multivariate system E which comes from 
the interconnection of the linear, time invariant, multivariable systems £» (see (3.9)) 
is full system equivalent to the generalized state space system 

(PES -As+ BsFCs)ts(t) = BsKu(t) 

y(t) = LC.i,{t). 
(3.22) 

P r o o f . It is easily seen that the transformation: 

/ sEs -ASBS 0 

-Cs 0 / 

0 - I F 

sEs-As + BsFCs 

-LCS 

BSK 

0 ) 

0 o - L 

W / o o 

\ o o o 

o / 
(3.23) 
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is a full system equivalence transformation. From the full equivalent transformation 
(3.19) and the symmetry property of full system equivalence we finally obtain that 
the composite system £ will be full system equivalent to the generalized state space 
system (3.22) which verifies the theorem. • 

Example 1. Consider the following systems: 

£ i :(p2 + Ъp + Q)ßi(t) = (p + l)щ(t) 

Уi(t) = (Ь-2p)ßi(t) + (Зp + 2)щ(t) 
(E.l) 

and 

p+1 p2 

0 1 
xi(t) 
x2(t) 

ft(0 

P+l u2(t) 

•м-d °>($І) 
(E.2) 

ft(0 

and consider the following equations of interconnection between £ i and £2: 

ui(t) = -Уi(t) + y2(t) + 2u(t) 

u2(t) = yi(t)-u(t) 

У(t) = Уl(t)-y2(t). 

(E.З) 

Therefore we can define the matrices 

F = 
1 - 1 

-1 0 
K \ ) ; L = ( 1 - 1 ) . (E.4) 

The Rosenbrock system matrix of the composite system £ will have the following 
form 

/ 

Ps(s) = 

As(s) Bs(s) 0 : 0 

-Cs(s) Ds(s) I : 0 

0 -I F : K 

\ 

V o 0 -L 0 ) 
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s2 + 5s + 6 0 0 8+1 0 0 0 : 0 

0 s + 1 s2 0 8+1 0 0 0 

0 0 1 0 0 0 0 0 

2 s - 5 0 0 Зs + 2 0 1 0 0 

0 1 0 0 0 0 1 0 

0 0 0 - 1 0 1 - 1 2 

0 0 0 0 - 1 - 1 0 - 1 

0 0 0 0 0 - 1 1 0 

(E.5) 

V 
Consider also the full system equivalent generalized state space systems £#i a n d 
£#2 (see [1,4]) or Si and £2 respectively, 

/ 

1We) 

5s + 6 s + 1 - s 0 : 0 

2 s - 5 Зs + 2 0 1 : 0 

s 0 1 0 : 0 

0 - 1 0 0 : 1 

V 0 0 0 - 1 

\ 

0 / 

(E.6) 

and 

ftл-W? 

s + 1 0 s + 1 —s 0 : 0 

0 1 0 0 0 : 0 

- 1 0 0 0 1 : 0 

0 s 0 1 0 : 0 

0 0 - 1 0 0 : 1 

0 0 0 0 - 1 : 0 

(E.7) 

Then the full system equivalent generalized state space system of the composite 
system (E.5) will be the following: 

(PES -As+ B,FC.)t,(t) = BsKu(t) 

y(t) = LC.t.(t) 
(E.8) 
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where 

0 

PES-AS+BSFCS = 

I Ъp + 6 p + 1 
2p - 5 Зp + 2 

P o 
0 - 1 
0 0 
0 0 
0 0 

0 

0 0 

0 0 
0 0 
0 0 
0 0 

p+1 0 p+1 

0 - 1 

BSK = ( 0 0 0 2 0 0 0 0 - 1 ) T 

LCS = ( 0 0 0 1 0 0 0 0 - 1 ) . 

0 
- 1 
0 
0 
1 
0 

o I 

(E.9) 

(E.10) 

(E.l l) 

D 

4. AN APPLICATION OF THE HIERARCHICAL THEORY OF SYSTEMS 

A direct implication of Theorem 3 concerns the reduction of a general polynomial 
description to a full system equivalent generalized state space form. More specifically, 
consider the polynomial matrix description: 

X:A(p)(3(t) = B(p)u(t) 

y(t) = C(p)m+D(p)u(t) 

and let its normalized form [9] be the following: 

/ A(p) B(p) 0 

£ : -C(p) D(p) I 
\ 0 - 7 0 

N v 
T(P) 

y(t) = ( 0 0 
/ ß(t) 

I ) -u(t) 

— Ч y(t) 

m 
Then we have the following: 

(4.1) 

(4.2) 

Theorem 5. Let {C, sE — A, B} be a strongly irreducible realization of T(s) * 
Then the generalized state space system: 

S' : Ex(t) = Ax(t) + BUu(t) 

y(t) = VCx(t) 
(4.3) 
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is full system equivalent to the system £ of the form (4.1)-(4.2). 

P r o o f . It is easily seen that £ is an interconnection of the following three sys 
tems: 

Ei :L&(0 = Uut(t) 

yi(t) = m(t) 
E 2 :T(p)B 2 ( t ) = Iu2(t) 

y2(t) = I(52(t) 

X3:I{33(t) = Iu3(t) 

Vs(t) = V(33(t) 

under the following interconnections: 

(4.4a) 

(4.4b) 

(4.4c) 

(4.5) 

£2 is strongly irreducible (has no finite nor infinite decoupling zeros) and thus any 
generalized state space realization of its transfer function i.e. T(s) _ 1 , will be full 
system equivalent to this system [4]. Thus according to our initial assumption that 
({C, sE — A, B} be a strongly irreducible realization of T(s ) - 1 ) then 52: 

S2 : Exit) = Ax(t) + Bu2(t) 
(4.6) 

y2(t) = Cx(t) 

is full system equivalent to the system £2. Then according to Theorem 4, the full 
system equivalent generalized state space system S of the interconnected system £ 
will be the following: 

S : (PES -As + BsFCs)£s(t) = BsKu(t) 

y(t) = LC.t.(t) 

7 0 0 
0 sE - A 0 
0 0 7 

(4.7) 

Cx = 

(4.8) 
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Thus 

sEs -AS + BSFCS 

I 0 0 \ / t t 0 0 \ / 0 0 0 
0 sE-A 0 \ + \ 0 B 0 \ l -J 0 0 
0 0 / / \ 0 0 / / \ 0 - / 0 

/ O 0 0 \ 
= -73 sE-A 0 

V o -c i 

/ 0 0 
0 C 0 
0 0 V 

BJ< 
U 0 0 
0 73 0 
0 0 / 

/ / 0 0 \ 
LCS = ( 0 0 / ) 0 C 0 = ( 0 0 V ) 

\ 0 0 c ) 

and therefore the Rosenbrock system matrix of S will be 

( I 0 0 ': U \ 

Ps(s) 
-B sE-A 0 : 0 

0 -C / : 0 

\ 0 0 

Note also that the following transformation: 

-V 0 • 

(4.9a) 

(4.9b) 

(4.9c) 

(4.10) 

г / 0 0 : U 

в / 0 °ì - 5 sE-A 0 : 0 

0 0 V J 0 -C / : 0 

(4.11) 

is obviously a full system equivalence (more precisely a complete system equivalence) 
transformation. Thus the system: 

S' : Ex(t) = Ax(t) + BUu(t) 

y(t) = VCx(t) 
(4.12) 
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is a full system equivalent generalized state space model of S due to the transitivity 
property of full system equivalence. It is known however [5] that the full system 
equivalence transformation which relate the systems S and S' is the following: 

T(s)C(sE-A)~1 : 0 

0 : I 
(4.13) 

An implementation of the above construction method may be found in the gen­
eralized state space reduction models presented by [8] and in the extension of 
Tan& VanDewalle's realization method presented by [5]. 

Example 2. Consider a system S described by the following equations: 

£ : ( p 2 + 5 p + 6)/?(t) = (p + l)u(t) 

m (5 - 2p) ß(t) + (Зp + 2) u(t) 

or its normalized form [9]: 

.2 

i(0 

It is easily shown that: 

- 1 

ГW"1 

1 1 0 0 
0 0 0 - 1 
9 11 3 - 3 

(E.1) 

(E.2) 

/ s + 2 0 0 0 \ _ i / 1 0 
0 s + 3 0 0 1 - 1 0 
0 0 1 -s 0 1/3 

• V ° 0 0 1 / \ 0 0 

1 
1 

1 I 
sE-A 

(E.З) 
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where {C, sE — A, B} is a strongly irreducible realization. Then according to The­
orem 5 the system: 

/ p+2 0 0 0 \ / Xl(t) \ ( - 1 \ 

5 0 p+3 0 0 
0 0 1 - / 3 

\ 0 0 0 1 / 
V 

rE-a 

x2(í) 
x3(V) 

V «4(*) У 

*(*) 

2 
1 

вu 

«(*) 

y(ť) = ( 9 11 3 - 3 ) 

Vc 

/ xi(ť) \ 
x2(ť) 
x3(ť) 

V *4(o z1 

»(*) 

(E.4) 

is full system equivalent to the system S under the following (f. s. e.) transformation: 

( I 0 - 1 : 0 * 

- 1 0 2 

0 1/3 1 

0 0 1 

V 0 0 0 1 / 

/ .2 pl + Ъp + 6 p+ì 0 : 0 

2/>-5 Зp + 2 1 : 0 

0 - 1 0 : 1 

0 0 1 

\ 

0 / 

p+1 0 0 0 

0 p+3 0 0 

0 0 1 - / 

0 0 0 1 

V - 9 11 0 / 

P + 3 1 0 . 0 

-p-2 - 1 0 : 0 

( 2 p - 5 ) / 3 -1/3 1/3 : 0 

0 - 1 0 : 0 

0 0 0 : 1 1 / 
(E.5) 

5. CONCLUSIONS 

This paper presents a discussion of the role of full system equivalence transformation 
within the hierarchical theory of systems. More specifically we prove (Theorem 2) 
that every property of a linear multivariable system E which remains invariant under 
the transformation of full system equivalence, is unaffected by the particular choice 
(within full system equivalence) of the subsystems E t, i = 1, 2, . . . , n of E. As 
a result of this conclusion we have derived a reduction algorithm which has the 
property to reduce any composite linear multivariable system E to a full system 
equivalent generalized state space form. 
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