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K Y B E R N E T I K A — V O L U M E 3 3 ( 1 9 9 7 ) , N U M B E R 2, P A G E S 1 6 1 - 1 7 0 

ON RESIDUAL ANALYSIS FOR TIME SERIES MODELS 

J I Ř Í ANDĚL 

Residuals are frequently used as a diagnostic tool for verification that a time series model 
fits to data. In the cases when the series is nonnormal and/or the model is nonlinear, the 
squared residuals and squared values of the series are taken into account. In our paper 
asymptotic formulas for the mean value and variance of the corresponding sample corre
lation functions are calculated. Small sample properties are investigated in a simulation 
study. The results can be used for testing linearity and normality of an autoregressive time 
series. 

1. I N T R O D U C T I O N 

In this paper we assume t h a t {Xt} is a strictly stationary time series with vanishing 
mean and a covariance function R(t). Define Xt = [Xt,Xt-1,. ..}. 

Let {et} be a strict white noise with vanishing mean and a variance a2 > 0. Let 
&l, . . . , bp be parameters such that the polynomial l — b1z — ...— bpz

p has all its roots 
outside the unit circle. Then there exists a unique linear process {Xt} satisfying 

Xt=b1Xt.1 + ... + bpXt_p+st. (1.1) 

The process {Xt} is called an autoregressive process of the order p. 
Le' us return to the general process {Xt} mentioned at the beginning of this 

section. One says t h a t {Xt} has linear conditional expectation if 

E(Xt\Xt-i) = &!__*_! + . . . + bpXt^p (1.2) 

where b1,... ,bp are some parameters. If the covarince function R(t) satisfies linear 
difference equation of the form 

R(t) = b1R(t-l) +... + bpR(t-p), t > l , (1.3) 

then {Xt} is called Yule-Walker autoregression. Let us remark that 

( 1 . 1 ) = * (1.2) => (1.3). (1.4) 

The implication (1.1) => (1-2) is clear. If (1.2) holds then 

E{XsXs-t\Xs-i) — Xa-tE(Xt|<Ts-i) = biXg-iXg-t + ... + bpXs_pXs-t 
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and thus 

R(t) = EXsXs-t = E[E(XsXs-t\Xs-i)] = biR(t - 1) + . , . + bpR(t - p). 

It means that (1.2) => (1-3). The reverse to (1.4) is not true. For example, the 
product autoregression model (see [11]) is the case in which (1-3) holds, but in 
which (1.1) and (1.2) do not. For further details, see Lawrance and Lewis [8]). 

Let {Xt} be such a t ime series that (1.3) holds. Then the expression E(Xt — 
/3iXt-i — . . . — j3pXt-p)

2 is minimized for f3\ =b\, ..., j3p = bp and the variables 

Wt = Xt — biXt-i - . . . - bpXt-p 

are called linear autoregressive residuals of order p (shortly residuals). If {Xt} is an 
autoregression given by (1.1) then Wt = et. 

T h e o r e m 1.1. Let {Xt} satisfy (1.3). Then the residuals Wt are uncorrelated 
(although not necessarily independent) and 

cov(Wt,Xt-k) = 0 for k > 1. 

P r o o f . See Lawrance and Lewis [8]. • 

If the process {Xt} satisfying (1.3) is normal then Theorem 1.1 implies that the 
residuals {Wt} are independent and the variables Wt and Xt-k are also independent 
for k > 1. To detect their eventual dependence for the case tha t the distribution is 
not normal and/or the relation (1.3) does not hold, the following cross-correlation 
and autocorrelation functions were proposed: 

pi(k) = corr(Wt,W
2_k), p2(k) = corr(Wt

2, W2_k), 

p3(k) = corr(Xt,Wlk), p4(k) = corr(X2, Wt-k)-

For a few simple models these functions can be computed explicitly (see [8,9]). The 
simplest case is the AR(1) model Xt = bXt-\ +£t with |6| < 1. If 013 is the skewness 
of Xt then 

P3(k) = a3-1-t==l
T^bk, k>0, 

\/v-re2
t l - b l 

and p_(k) = 0 for k < 0. 
Because of rather complicated structure we do not investigate p4(k) in our paper. 

2. ANALYSIS OF SAMPLE CORRELATION FUNCTIONS 

In this section we assume that {Xt} is a normal AR(p) process defined by (1.1). 
Define 

l n l n l n (I n \ 2 

vi(k) = -J2£^2-^ *fc = -][>?, m(k)=-22£tk- -_>>'-* ' 
<=i t=i t=i V t=i / 
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П 
í = l 

I n ( 1 n \ 1 U 

(̂*) = -E h2--E£*K-*. ^ = -Ee? 
t = l \ 5=1 / t = l 

n -—» n -—' 
t = l t= i 

Introduce the functions 

m rl1(Ar) m gl f f l m &(*) 
r H * ) = 7 ==-, r2(«) = / , •, r 3 ( « ) -vSP) ' v^^W \/&m(k) 

The functions r i ( £ ) - r 3 ( & ) can be called sample correlation functions of the corre
sponding processes and considered as some estimates of pi(k)-p%(k), respectively. 

Note, however, tha t in practical applications the variables et are not known and 
they are replaced by their estimates. In some cases such a substitution can change 
the asymptotic properties considerably. We discuss this problem in Section 3 below. 

Consider random variables Z{ = Z{(X\,..., Xn), i = 1 , . . . , m. In some cases 
expectation and variance of a function g(Z\,..., Zm) can be calculated using the 
following theorem. 

T h e o r e m 2 . 1 . Let Z\,. .., Zm be random variables with finite second moments. 
Assume that 

EZi = 9t + O^1), cov(Zi,ZJ) = - c i ; + 0(n~2), 

where 0 = (6\,..., 6m)' is a given vector and C = (cZJ) is a given matrix. 
Let g(z) be a function of z = (z\,..., zm) which has continuous first and second 

partial derivatives in a neighbourhood of the point 6. Let ~-|- denote the value of 

the partial derivative gf- at the point z = 0. Then we have 

Eg(Zu...,Zm) = g(9l,...,9m) + 0(n-i), 
mm f) Pi 

vzrs{Zl,...,Zm) = £ £ < ^ »+0<„->). 
i = l j = 1 •> 

P r o o f . The assertion can be proved similarly as that in section 10.6 in Kendall 
and Stuart [7]. • 

T h e o r e m 2.2 . Let {et} be i.i.d. N(0,cr2) variables with a2 > 0. Let k -£ 0 be 
fixed. Then 

3 
Erx(k) = 0(n~l), varn(k) = — + 0(n~2). 

P r o o f . We have 

3<r6 

Em(k) = 0, En2 = cr2, En3(k) = 2<J4 + 0(n~l), varm(k) = . 

Applying Theorem 2.1 we get our assertion. • 
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Theorem 2.3. Let {et} be i.i.d. N(0,<r2) variables with a2 > 0. Let k -<= 0 be 
fixed. Then 

Er2(k) = 0(n~l), varr2(k) = -+ 0(n~2). 

P r o o f . We derive 

4<r8 

En5 = Erj3(k) = 2a4 + 0(n-1), En4(k) = 0 ( n _ 1 ) , var^ife) = + 0(n~2) 
n 

and then the result follows from Theorem 2.1. • 

Results for r3(k) given in the following theorem were derived only in a special 
case. 

Theorem 2.4. Let {et} be i.i.d. N(0,<r2) variables with a2 > 0 and let {Xt} be 
an AR(1) process defined by Xt = 6Nt_i + et, \b\ < 1. Then for any fixed k > 1 we 
have 

Er3(k) = 0(n-'), 

varr3(k) = ± ^b2k(l - 62) + bk(2 - bk) (1 + 6) + ^ ^ 6 ) J + 0(n~2). 

P r o o f . It is easy to see that 

E^(k) = 0, EЬ •, En3(k) = 2a4 + 0(n~1), 
1 - 6 2 

Eti(k)t2 = 0, ECi(k)n3(k) = 0, 

cov(^(k),^2) = 0, cov(^{k),r)3(k)) = 0(n~2] 

and after some computation we get 

var£i(k) = 
2а" 2k , bk(2-bk)(ì + b) 

6bzк + 
l - б 2 + 

3 - 6 
2 ( 1 - 6 ) ( 1 - 6 2 ) J 

+ 0(n~2). 

Then we use again Theorem 2.1. 

3. REMARKS 

Let wt be estimated residuals which are calculated in autoregressive models AR(p) 
in a similar way as Wt with the exception that the parameters 6; are substituted by 
their least-squares estimates. Define 

'(*) = 
EП •) 

t=l wt 
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Box and Pierce [2] obtained the asymptotic distribution of r*(k). They pointed out 
that it is different from that of 

r(k) = - - % - - + - ? ' * - * 
V n f2 

They proposed a test of fit based on the portmanteau statistic 

M 
QBp = nYjr*2(k). 

k=\ 

Under the assumption of the model adequacy, QBP is distributed approximately 

-p' 
XM-V- Davies e t al [4] and Ljung and Box [10] showed that the modified statistic 

QLB =n(n + 2)J2 

M

 r*2 

r 
k=l 

(k) 

n — k 

is distributed closer to XM-P ^n s m a l l samples. 
The situation concerning squared residuals is quite different. Define 

-2 i f 2 */,x J2"=k+i(w? ~ v2)(wt-k ~ v2) 
ff = - - \ W r2(k)= n - 2 " - "-" j • 

nfri L,t=i(wt ~ a ) 

McLeod and Li [13] proved that the vector (r*.(l), -.., r2(M))' is asymptotically 
normal N(0,I). They introduced the portmanteau statistic 

QLL = n(rг + 2 ) ^ 
Қк) 

n — K 
k=i 

which is asymptotically distributed as XM when the model is correct. 
Some authors prefer to use tests based on individual values of r*(k) instead on the 

portmanteau statistic. The vector (r*(\),..., r*(M))' has asymptotically N(0, -V) 
distribution and a formula for V = (vij) can be found in several papers (e.g. Box 
and Pierce [2], McLeod [12], Hosking and Ravishanker [6]. Hosking and Ravishanker 
[6] recommend for general use the classical Bonferroni approximation to the critical 
region for simultaneous testing of r*(l), ..., r*(M). The model is not rejected if 

l r*Wl ^ U (olf) \FT- f o r k = l,...,M \2MJ \J vkk 

where a is the level of significance, u(j3) is the critical value of the N(0,1) distribution 
on level j3 and v*kk is an estimate of v^f.. 

4. A SIMULATION STUDY 

A simulation study was performed for small and moderate sample sizes in order to 
get answers to the following questions: 



166 J. ANDĚL 

(i) Are the approximations for Eri(k) and varri(k) based on Theorems 2.2-2.4 
precise enough? 

(ii) Are the distributions of ri(k) approximately normal? 

(iii) How much are the moments and the distributions of ri(k) influenced when their 
definitions are modified in such a way that the variables et are substituted by 
their estimates wtl 

Now, we formulate our problems more rigorously. From Theorem 2.2 we have 
approximations Eri(k) = 0, varri(k) = 3/(2n); similar approximations for Er2(k), 
varr2(k) and Ers(k), varr3(k) are based on Theorems 2.3 and 2.4, respectively. 

For different n (and for different parameters of our models) r\(k), r2(k) and r3(k) 
were simulated N = 1 000 times in each case. Thus we have N = 1 000 realizations 
of ri(k) in each case. We calculated empirical skewness 03 and empirical kurtosis a$ 
from these values. It is well known (see Cramer, § 29.3) that in normal samples 

Ea3 = 0, vara3 = 
6(N-2) 

Ea4 = — 
6 

N+ 1 vaгa4 

( N + 1 ) ( N + 3 ) ' 

2 1 N ( N - 2 ) ( N 3) 
( N + l ) 2 ( N + 3 ) ( N + 5) 

and that 03, 04 are asymptotically normal and asymptotically independent. Define 

the normed skewness U3 and the normed kurtosis U4 by 

uз 
aз 

y/vkTai' 
UĄ 

04 — £04 

ylvara4 

A test statistic is \ 2 = u\-\-u\ and it has asymptotically x^-distribution. It is known 
that the sample size N = 1 000 is large enough to justify the use of the asymptotic 
results. 

Some results concerning r\(k) are summarized in Table 4.1. 

Table 4 .1 . Results of 1 000 simulations of n(Jfc) for n = 100. 

empirical 
lag average vaпance aз UĄ uз U4 xг 

1 0.00 0.014 0.10 -0.07 0.19 -0.60 0.39 
2 0.00 0.015 -0.10 -0.05 -0.18 -0.39 0.18 
3 0.00 0.015 0.00 -0.08 0.01 -0.72 0.52 
4 0.00 0.013 -0.01 -0.12 -0.02 -1.11 1.23 
5 0.00 0.014 0.11 0.11 0.20 1.10 1.26 

As mentioned above, for n = 100 our approximations are Er\(k) = 0, varr\(k) = 

3/(2n) = 0.015. They agree well with results of the simulations (see columns average 

and empirical variance). The values of 03, 04, U3, 1*4, and x 2 correspond to values 
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expected under normality of ri(k). Similar results were obtained also for n = 50 

and for n = 200. 

When the same procedure was applied to residuals wt from different AR(1) models 

it was found that the averages and empirical variances of ri(k) are practically the 

same as in simulations using the true white noise et. Although 03 and 0,4 were also 

near to 0, a few significant values of x 2 appeared on the five-per cent level. 

It seems that ri(k) has its expectation and variance near to our approximations 

and its distribution is nearly normal for n > 50. Another simulation study showed 

that the same conclusions also hold for the case when et are substituted by their 

estimates wt. 

Some results of a simulation concerning r2(k) can be found in Table 4.2. 

Table 4.2. Results of 1 000 simulations of r2(k) for n = 100. 

empirical 

lag average vaпance «з UĄ uз щ x2 

1 -0.02 0.0088 0.55 -0.20 1.03 -1.85 4.48 

2 -0.02 0.0087 0.65 0.09 1.21 0.94 2.36 

3 -0.02 0.0090 0.42 -0.03 0.79 -0.24 0.67 

4 -0.03 0.0081 0.55 -0.36 1.04 -3.32 12.09 

5 -0.02 0.0088 0.52 0.37 0.96 3.50 13.16 

Our approximations based on Theorem 2.3 are Er2(k) = 0, varr2(k) = \/n = 

0.01. General conclusions about r2(k) are: The approximation for varr2(k) is not as 

good as that for varr\(k) and the distribution of r2(k) can be closely approximated 

by normal distribution only for k = 1,2,3. The same results were obtained also for 

n = 200. The situation is very similar also in the case when empirical residuals wt 

are used instead of et. 

Finally, Table 4.3 contains some results about r3(k). 

Table 4.3. Results of 1 000 simulations of r3(k) for n = 100 and b = 0.5 . 

empirical theoretical 

lag average variance vaпance aз . CLĄ uз UĄ xг 

1 0.00 0.043 0.047 0.02 -0.33 0.05 -2.98 8.89 

2 0.01 0.032 0.034 -0.05 -0.17 -0.10 -1.50 2.26 

3 0.00 0.027 0.029 -0.05 -0.24 -0.09 -2.22 4.93 

4 0.00 0.026 0.027 -0.02 -0.30 -0.04 -2.77 7.68 

5 0.00 0.025 0.026 0.03 -0.30 0.05 -2.81 7.89 

Our approximation to Ers(k) is 0. The approximation to varrs(k) based on The

orem 2.4 is introduced in Table 4.3 as "theoretical variance". The approximations 

agree well with the corresponding averages and empirical variances also for other 
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b G (—1,1) when n > 50. But the distribution of r^(k) can be approximated by 
normal distribution only if |6| is small, say \b\ < 0.1 (even for n = 200). When b is 
estimated and r$(k) is based on the empirical residuals wt then the results are the 
same. 

5. USE OF RESIDUALS 

Many methods used in time series analysis for detecting departures from a model 
are based on residuals. In this section we assume that X\,..., Xn is a realization of 
the stationary AR(1) model 

Xt = bXt.1 + et (5.1) 

where et are i.i.d. N(0,or2) variables. This assumption can be violated in several 
ways: the white noise may not be normal, the autoregression may not be of the 
first order, the model may not be linear etc. In some examples given below we use 
models for which EXt ^ 0. Thus the average X is subtracted from all X{ in all cases 
before other computations. Then the least squares estimate b of b is calculated. The 
empirical residuals 

wt = (Xt -X)- b(Xt-1 -X), t = 2,...,n 

are used for decision if our model (5.1) is the true one or not. Define 

y/Y™tY™ì-k 

the classical residual autocorrelation function, which is frequently used as a s tandard 
tool for model identification and checking (see Box and Jenkins [1]). For simplicity we 
follow the recommendation of Box and Jenkins and we approximate the distribution 
of ro(k) by N(0, —) where no is the number of terms in the summation ^wtwt-k-
A more precise result can be found in Box and Pierce [2] as it was mentioned in 
Section 3. 

We use the following abbreviations. Let Ex(X) denote the exponential distribu
tion with the parameter A. If Y ~ Ex(X) and a is a number then the distribution 
of Y — a is denoted by Ex(X) — a. Further, R(a,b) is the rectangular distribution 
on [a,b]. We consider the following models: 

(A) xt 
= 0.5Nť_i + eť, eť -̂  Ex(ì)- 1; 

(B) xt = 0.5УN ť_i+e ť, eť " -Ä(0 Д ) ; 

(C) xt 
= 0.5|N ť_i| + eť, eť -- N ( 0 Д ) ; 

(D) xt 
= 1.4N ť_i-0.45N ť_ 2 + eť, eť " - N ( 0 Д ) ; 

(E) xt 
= eť + 0.9eť_ieť_2, e. -- N ( O Д ) . 

As for the model (E), it is known that the variables Xt given by Xt = et + 
/3et-iet-2 are uncorrelated but dependent if et are i.i.d. N(0,cr2) (see Harvey [5], 
p. 267). 
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Realizations of the length n = 1 000 of the models (A) - (E) were simulated. The 

values of rQ(k)-r^(k) were calculated for \k\ < 5. For a rough analysis we used our 

approximations for Eri(k) and for varr;(Ar) as well as the normal approximation 

for the distribution of ri(k). The cases when |r.;(fc)| exceeded the Bonferroni bound 

u (off) y/varri(k) for a = 0.05 and M = 5 are introduced in Table 5.1. 

Table 5.1. 

Model X 6 significant values of Гi(k) 

(A) -0.02 0.53 г»(l), r3(2) 
(B) -1.00 0.25 — 

(C) -0.50 0.16 П ( l ) , r 2 ( l ) , r 3 ( l ) 

P) -0.17 0.96 r 0 ( l ) , r0(2), r 2 ( l ) 
(E) -0.03 0.00 гa(l), гa(2) 

The nonnormality of the model (A) was detected only by r^(k). The serious 

nonlinearity of the model (B) was not detected at all. The nonlinearity of the model 

(C) was detected by r\(k), r2(k) and r^(k) but only for k = I. The misspecified 

order in the case (D) was detected by rQ(k) (as it should be) and then only by r2(l). 

The case of uncorrelated but dependent variables in the model (E) was detected 

only by r2(k). 

Our experience from other simulations and from other models is similar. No single 

function r,-(&) is universal tool for detecting that the assumptions are not fulfilled. 

The model (B) is extraordinarily alarming. Although {Xt} given by (B) is neither 

linear AR(1) nor normal, none of the functions r,(Jb) has been able to detect it. 
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