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K Y B E R N E T I K A — V O L U M E 15 (1979), N U M B E R 

On Identical Response of Initially Excited 
and Relaxed Linear Discrete-Time System 

VACLAV SOUKUP 

The relation between the initially excited and relaxed linear discrete-time system is investigated. 
Given the system state-space description state initial conditions are transformed into the equi
valent input signal respecting the input-output physical causality. The recursive as well as compact 
form of the transformation is given. Finally the problem simplification for stationary systems 
including ^"-transform approach is presented. 

FORMULATION OF THE PROBLEM 

Let us consider a linear, single input-single output, discrete-time system described 
in the state-space form 

(1) x(k + 1) = A(k) x(k) + b(k) u(k), 

y(k) = c(fc) x(k) + d(k) u(k), 

where x(k) is an (s x l) state vector, u(k) and y(k) are input and output, respecti
vely; A(k), b(k), c(k) and d(k) are system parameters of the proper dimensions and 
time variable k e K ranges over the integers. 

Before formulating our problem we introduce for the system (1) 

a) the operator 

(2) LM c(k) = [Li,"1 c(k + 1)] M(k) ; integer i ^ 1 

with 

LM c(k) - c(k), 

where M(k) is an arbitrary (s x s) matrix; 

b) the scalar 

(3) T1(fc) = [4_1c(/c + i)]b(fc), ; ;>i 



66 with 
lo \k) = d(k) 

c) the relative order Q, 0 :§ Q S S, of the system (i) possessing the properties derived 
and proved in [2]: 

(4) !;-1//c) = o, e z i * i , 

/;1(/c) + 0 , keK. 

We can distinguish two separate cases of the system operation. 
At first, the system (l) operates under the given non-zero initial conditions, i.e., 

previously excited. 
Secondly, the system is initially relaxed, i.e., it operates under zero initial condi

tions. 
Roughly speaking, the problem of interest is to find such an (equivalent) input 

which if applied to the initially relaxed system yields the response identical with the 
response of the previously excited system for all fe >. k0,keK. 

Obviously an additional external input of the linear system (1) does not affect 
the solution of the problem and therefore it can be neglected in further considerations. 

To formulate and solve the above problem more exactly with respect to input-
output physical causality we assume the state initial conditions of the system (1) to be 
x{k0 - Q); k0 - Q e K. 

Then the output of the system can be expressed as [1] 

(5) y1(k) = c(k)4>(k,k0-Q)x(k0-8), k^k0-Q, 

where the system transition matrix 

4>(fc, m) = A(k) A(k-\) ... A(m) ; k > m 
with 

9(k, k) = I. 

On the other hand the relaxed system has the response 

(7) y2(k) = c(k) £ <P(fc, m + 1) b(m) u(m) + d(k) u(k) 
m = k0-g 

if the input sequence 

u(m) ; m = k0 — Q , k0 — Q + 1, . . . , k 
is applied to it. 



TRANSFORMATION OF SYSTEM INITIAL CONDITIONS INTO 

THE EQUIVALENT INPUT SIGNAL 

Theorem. Let the response of the system (l) of the relative order Q, 0 g Q S S, 
operating under only initial conditions x(fc0 — Q) + 0 be yi(k), k0 — Q ̂  keK. 
Then the relaxed system (l) with x(fc0 — Q) = 0 yields the response 

y2(k) - 0 for fc < fc0 , 

yz(k) = yi(k) for k^k0 

when excited by the equivalent input given either 
a) in the recursive form 

(8) u(k0 ~Q + i)~ le(k0 -Q + i) { [ L f ' c(k0 - c ) ] x(k0 -Q)-
1-1 

- Y, la+i-/ko ~ Q + J) u(ko ~ Q + ;')} 
j=o 

gradually for i — 0, 1, 2, . . . or 

b) in the compact form 

(9) u(k0 - Q + i) = \e(k0 -Q + i) [Ll
Ba c(fc0)] A(k& - 1) . . . 

• • • ^(fco - 0) x(k0 - Q), i 1 0 , 

where the (s x s) matrix 

(10) H8(/c) = A(k) - le(k - Q) A(k) A(k-l)...A{k-Q + 1) b(k - Q) c(k). 

Proof, a) Using the denotations (2) and (3) with the property (4) and putting 
k = fc0 + i, the output (5) of the previously excited system can be expressed as 

(11) y,(k0 + i) = lLe/1 c{k0 - <?)] x(fc0 - <?), i=-Q,l-Q,... 

On the other hand the response (6) of the initially relaxed system can be written 
in the form 

(12) y2(k0 + i) = k°£ C ; _ » u(m) -k°+i "l^ii-Jim) u(m) . 
m-ko~Q m = fco~e 

Substituting m — k0 — Q + j we obtain 

(13) y2(k0 + ')~t i;+\-j(k0 -Q+j) u(k0 -Q+j), i ^ 0 
J = 0 

and 
y2(k0 + i) = 0 , i < 0 

because of u(k0 — Q + j) = 0; j < 0 for the system relaxed until k0 — Q. 



68 The relation (13) rewritten in the form 

(14) y2(k0 + i) = i;\k0 - Q + i) u(k0 - Q + i) + 

i-l 

+ E <7+i-/feo - Q+J) u(ko - Q+j) 
j = 0 

can be compared with (11); the comparison of the both outputs for i = 0 simply 
yields the recursive formula (8), q.e.d. 

b) Replacing the input values u(k0 — Q + j), j = 0,1 i in the recursive 
formula (8) by the assumed ones given by the compact form (9) we obtain the equation 

(15) le(k0 -Q + i) lVHe c(/c0)] A(k0 - 1) . . . A(k0 - Q) x(k0 -Q) = 

~ l„(k0 -Q + i) {{LA
+i c(k0 - g)] x(k0 -Q)-

- I tii-Ako ~Q+j) IJiko -Q+j). 
J = 0 

• [ O i , e(fco)] A(k0 - 1) . . . A(k0 - Q) x(k0 - e)}. 

Obviously the compact form (9) is correct if the both sides of the equation (15) 
will be found to be identical. 

As 

lLA
+ic(k0-e)-]x(k0-e) = 

= c(k0 + i) A(k0 + i -1) ... A(k0) A(k0 -1) ... A(k0 - e) x(/c0 - e) = 

= [VA c(fc0)] A(k0 - l ) . . . A(k0 - Q) x(k0 - Q) 

the comparison given by the equation (15) can be simply transformed into the form 

(16) VHe c(k0) - VA c(k0) - £ /7+V/fc,, -Q+j) le(k0 -Q+j) VHQ c(k0). 
; = o 

Using the relations (2), (3) and (10) the equation (16) may be rewritten in the form 

(17) _{,, c(k0) = VA c(k0) + ZIV-J-1 c(k0 + j + 1)] He(k0 + ; ) . . . . He(k0) -
j = o 

- Z W ' " 1 <ko + J + 1)] A(k0 + j) He(k0 + j - 1) . . . He(k0) = 
;=o 

- L\ c(k0) + Z [Li"^ 1 c(k0 + j + 1)] He(k0 + ; ) . . . He(k0) -
; = o 

- 'Z [Li- '"1 e(fc0 + ; + 1)] He(k0 + ; ) . . . He(fe0) . 



Then the common identical terms of the both sums (for ;' = 0, 1, . . . , i — 2) in 69 
the equation (17) are mutually compensated. Hence 

(18) LHe c(k0) = VA c(k0) + c(k0 + i) HQ(k0 + i - \ ) ... HQ(k0) - VA c(k0) = 

= L'HQ c(k0), 
q.e.d. 

STATIONARY SYSTEM 

The solution of the above problem becomes more simple for a stationary system. 
The system parameters A, b, c and d are time-invariant in this case and the relations 
(2), (3) and (10) can be simplified into 

(2a) Vuc = cM', i = 0,l, ... 

(3a) / r 1 = [ L 7 x c ] b = cAilb, i = 1, 2, . . . 

with 

/ñ1 = d 

and 

(10a) Hs = A-leA'bc. 

Therefore the recursive form (8) generating the equivalent input of the stationary 
system is 

(8a) u(k0 -Q + i) = (cA'-'b)-1 [cA°+i x(k0 - Q) -

- c ' v V ' - 1 - ^ u(k0 - Q + ; )] , i = 0,1,2, ... 
j=o 

and the compact relation (9) may be written in the form 

(9a) u(k0 - Q + i) = lecH'eA° x(k0 - Q) ; i = 0 . 

The solution can be expressed in z-domain too. Applying the 2£ transform to the 
signals started at the time fc0 — Q we have 

(19) Y(z)=fjy(k0-Q + i)z~i 

i = 0 

and 

(20) U(z) = f > f j c 0 - e + O z - . 
i = 0 



70 Then the 2£ transform of the relation (9a) gives 

(21) U(z) = u(k0 -Q) + u(k0 - Q + 1) z " 1 + u(k0 - e + 2)z-2 + ... = 

= lec[l + H„z-1 + H 2 z" 2 + . . . ] A" x(k0 -Q) = 

= / e c [ / - z - 1 H J - 1 ^ x ( f c 0 - e ) 

seeing that [1] 

* M = [' - -"'HJ-1 . 

м(fc), 

EXAMPLE 

Assuming the system described by 

x(fc+l) = ^ _ | ] x ( f c ) + 

Xfc)=[-1 l]x(fc) 

we determine the input equivalent to the state initial conditions 

x(fc0 - g) = 

We have 

'o 1 = 0 , / r 1 = cb = 1 and g = 1 at first . 

a) Using the recursive form (8a) we can write gradually 

u(k0 - 1 ) = - 2 , u(fc0 + 1 ) = - 3 , 

u(k0) = - 3 , : 

b) According to (10a) the matrix 

Hi = A - /.Abe = r i °i 

L-2 Oj 

and the compact form (9a) of the equivalent input yields 

u(k0 - Q + i) = licH[Ax(k0 - 1) = [ - 1 1] [ * ° 1 | 1 _ | ; i = 0 

Using the ^f transform relation (21) we have 
2 + z - 1 

£/(-) = - / + - = _ 2 - 3Z-1 - 3z - 2 - . . . 
W 1 - z " 1 



To verify the results we compare the both outputs 
1 - z 

F1(Z) = c [ / - z - 1 Л ] - 1 x ( / c 0 - l ) = 7 -
l + z ^ + z " 2 

= 1 - 2z - 1 + z~2 + z - 3 - 2z~4 + .. . 

and 

Y2(z) = . ,--[1 - z - M ] - bU(z) = ~ ~ ^ r 2 • ~ ~ 

= -2Z" 1 + z" 2 + z- 3 - 2 z " 4 + . . . 

The responses are identical for k ^ k0. 
(Received May 4, 1978.) 
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