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K Y B E R N E T I K A - VOLUME 25 (1989), NUMBER 5 

AR(1) PROCESSES WITH GIVEN MOMENTS 
OF MARGINAL DISTRIBUTION 

Jlftl ANDEL 

Let Xt be an AR(1) process given by Xt= bXt_x + et where b _(— 1, i) and et is a strict 
white noise. Sometimes Xt must satisfy also some additional conditions, e.g. 1 . ^ 0 or C ^ 
_^ Xt_^ D. The problem solved in the paper is how to find a distribution of et such that the 
moments EXt (k = 1, ..., «) have given values. 

1. HISTORY OF THE PROBLEM 

Simulation procedures are frequently used for demonstrating theoretical results 
as well as for modelling real situations. In some cases it is necessary to generate 
pseudorandom numbers not only with a given marginal distribution but also with 
a given covariance structure. Chamitov [7] writes that the problem was formulated 
already in 1963. It is particularly important in simulating dynamical systems and in 
hydrological applications. The first theoretical results concerning an AR (1) process 
were published by Gaver and Lewis [8]. A review of methods of this kind can be 
found in [2]. (See also Section 2 of the present paper.) The disadvantage of this 
method is that the procedure gives explicit results only in a few special cases. More­
over, it cannot be generalized to the AR models of higher order. 

Two direct methods were published in 1983. Chamitov [7] publishes some 
empirical tables. It is not clear, however, which of the tabulated covariance functions 
should be chosen when one has a given empirical covariance function calculated 
from a sample or when a covariance function is given analytically. Further, the class 
of one-dimensional distributions as well as the class of covariance functions is rather 
limited. The method is based on the following argumentation. If £x, ..., t,k is a se­
quence of independent identically distributed random variables, then each of them 
has, of course, the same distribution. But the members of the ordered sample have 
distributions different from this one. This point was obviously overlooked. 

Sondhi [13] starts with a Gaussian white noise et and with a linear filter H. The 
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output Zt has a normal distribution function G0 instead of the distribution function 
E, which is wanted. If we put Xt = E_1[G0(Z,)] then it is clear that Xt has the 
distribution function E. Unfortunately, after the application of the non-linear 
filter E_1G0 the process Xt has a covariance function which is different from that 
belonging to the filter H. The procedure suggested by the author is to use Mehler's 
expansion of the bivariate normal density. It leads to an approximation and the 
computation is rather complicated. Moreover, there is no possibility how to recognize 
whether the problem has a solution. Sondhi writes: "Unfortunately, to the best, 
of our knowledge, no tractable procedure is known to decide whether a covariance 
function is consistent with a given probability distribution function." 

For solving the problem a financial support was offered (see [11], p. 193). 
In practical situations, the given one-dimensional stationary distribution is usually 

derived from some of its moments. Andel [3] proposed a method how to find a dis­
tribution of the white noise such that the resulting linear process Xt has given moments 
EX\ (k = 1, ..., n). This approach was generalized to some non-linear processes in 
[4] and applied to real hydrological data in [6]. 

2. INTRODUCTION 

Consider an AR(1) process Xt given by 

(2.1) Xt = bXt., + et 

where b e (— 1, 1) and et are independent random variables with the same distribution 
function G. The problem is to find a G such that all the variables Xt have a given 
stationary distribution with a distribution function E. The main tool for solving 
the problem was introduced in [8]. Let 

co(u) = E exp (iuXt) and \j/(u) = E exp (iwef) 

be the characteristic function of Xt and et, respectively. Since et is independent 
of* f_ l5 (2.1) yields 

(2.2) co(u) = co(bu) \p(u) . 

From here ij/(u) is calculated. This procedure (based on the moment generating 
function instead of the characteristic function) was applied in [8] for finding G such 
that Xt has an exponential distribution (see Section 7 of our paper). 

In the general case, it is difficult to determine G from if/. It happens also often that 
\J/ calculated from (2.2) is not a characteristic function, which means that for such 
an E the problem has no solution. The following example is given in [2]. If we look 
for a G such that Xt have the continuous rectangular distribution on a given interval 
[ —c, c], then using (2.2) we get 

ij/(u) = b sin (cw)/sin (bcu) . 

This is a characteristic function only in the case that b = Ijn for n = ± 1 , ±2, .... 
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If b = l/(2«) then x]/ corresponds to the distribution concentrated at the points 
±(2k — 1) cj(2n) for k — 1, . . . , n where each point has probability l/(2n). If /3 = 
= l/(2n + 1) then i/t is the characteristic function of the distribution concentrated 
at ±2kcj(2n + 1), k = 0, 1, ..., n, where each point has probability l/(2n + 1). 
If b #= 1/ra then \ij/(u)\ —> oo as w —> 7r/(/3c), and thus i/f cannot be a characteristic 
function. 

In this paper we assume that only some moments of Xt are given. The problem 
if to find a distribution function G (if it exists) such that (2.1) produces a stationary 
distribution with the given moments. Our procedure can easily be realized on a com­
puter and it shows automatically when no solution exists. 

3. RELATIONS FOR MOMENTS 

Define mk = EXk, sk = Eek for k = 0, 1, .... It follows from (2.1) that 

mk = X ( • j&Wk-i 

and from here we obtain 

(3.1) sk = (l- bk) mk -*£ (f) bl mA-, 

for fe — 1, 2 , . . . . If the moments mk are given then (3.1) enables to calculate sk re­
currently. For example, the first four moments are 

Si = (1 - b) mx , 

s2 = (l - b2) m2 - 2b(l -b)m\, 
s3 = (l - b3) m3 - 3/3(1 + 2b) (l - b) mxm2 + 6b2(l - b)m\, 
s4 - (l _ b4) m4 - 4/3(1 - Z>) (1 + b + 2b2) mxm3 + 12b2(l - b) (1 + 3ft) . 

. m\m2 - 6/32(l - ft2) m2 - 24/j3(l - /3) m\ . 

Sometimes Xt must fulfil also other conditions. Three following cases are most 
important. 

(i) Xte [C, D] for all t, where C < D are given numbers. 
(ii) Xt = 0 for all t. 

(iii) There are no additional restrictions on Xt. 
If the numbers slf..., sn are calculated, we must decide if there exists a distribution 
function G such that sk are its moments and that Xt fulfil given restrictions. 

4. MOMENT PROBLEM ON A FINITE INTERVAL 

Theorem 4.1. Let Xt be an AR(l) process defined by (2.1) with be(— 1, 1). Let 
C < D be given numbers. Define 

H = C(l - b), K = D(\ - b) for b _ 0 , 

H = C - bD , K = D - bC for b < 0 . 
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If H = et = K for all t, then C < Xt < D for all t. If P(e. $ [H, K]) > 0, then 
Xt $ [C, D] for infinitely many subscripts t with probability 1. 

Proof. Let 0 = b < 1. Let C(l - /3) ^ e. ^ D(l - /3) hold for all t. Since 

Xt = et + /3e._! + &2e,_2 + ..., 
we obtain 

Xt = D(i-b)(\ + b + b2 + ...) = D, 

X, = C(l - /3)(1 + /3 + b2 + ...) = C. 

Now, consider the case — 1 < b < 0. We can write 

Xt = et + b2et_2 + l34e.-4 + ... + /3(e*-i + b\-3 + &**.•-s + •••) • 
Thus 

Xt = (D- bC)(\ + b2 + bA + ...) + b(C - aD)(l + b2 + b* + ...) = D, 

Xt = (C- bD)(\ + b2 + b* + ...) + b(D - bC)(l + b2 + b* + ...) = C. 

A proof of the last assertion of Theorem 4.1 is similar to that of Lemma 10.2. • 

Theorem 4.2. A sequence of numbers {sk}0
r is a system of moments on an interval 

[H, K] if and only if both the matrices 

A = (si+J)
r
iJ=0 , B = ((H + K)si+J+i - HKsi+J - si+J+2)

rjl0 

are positive semidefinite. 

Proof. See [9], p. 90. • 

Theorem 4.3. A sequence of numbers {sk}lr+1 is a system of moments on an 
interval [H, K] if and only if both the matrices 

A = (si+J + 1 — Hsi+J)iJ=0 , o = {Ksi+J — si+J+1)iJ = 0 

are positive semidefinite. 

Proof. See [9], p. 91. • 

Let us remark that an infinite sequence {sk}0 is a system of moments on an interval 
[H, K] if and only if the infinite quadratic forms 

00 00 00 00 

X X Si + jXiXj , £ Z KH + K) Si+J+1 ~ HKsi + j ~ Si + j + 2] xixJ 
i = 0 j = 0 i = 0 j ' = 0 

are positive semidefinite. This is equivalent to the condition that the forms 
oo oc oo oo 

E I (si+j+i - Hsi+j) xixj > Z S (Ksi+j - si+j+i) xixj 
i = 0 j = 0 i = 0j = 0 

are positive semidefinite (see [9], p. 92). 
If we have numbers s0 = 1, sl5 ..., s„ then it can be decided using Theorems 4.2 

and 4.3 if they are moments or not. If they are, it is important to know at least one 
distribution having just moments sl5 ..., s„. It is known that there exists a discrete 
distribution with this property and the points at which the probability is concentrated 
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are given as the roots of some polynomials. Such points are shortly called "points 
of concentration". Since this method is very general and not known among the 
statisticians, we describe it in this paper in detail. Before doing it, let us make the 
following remark. In the most situations only four moments are investigated. The 
author believes that then the use of the generalized Tukey's A-system (see [12]) 
can be recommended. The procedure gives smooth densities and the sample can be 
quickly generated on a computer. 

Now, we return to the problem of general n. 

Theorem 4.4. Let n = 2r — 1. Let the matrices A and B from Theorem 4.3 for 

a sequence of numbers {sk}lr~1 be positive definite. Then the points of concentration 

of so called lower main representation are the roots of 

s 0 s x 

s l S 2 

S r - 1 

s. 
= 0 

Sr S r + i . . . S 2 r _ i 2 

The points of concentration of so called upper main representation are the roots of 

(K-z)(z-H) 

S r-2 1 
s,_ 

S 2 r - 3 Z 

where s'k = (H + K) sk+1 - HKsk - sk+2. 

Proof. See [9], p. 122. D 

Theorem 4.5. Let n — 2r. Let the matrices .4 and B from Theorem 4.2 for a sequence 
of numbers {sk}lr be positive definite. Then the points of concentration of the lower 
main representation are the roots of 

(z-H) 

s i ~ Hs0 

s2 - Hs^ 
s2 - Hsг 

s3 - Hs2 

sr — Hsr_t 1 

s r + 1 - Hsr z 

= 0 

sr+1 Hsr sr+2 — Hsr+1 ... s2r — Hs2r_! z j 

The points of concentration of the upper main representation are the roots of 

Ks0 - sx Ks1 — s2 . . . Ksr_ i - sr 1 | 

'2 ~~ ^3 • • • -* v o r — J r + 1 

( _ _ - _ ) 
KS, KS, — s3 

Ksr - s r + 1 Ksr+1 

Proof. See [9], p. 122. 

s r + 2 

. Ksr 

• - ^ S 2 r - l — S 2r Z 

= 0 

D 

It is recommended to prefer the lower main representation. One of the reasons 
for it may be that in the case n — 2r — 1 it needs a smaller number of the points 
of concentration. 
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If n = 2r, we find the points zx, ..., zr+1 of the lower main representation. Then 
we calculate probabilities Px, ..., Pr+1 from 

z\Pl + ... + zk
r+lPr+1 = Sk (k = 0, 1, ..., r). 

The solution has the property that p1 = 0 , . . . , pr+1 _ 0 and that 

z\Pl + ... + zk
r+lPr+1 = Sk 

holds also for k - r + 1,..., 2r. If n = 2r - 1, the procedure is analogous. 

5. SPECIAL DISTRIBUTIONS ON [ - 1 , 1] 

If Xt has the continuous rectangular distribution on [ - 1 , 1], then its moments 
are 

mk = lj(k + 1) for k even , mk = 0 for k odd. 

Because C = - 1 , D = 1, we get H = - 1 + |ft|, K = 1 - |ft|. For simplicity, 
we consider only the case b e (0,1). Using the results of Section 3 we get 

st - 0 , s2 - (1 - /32)/3 , s3 = 0 , s4 = (1 - b2) (3 - 7fe2)/15 . 

We restrict ourselves to n = 4. Then 

.4 = 0 (1 - ft2)/3 0 
\ ( l - f t 2 ) / 3 0 (1 - ft2)(3-7ft2)/15y 

• - ^ ( ' - ^ - ^ ( o d + fcKi-s*))-
We have |.4| = 4(1 - ft2)2 (1 - 4ft2)/l35. The matrix A is positive definite for 
0 < b < 1/2 and positive semidefinite for b = £. The matrix B is positive definite 
for 0 < /3 < ^ and positive semidefinite for /3 = ^, /3 = ^. Let 0 < /3 < ^. Inserting 
into the first part of Theorem 4.5 we obtain 

- H s2 1 
(z — H) s2 —Hs2 z 

— Hs2 s4 z2 

= (2/45) (1 - b) (1 - 2fc) (1 - fc2) (z + 1 - 6) . 

' . [5z2 - 2(1 + 2b) z - (1 - 3b) (1 + b)] . 
The roots are 

zx - b - 1 , z23 = (1/5) [1 + 2ft + (6 - 6/J - 11 / J 2 ) 1 / 2 ] . 

If we insert ft = \ (which is the case not covered by Theorem 4.5), we have z1 = 
= —0-5, z2 = 0-3, z3 = 0-5. Solving the system of linear equations we get px = 0-5, 
p2 = 0, p3 = 0-5, which is the exact solution (cf. Section 2). Similarly for ft = | 
we obtain zx — — f, z2 = 0, z3 = f and Pi = p2 = p 3 = i which also agrees 
with the exact solution. 
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Let Xt have the density 

f(x) = 2-p-«+1 B'^p, q) (x + ly-^x - I ) " " 1 , - 1 < x < 1 , 

where p > 0 and q > 0 are given parameters and B is the beta function. In the 
special case when p = q = 1 we get the rectangular distribution mentioned above. 
The moments corresponding to / are 

p(p + i)...(p+ i - 1) mt = (-lfІÇy-iy2>-
(p + q)(p+ q + l)-..(p + q + i - 1) 

For example, p = q = 0-5 gives a (/-distribution of Xt. Consider its moments 
ml5 ..., m6. For b = 0-15 the problem has no solution and for b = 0-1 we obtain 
the distribution of et in the form 

Z l = -0-9 , z2 = -0-372 , z3 = 0-333 , z4 = 0-895 , 

px = 0-268 , p2 = 0-225 , p3 = 0-231 , p4 = 0-276 . 

For p = 0-5 and q = 3 using m l5 ..., m6 we come to the conclusion that for b = 0-35 
there is no solution and for 6 = 0-3 the distribution of et is 

2 l = -0-7 , z2 = -0-434 , z3 = 0060 , z4 = 0-658 , 

pt = 0-599 , p2 = 0-239 , p3 = 0-139 , p4 = 0-023 . 

6. MOMENT PROBLEM ON [0, oo) 

Theorem 6.1. Let Xt be an AR(1) process defined by (2.1) with 0 = b < 1. If 
et = 0 for all t, then Xt = 0 for all t. If P(e, < 0) > 0, then Xt < 0 for infinitely 
many subscripts t with probability 1. 

Proof. The first assertion is clear. If P(et < 0) > 0, then there exist numbers 
c > 0 and q e (0,1) such that P(et < —c)>.q. Now, we apply Lemma 10.2. • 

Theorem 6.2. A sequence of numbers {sk}
n

Q is a system of moments on [0, oo) if 

and only if the matrices 

A = (s \ln/2l B - r<. \l(n-l)/2-\ 
M \i,i+j)ij = 0 > ° — Vi+j+lJiJ^O 

are positive semidefinite; [ ] denotes the integer part. 

Proof. See [9], p. 237. • 

An infinite sequence {sfc}o° is a system of moments on [0, oo) if and only if the 
infinite quadratic forms 

oo oo oo oo 

L LiSi + jXiXj, 2 J .£Si+/+lXiXJ 
i = 0 j = 0 i = 0j = 0 

are positive semidefinite (see [1], p. 100). 

Theorem 6.3. Let the matrices A and B from Theorem 6.2 be positive definite 
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for a given sequence of numbers {sj2/. Define 

Q2r(z) 

1 S 0 S j 

Z S І s 2 

sr- 1 

*Г 

z s r s r + 1 . . . 

z s^ s 2 

z s 2 s3 

S 2 r - 1 

. . . S, 

. . . s, + 1 

z s г + l s r + 2 . . . s 2 r 

Ö2r+lW 

Then the roots of Q2r(z) are the points of concentration of the upper main representa­
tion and the roots of Q2r+i(z) are the points of concentration of the lower main 
representation. 

Proof. See [9], p. 260. D 

7. EXPONENTIAL DISTRIBUTION 

Let b e (0, 1). If Xt has the exponential distribution Ex(X) with the density 

f(x) = X~x exp (—xJX), x > 0 , 

then in the model (2.1) the et must be a variable which equals to zero with prob­
ability b and which has Ex(X) with probability 1 — b (see [8]). The moments of et 

are sk = k\ (1 — b) Xk. Let us consider the case of four moments. Both >A and B 
are positive definite for b e (0, 1), the roots of Q5(z) are 

z . = 0 , z2 = (3 - 31/2) X , z3 = (3 + 31/2)A 

and the corresponding probabilities are 

Pl = (1 + 2&)/3 , p2 = (l-b)(2 + 31/2)/6 , p3 = (1 - b) (2 - 31/2)/6 . 

Numerically, if X = 1 and b = 0-5, we have 

Z l = 0 , z2 = 1-268 , z3 = 4-732 , 

p1 = 0-667 , p2 = 0-311, p3 = 0022 . 

8. MOMENT PROBLEM ON ( -oo , oo) 

This case is described in [3] and so we introduce briefly only main results. 

Theorem 8.1. A sequence of numbers {sfe}or is a system of moments on (— oo, oo) 
if and only if the matrix 

A = \Si + j)i,j = 0 
is positive semidefinite. 

Proof. See [9], p. 246. D 
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A sequence {s t}^ is a system of moments on (—00, 00) if and only if the infinite 
quadratic form 

_L __ Si+JXiXj 
i = 0 J = 0 

is positive semidefinite (see [9], p. 246). 

Theorem 8.2. If sl5 . . . , s 2 r are given numbers such that the matrix A given in 
Theorem 8.1 is positive definite, then the points of concentration of so called canoni­
cal representation which includes a given point w are the roots of 

0 s i • • • s r - i 1 1 

_(-) 
. S r VV 

s r + l Sr + 2 • • ' • S S 

Proof. See [9], p. 247. D 

9. A SPECIAL CASE ON ( -00 , 00) 

We proved in Section 5 that for b e (%, %) there exists no distribution of et such that 
Xt belongs to [ —1, 1] and has the moments mx = 0, ra2 = J, m3 = 0, ra4 = | . 
However, if we do not insist on the condition Xt e [— 1, 1], then A being positive 
definite for b e (0,i) allows to find a solution on the real line. The polynomial Q(z) 
with w = 0 has the roots 

z 1 3 = + [ ( 3 - 7 f o 2 ) / 5 ] 1 / 2 , z2 = 0 , 

and the corresponding probabilities are 

Pi = P3 = 1(1 " b2)l(3 - lb2), p2 = f(l - 4/>2)/(3 - lb2). 

For example, if b = 0-4 then 

2, = - 0 - 6 1 3 , z 2 = 0 , z3 =0-613 , 

Pi = 0-372 , />2 = 0-256 , p3 = 0-372 . 

In this special case we obtain —1-532 ^ Xt ^ 1-532. 

10. APPENDIX 

Lemma 10.1. Let Ax, A2,... and Bu B2,... be two sequences of events satisfying 
the following conditions. 

(i) The events Au A2,... are independent, 
(ii) For each n, the events An and B„ are independent, 

(hi) IftAj = 00 . 
(iv) P(B„) -> 1. 
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Then infinitely many events A„ n Bn occur with probability one. 
Proof. See [5]. • 

Lemma 10.2. Let Xt be an AR(l) process defined by (2.1) with 0 < b < 1. If 
there exist numbers c > 0 and q e (0, 1) such that ?(et < —c) — q, then Xt < 0 
for infinitely many subscripts with probability one. 

Proof. Let jk be the smallest integer such that 

jkq
k^ 1 for k= 1,2,... 

Arrange the positive integers into the subsets Su S2, ... in the following way. Let 
Sj = {1, . . . , j i } . Let 52 contain the elements ofj2 couples 

(11 + 1,11 + 2) , (A + 3,J\ + 4), ..., ( j . + 2/2 - 1,/i + 2;2) , 

let S3 contain elements of j 3 triples starting with (ĵ  + 2;2 + 1 , ^ + 2/2 + 2, 
ji + 212 + 3) and so on. The numbers 1, ...,ju the last numbers of couples, the 
last numbers of triples etc. denote nlt n2, •. •• If nt e Sk then we use the decomposition 

Xni = Unt + Zni 

where 

Unt = eni + K . - i + ••• + bk-leni_k + 1 , 

Zttt = bke„t.k + bk+lent-k_1 + ... 

Define \i = Eet, a
2 = var et. Then 

EZni - abkl(l - 6) , var Znt = ff
2fe2fc/(l - 62) 

and thus 
EZn

2. = var Zfli + (EZnj)
2 -> 0 as i -> oo. 

Introduce events 
^ , = {"/.,< ~ c } , B£ = {Zn< < c} . 

Since 
P(Z„ i^c) = c-2EZ„2

i-*0, 

we have P(Z„. < c) -> 1. It is clear that 
00 

}~ p(Ai) = q + ... + q + q2 + ... + q2 + ... = oo. 
j = l v v ' ' v ' 

Ji J2 

The events Ax, A2,... are independent and for each i the events At and B; are also 
independent. Thus the assertion follows from Lemma 10.1. • 

(Received February 21, 1989.) 
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