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K Y B E R N E T I K A - VOLUME 25 (1989), N U M B E R 5 

MULTIDIMENSIONAL RANDOM PROCESSES 
WITH NORMAL COVARIANCES 

JIŘÍ MICHÁLEK 

The definition and basic properties of multidimensional locally stationary and normal co-
variance functions are given. Necessary and sufficient conditions characterizing these covariance 
functions are presented and a close connection with normal operators is shown too. 

1. INTRODUCTION 

Let {x(t), t e Ut} be a second-order random process with vanishing mean and 
a covariance function R(% •). Silverman suggested in [8] a generalization of weak 
stationarity, named by local stationarity, in the following way. A covariance function 
R(% •) is called locally stationary if for every pair s, t of reals (s, t e Rx) 

R(s,t) = R^(—\R(2XS 

where R(2)(*) is a weakly stationary covariance. Thanks to the facts that R(s, s) ^ 0 
for every seU1 and R(2)(0) ^ 0 this definition yields R(1)(s) !> 0 for every s e (R__. 
The definition of local stationarity for random sequences is given in [4]. In this 
case a covariance function R(-, •), defined on Z x Z (Cartesian product of integers), 
can be expressed as 

R(n, m) = R(1)(n + m) R(2)(n - m) 

where R(2)(*) is a stationary covariance. Here, the function R(1)(«) need not be 
nonnegative. 

Under assumption of continuity of R(1)('), R(2)(*) and nonnegative-definite 
property of R(1)(*), in the case of a random process, the corresponding locally 
stationary covariance function can be written in the form 

R(s> 0 - tt-Z e s z + ' 5 dFt(X) 6F2(n), (z - X + in , z = X - \fi) , 

as it is shown in [5]. This expression is a special case of a normal covariance func-
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tion introduced and investigated in [5], [6]. For completeness, we present the 

definition here. 

Definition 1. A covariance function R(', ') defined on the plane is said to be normal 
if for every s, t of reals 

R(S, t) = J j + - esz+ '2 ddF(X, n), z = X + iii, 

where E(., .) is the distribution function corresponding to a bounded nonnegative 
measure on the Borel sets in the plane. 

The definition of a normal covariance function due to a random sequence is given 
in [4]. The main aim of this paper is to give the definition of multidimensional 
locally stationary and normal covariance functions together with presenting ne­
cessary and sufficient conditions describing these classes. A close connection with 
groups of normal operators in a Hilbert space is also given. 

2. MULTIDIMENSIONAL LOCAL STATIONARITY 

Let xT(t) = {(x1(t),x2(t),..., xN(i), teR-J be a multidimensional second order 
random process with vanishing mean value. Let 

R(s,t) = E{x(s)xT(t)} 

be the corresponding covariance function. 

Definition 2, We say the process *T(«) is locally stationary (or its covariance 
function R(% •) is locally stationary) if for every N-tuple zT = (zt, z2,.... zN) of 
complex numbers the random process 

N 

L(t) = Y,zi XM > teUi 

has a locally stationary covariance function. 

Lemma 1. If an N-dimensional covariance function !?(•, •) is locally stationary 
then for every u e IRj the matrix R(u, u) is positive semidefinite and the matrix 
R(s — t, t — s) is an N-dimensional stationary covariance function. 

Proof. If R(', •) is locally stationary then zTR(s, t) z is for every zT = (zu ..., zN) 
a one-dimensional local stationary covariance. Then, according to the definition 
of local stationarity, 

zTR(s,t)z = Rz
1)(~^\Ri2)(s-t). 

This fact means zT R(u, u) z = R^u) R2
2)(0) and 

z T R ^ , ^ z = Ril)(0)R2
2)(v). 
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Hence, 

zT R(0, 0) zzT R(s, t)z=zTR ( — , S-~A zzT R (~ , — } z 

where R^}(0) R{2)(0) = zT R(0, 0) z. As local stationarity demands Rz
i}(u) ^ 0 for 

every u e Rlt and Rz
2)(v) must be a stationary covariance, we obtain that for every z 

zT R(u, u) z = 0 and RI^-', t—^ ] 

is an N-dimensional stationary covariance function. • 

Theorem 1. An N-dimensional covariance function R(~, •) is locally stationary if 
and only if for every s, t eUt and every multiindex a = (i, j , k, J) e {1, 2, 3, ..., N}4 

Ri/0, 0) Rkl(s, t) + Rn(0, 0) RkJ(s, t) + Rkj(0, 0) Ra(s, t) + 

+ Rkl(0, 0) Rtj(s, t) = 

+K«('-¥. -±^ «»f~-'. - ^ . + K ^ ' . ^ K./5 - " - s 
^ 2 2 / \ 2 2 / V 2 • 2 / J \ 2 2 

where R(.,.) = {^X',-)}L = f 

Before proving Theorem 1 it is suitable to introduce the following 

Lemma 2. Let Vn be an n-dimensional complex vector modul and 

0:VnxVnxVnxVn->C 

be a mapping having the form 
n n n n 

$(u, v,x,y) = Y, Z Z Z uivjxk9i^ijki 
i = l j = l fc=l 1 = 1 

n n n n 

where u = £ u,e„ » = £ vfy, x = £ xfcefc, j> = j y,e„ and $iJkl = $(ei5 e,-, efc, et) 
i I fe=i J = I 

for a fixed basis {e.}"=i of Vn. Then $ is vanishing on the principal diagonal (i.e. 
$(**, «, «, w) = 0 for every u e Vn) if and only if 

(l) ®ijki + ®jiki + $ijik + $w = ° 

for every i, j , /c, I = 1, 2, ..., n. 

Proof of Lemma 2. Let the condition (l) hold. Then for every xeVn, x = 

= Z *.ei> 
1 

4<I>(x, x, x, x) = J X Z Z^i^Wit^ufci + #_/.*. + <fy.i* + (IV*) = ° • 
i j k l 

Hence, <P is vanishing on the principal diagonal. Now, assume <P(x, x, x, x) = 0 
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for every x e V„. Then <P(x + t Qi(°y, x + t Qi(0y, x + t Qi(°y, x + t Qi(0y) for x, 
yeVn and real t, co presents a polynomial function of the 4th degree in t having 
complex coefficients and vanishing everywhere. The coefficient standing by t must 
satisfy 

[<P(y, x, x, x) + <P(x, y, x, x)~] eit0 + [<P(x, x, y, x) + <P(x, x, x, y)] Q~'1(° = 0 . 

Hence, <P'y(x) = $(y, x, x, x) + _> (x, y, x, x) = 0 for every x, y e V„. Now, we shall 
repeat this consideration twice. First, the coefficient by t in the term <&'y(x + t Q,coy) 
equals 

[<P(y, z, x, x) + 0(z, y, x, x)] eico + [<P(y, x, x, z) + <P(y, x, z, x) + 

+ <P(x, y, x, z) + <P(x, y, z, xj] Q~i(° = 0 . 
This fact gives 

&(y, z, x, x) + <P(z, y, x, x) = ^^(x) = 0 

for every x, y, ze Vn. Finally, the expression of 0ytZ(x + ! e1C0w) yields immediately 
for every x, y, z, ueVn 

<p(y, z, x, u) + _>(j, z,ux) + $(z, y, x, u) + $(z, y, u, x) = 0 . 

This implies easily condition (l). • 

Now, the proof of Theorem 1 is an easy matter. 

Proof of Theorem 1. Let an N-dimensional random process {x(t), te R j be 
locally stationary. It means that for every zT = (zu ..., zN), an N-couple of complex 
numbers, and every 5, f e __! 

zT R(0, 0) zzT R(s, t)z= zTR ( ^ , ~ \ zzT R (S-^ * ~ "' 

This equality may be rewritten into the following form 

0 = I E E E zizJ.zkzz(
/Ry(0, 0) Rkl(s, t) -

i=l j=l k=l 1=1 \ 

At this moment, we can apply Lemma 2 to the function 

*(*,», X , J O - _ S I luiVjXkyl(Rij(0,0)Rkl(s,t)-
i=l j=l k=l 1=1 \ 

_ (s + t s + t\ _ (s - t t - s\\ __ 

- * , ( — . —)-•{—•—))• -
Silverman in [8] proved an assertion dealing with harmonizable locally stationary 

random processes. This result can be generalized to the multidimensional case. 

Theorem 2. Let {x(t), t e Ut) be an N-dimensional random process with harmoniz-
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able (in the strong sense) locally stationary covariance function having a spectral 
density function. Then, this spectral density function is locally stationary and vice 
versa. 

Proof. Being strongly harmonizable {x(t), teUj] can be expressed in the follow­
ing form 

* ( t ) = f _ * e i a d £ ( ; i ) 

where {€(£), X e Ut} is an N-dimensional second-order random process with co-
variance function 

F(X,ti)-{E{Ci(X)^J(n)}}lJ_1 

N 

possessing finite variation £ £ Y}——Fu(h> Vi)\ = c < oo (E,j(A, //) = 

= E{ (̂(A) %j(fi)}). Then, the covariance function of {x(t), t e R t} can be written as 

R(s,t)-l\tl^sk-^f(X,n)dXdix 

because we assume existence of d2Fij(X, fi)jdX 8/x = fij(X,ii). As {x(t), teU^ is 
locally stationary, then by definition, for every zT = (z l5 z2, ..., zN) 

zTR(s, t) z = JJ_£ e^-^zTf(X, p) z dX d/i 

must be a locally stationary covariance function. The inverse formula, see [3], 
gives under local stationarity of R(*, •). 

1 ff+t» 
zTf(X, j ! ) * - — - e

i ( A 4 - * V R(s, t) zdsdt = 
(2V JJ-00 

(-«)' 
T " exp / - i ( i ± i ) (A - ^ e x p Z - i í s - í ) / ^ * - ^ ) ) zTX(S,ř)ídsď = 

fR(LZl,LZl)t 

(2^)2 JJ-oo V V 2 / V R(1>(0) 

T _ ís + ř s + í\ 

i r« / . /„ + M \ V2 v A i 
— exp I — i » _—-r— dc x — = — exp, , . , _. 
2яJ-oc V V 2 J J R(1>(0) 2я. 

Rf>(0) 

This means 
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where T nfv v^ 
zTR[-,-\z 

/S"(") - ^ e " ~ _ . ' di> 
2-J.„ R«>(0) 

and ^»w_ir%-.^__(___d„. 
'' W 2 » J _ . *<2>(0) 

We have proved that for every zT = (zx, z2,..., zN) the covariance function zT'/(•, •) " 
is locally stationary because 

/_1}M __ o 
for every x e R j and L_2)(*) is a weakly stationary covariance function. We can 
summarize that the N-dimensional covariance function/(•, •) is locally stationary. 
Now, assume / ( • , •) to be an N-dimensional locally stationary covariance function. 
Then, zT'/(•, •) z is locally stationary for every zT = (zx, z2,..., zN), i.e. 

ffi% ii) «V(o, 0) z = * T / ( ^ , --±-«) « T / ( ^ . *"--) r • 

Hence, 
zTR(s, 0 « = [ [ - « e^ - f ">z T / ( „ , „) z dl dp = 

T #•/_: + _. ^_____\ T /• A — n ii — k 
z J \ _ » _ \ z Z J 

i*+oo " \ 9 9 / ~ \ 9 9 

!(„-.„) —v_£ ±_2 \__ i_^_ áíili = 
/f*(o) /í»(o) 

— 00 

'expli/__iV\z/^'2l;
d„ p._-n.-M-.-)«-. _ 

. U W i /i"(o) J-- /™(o) 
_ W_±_W>(S _ 0. 

It is easy to see that Rz1}(') __ 0 and Rz2)(') is a weakly stationary covariance. We 
proved local stationarity of ZTR(', *) " hence, the process (x(t), t e Ux] is locally 
stationary. • 

Theorem 2 affirms, roughly speaking, that the Fourier transform of a locally 
stationary process is a locally stationary one again. 

2. MULTIDIMENSIONAL NORMAL COVARIANCES 

Let us suppose that an N-dimensional covariance function /?(•, •) is locally 
stationary, i.e. one can write 

zT R(0, 0) z zTR(s, t)z= zTR f — , — \ z zTR {*— , — \ z 
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for every zT = (zu z2,..., zN) of complex numbers and every s, t e U1. In general, 
i?(i(s + t), %(s + t)) need not be an N-dimensional covariance function in s, t, it 
is a positive semidefinite matrix for every fixed s, t as it is proved in Lemma 1. Now, 
let R(i(s + t), i(s + t)) be a covariance function and Rtj(s, t), i,j = 1,2, ...,N 
be continuous functions on the plane. Then, for every z the function zT R(i(s + 0> 
|(s + f)) z is a covariance with the kernel (s + t), hence, 

e R ( i - t i , S-±J) J - j i : e*+'> dFM) 

where Ez(") is a nondecreasing function with finite variation, for detail see [9]. 
Analogously, by means of Bochner's theorem 

fR^Lzl, Li/) z = J - e ^ - ^ d G z W . 

Let us denote eT(j, k) = (0, 0,..., 1,..., 1,..., 0) if 1 stands on the jth and kth place 
(; < k); similarly, dT(j, k) = (0,..., 1, ..., - i , ...., 0). Then, 

(2) eT(j, k) R(s, t) e(j, k) = R,/s, t) + RJk(s, t) + Rkj(s, t) + Rkk(s, t), 

<f T(j, fe) R(s, f) «/(;, fc) = RJJ(S, t) - iR,fc(s, 0 + iRfc,(s, t) + Rfcfc(s, t) . 

The choice of z] = (0, 0,..., 0, 1, 0,..., 0), where 1 stands on the jth place, gives 

^*(L + J- s-y i) z ' = J1"eM'+"dFjW 

and 

zj*("f-'. ^f-) «» = J+S »,*-) dG» . 

This means, of course, that 

(3) R,,(0, 0) RJJ(S, t) = Jf+« e*~+<> e ^ ^ ddF/A) G » . 

Similarly, for every zT = (zl9 z2,..., zN) local stationarity yields 

zTR(0, 0) zzTR(s, t) z = I K eX(s+t) e'^-f> ddFz(X) Gz(n) . 
Especially, 
(4) > eT(j, k) R(Q, 0) e(j, k) eT(j, k) R(s, t) e(j, k) = 

= H ^ e^+'> «**-> ddFe(i>fc)(A) G e ( / » , 

(5) dT(j, k) R(0, 0) d(j, k) dT(j, k) R(s, t) d(j, k) = 

= JJ + - e^
+<> e'^-'> ddEd0,fe)(A) GdUM . 

Assuming regularity of the matrix R(0, 0) and combining (2), (3), (4), (5) we obtain 
that 

(6) Rjk(s, t) = f f+» e^ + ' } e1"'-" dd{- J^idQ^iLhA^L + 
K) M ; J J " \2e^(j,k)R(0,0)e(j,k) 
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i FdU,k)(X) GdU>k)(n) \+i(Fj(X)GM + Efcffl GftQQ 

2dT(j.k)R(0,0)d(j,k) 2 \ Rjj(0,0) Rkk(0,0) 

We achieved a possibility to express the covariance function R(-, •) in the form 

(7) R(s, t) = J J ! * eA(s+() e^ ( s- f ) ddE(A, n) 

where Fjk(X, p) is defined by the formula (6). Thanks to the fact that zT R(s, t) z is 
a one-dimensional normal covariance function, under our assumptions, 

zTR(s, t) z = JJ + » eA(s+t) eW»-) d d ^ ^ , 
z R(0, 0) z 

and thanks to the one-to-one correspondence between a normal covariance function 
and its spectral measure, see Theorem 3, we can assert 

zTR(0,0)z 

As for every zT — (zu z2, ..., zN) of complex numbers 

AhiAh2Fz(X)Gz(n) = 0 

this inequality proves thatE(*, •) is a matrix spectral measure. ¥(•, •) = {Ey(*, *))L=i 
is a matrix spectral measure, see [7], if every component Ftj(') is a complex measure 
defined on the Borel sets in the plane satisfying 

1) El7(') = Eji(-) for every i,j = 1, 2, . . . ,N 
N N 

2) £ £ c^j Ftj(A) ^ 0 for every N-tuple cu c2, ..., cN of complex numbers and 
» = i j = i 

every Borel set A in the plane U2. 

The spectral decomposition of R(', •) in the form (7) leads us to the following 

Definition 3. An N-dimensional covaraince function R(-, •) will be called normal 
if it can be expressed in the form 

R(s, t) = J J + ^ eA(s+,) e^8"') ddF(X p) (for every (s, t) e U2) 

where E(*, •) = {Eij(*, *)}L"=i *s a m a t r ix spectral measure. 

Properties of Normal Covariances 

The existence of R(s, t) for every pair (s, t) e U2 implies 

\RiAs> 0 i = J J -» e" ( s + t ) dd|Ey(A, A*)| , U - 1, 2, . . . ,N , 

where |Ey(*) is absolute variation of the complex measure Ey(') because the spectral 
measure E satisfies the evident relation 

(8) \F,>(A)\sF)r(A)F)<i(A) 

thanks to positive semidefiniteness of E(-). As Fn(A) = 0 for every i = 1, 2, . . . ,N 
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and every Borel set A in U2 we see that every integral 

j j ! o o e A ( S + o e i , ( s - o d d F . . ( A j j U ) j i}j , i s 2 , . . . , N 

is absolutely convergent. The above relation (8) gives that every component Ey(') 
is of finite absolute variation because 

VarE i i(.) = E,,(R2) = Rii(0,0) 

is finite for every i — 1, 2, ...,N. Every component Ey(') can be expressed as the 
sum ReEy( ' ) + i Im Ey(') where both the signed measures are of finite absolute 
variation. This fact implies that for every i,j = 1, 2, . . . ,N 

(9) FtJ(A) = Re Ftj(A) - Re Fr.(A) + i(lm EJ(J) - Im Er.(J)) 

where all the terms are measures with finite variations. As every one-dimensional 
normal covariance function is continuous at every point in the plane U2, see [6], 
Ry(., •), which is a sum of normal covariances, cf. (9), must be a continuous func­
tion. We can state that every N-dimensional normal covariance function is continuous. 
Further, every normal covariance can be expressed as 

R(s, t) = S(s + t,s - t) 

where 5(«,-) = {Sy(.,-)}rj=1 and 

SiAu, v) = j$+-Z e ' u *" ddFtM> !^)_ 

Every function <Sy(', •) is continuous and S(u, —v) = ST(u, v) where T means 
the transposed matrix. 

Theorem 3. Every normal covariance function R(% •) determines unambiguously 
a matrix spectral measure E(", •). 

Proof. Let the covariance function R(-, •) be normal and let 

* u M = JJl^e^+^e^- 'MdEy^,^) , i,j = 1,2,...,N. 

The covariance function R(«, •) determines unambiguously the matrix spectral 
measure E(% •) if and only if every component Ry(*, •) determines unambigously 
the corresponding complex measure Ey('). We begin with the diagonal elements 
Rtt(., •), i = 1,2, ...,N. Then the corresponding spectral measure F^) is non-
negative as follows from positive semidefiniteness of E(*). The element Rii(', •) 
defines in the unique way Sti(', •) because 

_ / s „ (u + v u — Vs 

Su(u,v)= RA_—,— 

The integral Sn(u, v) = jjt™ eA" e1"" ddFit(X, ft) is absolutely convergent because 

JJ1« | e* e ^ | ddEh.(A, ft) = JJ+£ e*« ddEtt(A, fi) = Sit(u, 0) 

exists for every pair (u, v)e U2. Now, let us consider a complex number u = ui + 
+ \u2. Then, the integral 

\\tl eAui QiflU2 e ^ ddFti(X, n) 
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is also absolutely convergent. In this way we can extend the function S ,-,•(•, •) for 
every veUt into the complex plane 

SH(Ul + iu2, v) = JJ+- eAui e""» e1"" ddFH(X, (i) . 

Let us prove that the function SH(u, v) is for every v e !RX a holomorphic function 
on the complex plane. We introduce, for this purpose, a complex measure @v(*, •) 
defined by the relation 

%(X,n) = JJi"_e!*ddF„(a,0). 

Surely, \&V(X, fi)\ _ FH(X,in). Hence, absolute variations of {&„(', '), veUi}, are 
uniformly bounded and 

(10) SH(u, v) - JJ+_ eA" dd^(A, A*) = J_S eAu dS<'>(.-.) 

where ^(1)(*) is the first marginal measure of ^„(*, •). We see that, by (10), the 
function SH(u, v) is for every v e Ut the bilateral Laplace transform of &„(•,•), and 
hence, it is a holomorphic function of the variable u. The subset (—00, +00) x {0} 
is not isolated in the complex plane. This fact implies that SH(Ui + iu2, v) is the 
unique holomorphic extension that is determined by the values of Sii(w1, v), ul e 
€ (—00, +00). Now, let ux be chosen quite arbitrarily. Then, 

SH(Ul + iu2, v2) = JJ+S eAU2 &" ddHttl(A, „) , 

dHul(A,/.) = JJA_"00e^ddE i i(a, /5). 

We see that for every fixed u1 e (— 00, + 00) the function Sii(wi + iu2, v) is in the 
variables u2,v the two-dimensional Fourier transform of HUl(

#, ')• Thanks to 
properties of the Fourier transform the measure HUl(*, •) is determined unambigu­
ously. As the function eaui is the Radon-Nikodym derivative of HHl(*, •) with respect 
to Eii(-, •), the measure Ei£(-, •) is determined by HHl(-, •) and e*"1 in the unique 
way. We have proved a one-to-one correspondence between Rii(*, •) and Eii(*, *). 

In the case of a complex measure Ey(*, •) for i + j we shall proceed in the follow­
ing way. Let exist two complex measures such that 

*yfc 0 = J J - « eA(s+° e i" ( s - 0 ddFiAx> *0 = 
= J J !^ eA(s+f) e ^ s - f ) ddGtj(X, ft) 

for every 5, t e Ut. Then, 

JJ!_ e«s+<> e 1 * - ' dd(Ftj(X, n) - Gtj(X, n)) - 0 

for every s, teUt. This means, we have to prove that the only complex measure 
satisfying for every u,veUt 

JJ!^eAue i ' t i ;ddH(A,/i) = 0 
is zero. 

Writing H(-, •) = Ht(-, •) + iH2(', •) we obtain that 

J J ! * eAu cos fjiv ddHt(X, fi) = J J 1 * eAu sin [iv ddH2(X, pi) 

JJ+* eAu cos fiv ddH2(X, fi) = - J J ^ eA" sin fiv ddH,(X, n) . 
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This fact yields 

JJ+ oo exu e M . ddHi(2> ^ = o , JJ1» eAu e1"" ddH2(2, /i) = 0 . 

As we consider measures with finite variations we can decompose 

H,(-, •) = H+(-, •) - Hr(-, •) 

H2(-, •) = H+(-, •) - H2(-, •) 

by means of the Jordan decomposition. Then, we have for every u, v e U.t 

JJ+OO txu Qi,v ddH+(l, n) = J J i - e*« e*" ddHr(A, ft), 

and similarly 
JJ+2e*"e^ddJ.rJ(A,Ai) = n+^eA"e^ddH2-(A,^). 

The one-to-one correspondence between one-dimensional normal covariance and 
spectral measure proved above gives that 

H+(.) = Hr(-), H+(-) = H2-(.). 

This fact completes the proof of the theorem. • 

Necessary and sufficient conditions given in the following theorem describe the 
class of multidimensional normal covariances. 

Theorem 4. An N-dimensional covariance function R(-, •) defined on the plane 
U2 is a normal covariance if and only if there exists a continuous matrix function 
S(', •) defined on the plane such that 

R(s, t) = S(s + t, s - t) 
and 

JV JV n n 

Z Z Z Z 4^Sij(uk + w„ % - y,) ^ 0 
i = l j s - 1 fe=l i = l 

for the every 2n-tuple of real numbers uu u2,..., un, vt, v2, ...,,vn and every n x 
x N-matrix of complex numbers {<xl

k}k=l>2>___>n. 
J= 1*2',...,',N 

Proof. The proof of this theorem is transformed into the one-dimensional case. 
Let eT = (cl5 c2, ..., cN) be any N-dimensional vector of complex numbers and 
let us consider the function Re(

#, •) = eTR(', •) e. We shall prove that Re(
#, •) 

is a one-dimensional normal covariance function. At the first sight, Re(
#, •) is defined 

on the plane and is continuous here. Further Re(s, t) = Re(t, s) because 

K(s, t) = Z Zc£,.R l 7(M) = Z YJcicjRij(s,t) = 
i = l j = l i = l j = l 

N N 

= Z Z cfi Rji(t, s) = Re(t, s). 
i = l j = l 

Re(% •) is a covariance function because it is positive semidefinite as follows from 
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the assumptions of the theorem 
n n n n N N 

Z Z a*«i Re(Sk> Si) = Z Z Z Z *&Mj Rij(Sk, S^ = 
fc=l i = l fc=l Z = l i = l 7 = 1 

N N n n 

= Z Z Z Z a*c.(«.C/) StJ(sk + sh sk - s,) = 0 
i = l 7 = 1 f c = l i = l 

if we put txkct = <xl
k and sk = uk = vk. 

As we assume that R,/s, t) = Stj(s + t, s — t) then Re(s, t) = er S(s + t, s — t) e = 
= iS(s + t, s — t) and the function Re(% •) is a function of s + t and s — t. There 
is no problem to prove that S(', •) is positive semidefinite in the following sense 

n n 

Z Z afc«i s(uk + ui> vk - vi) = o 
t = i i = i 

n n 

Z Z a*ai s(uk + ui> vk - vi) = 
/ c = l 1 = 1 

N N n n 

= Z Z Z Z cMdJ*i) Sij(uk + uh vk - i?/) = 0 
i = l 7 = 1 fc=l 1 = 1 

for every matrix {^a^} of complex numbers and every 2n-tuple u1,u2,...,un,v1,v2-.. 
..., u„ of reals. Finally, we have 

Re(0,0) = % YCicjRiJ(0,0) = 0 
i = l 7 = 1 

and by means of results given in [6] we can assert that the covariance function 
Re(*, •) is normal. Hence, there exists a spectral representation of Re(*, •) in the form 

Re(s, t) = J J 1 - e^+<> eW>-> ddEe(A, fi) 

where Re(*, •) is a two-dimensional measure with finite variation equal to Re(0, 0), 
see [6]. Let us consider now special cases of the vector e. Let 

eJkJ) = (0,0, . . . , 0 ,1 ,0 , . . . , 0 ,1 ,0 , . . . ,0) 

where 1 stands on the fcth andjth places (k < j); similarly, d^ktj) = (0, ..., 0, 1, 0, ... 
. . . ,0 , - i , 0 , . . . , 0)(k < j ) . 

Then, 
Re(k,j)('> ') = Rkk('> ') + Rkj('> *) + Rjk('> ') + RJJ('» ' ) 

Rd(k,j) = Rkk('> •) + iR*j('>') - *Rjk('>) + RJJ('>'); 
hence, 

Rjk = z(Re(k,J) - lRd(k,J) - (1 - i) (Rfcfc - Rjj)) 

and thanks to the one-to-one correspondence between Re and Ee we can state that 

Fkj = i(Fe(k,j) _ iFd(k,J) ~ (1 ~ 0 (Ffcfc ~ Fjj)) • 

We obtain an expression of an oflf-diagonal component Rkj(', •) in the form 
Ruj(s, t) = J J !S e^+<> e**-> ddFkJ(X, n). 
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We have constructed in this way a matrix complex measure E = [FkJ}kJ=1. We have 
to verify that E is a spectral measure. Surely, 

F(; •) - / " ( • , •) 
because 

* ( . , - ) = * * ( . , • ) . 

The function Ee(«, •) defines for every e a measure, hence, 

-V K Fe(K li) = 0 
for every (A, //) e IR2 and every h1 e Uu h2 e U1. This means, for every vector e 
of complex numbers 

£ i dCjA^F^tikO. 
i=lJ=l 

We see, immediately, that the matrix F(A) is positive semidefinite for every Borel 
subset A in the plane R2. If E is a matrix spectral measure, then, every function 

R(s, t) = H_Z eA(s+f) G^-V ddF(A, n) 

is a normal covariance function, (we assume the existence for every pair (s, t) e U2). 
The function R(*, •) satisfies: 

1) £ i*iXjRji(t,t) = tt_«i i«iccJe
2*<ddFiJ(A,n) = 

i=ij=l i=l j=l 

= JJ-»e2^X; £a|a,ddEy(A^) = 0 
i=lj=l 

N N 

because ]T £ a^j FtJ(', •) defines a nonnegative measure (E is a matrix spectral 
i = i j=i 

measure) 

2) R(s, t) = j j + » eA(s+,) e 1 ^ 7 5 ddE(l, /*) = 

= H-S eA('+s) e1^"^ ddET(x, pi) = RT(t, s) . 
3) \RJk(s, t)\ = IJJ+2 eA(t+s) e ^ ' " " ddE,t(A, ^ ^ 

^ j j ,oo e , ( S + o d d | F . f c ( A ^) | ^ 

= (JJ-S e2As ddF„(A, nY12 mi e2* ddEfefe(2, ^ . 
This fact follows/from positive definiteness of E because for every complex a the 
inequality 

FU(A) + \a\2Fn(A) + aFi3(A) + «FtJ(A) = 0 

holds. Then, put a = FiJ(A)lFJj2(A) if Fn(A) + 0. 

4) Let us consider the function S(u, v) = R(%(u + v), $(u — v)); then, 

S(u,v) = JJ^eA"e^ddE(2, / i) 
and R(s, t) = S(s + t,s - t). Let us prove that this function S(-, •) satisfies the 
assumption of the theorem. 

360 



For this purpose, we need the Karhunen theorem, see [2]. By means of this theorem, 
wa can express every random process {x(t), te Ux} having a normal covariance as 
a stochastic integral understood in the quadratic mean sense 

* ( t ) = ffi£e'*dd£(z) 

where z = X + i/t and E{^(z1) £
T(z2)} = E(min(zl5 z2)); (min(z l5 z2) = 

= (min (Re zx, Re z2), m i n ^ m z . , Im z2))). At this moment, let us consider 
random variables 

X"^) = ll-»eAuieu"2e^dd<r(z), 

u = «j + iw2, uu u2 6 Uv These random variables exist because 

\E{y(u,v)yT(x,y)}\ = \tf_Z eH"1+Xl) eiHu2~X2) eiKv~y) ddF(X, ji)\ = 

= $$t™eHui+Xl)dd\F(X,n)\ < oo'. 

Then, 

o<-{|£ t<yiKvp)\2} = 
i = l p = l 

N N n n 

= I Z X Z ap«« E(YiK» VP) yj(uv v«)} = 
i = 1 j = 1 p = 1 q = 1 

= Z Z Z Z«XJJ+"e^e^e^-^)ddE0 . ( ; . , / , ) . 
i = l j= 1 p = l q = 1 

If we put up = Re Mp, then, we obtain 

N N n n 

Z Z Z Z a X S U( U P + u«>vp-vq)^o. 
i = l j = 1 p = 1 <j=l 

5) Every component R^', •) of R(*, •) is a continuous function because all diagonal 
elements are one-dimensional normal covariances and off-diagonal elements can be 
expressed as a linear combinations of one-dimensional normal covariances. This 
completes the proof of the theorem. • 

3. NORMAL COVARIANCES AND NORMAL OPERATORS 

In the multidimensional case we can show also a close connection between normal 
covariances and normal operators. Let a process x(-) = {x,(')}f=1 be a random 
process with a normal covariance function R(«, •), i.e. 

R(S, t) = j$_Z eA(s+0 e i / t ( s-° ddF(X, JX) . 

As it was mentioned above such a process can be expressed in the form of a stochastic 
integral 

*(t)=rKe'-dd£(z). 
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Let L(£(")) be the linear set of all linear combinations 

1=1 

and let H(£#)) = L(|(*)) be a closure of L(£(*)) with respect to the convergence 
in the quadratic mean sense. Let us denote by H(z) the subspace of H(£(*)) generated 
by all random variables n 

X * i £/.(**)» z< = z ; 
i = l 

let Pz be the orthogonal projector in H(£(')) o n the subspace H(z). Thanks to 
properties of the spectral measure E one can easily prove that the family {Pz; z e C} 
forms a complex resolution of the identity in H(£(-)). We can construct normal 
operators 

At = JJ!« etz dPz, teU, 
with the definition domain 

®(At) = {xe H(C(.)): JJ1* e2t dd<Pzx, x> < 00} . 

As x(0) = ^1% dd£(z) = l.i.m. £(z) then *.(0)e #(£(•)) for every i e 1, 2, ...,N 
z-»oo 

and Pz Xj(0) = £.(z). Then, we see that 
xi(0 = JJ-Se tedP rx i(O), i = l ,2 , . . . ,N 

because dd<Pz x{(0),x,(0)> = dd<£,(z), xf(0)> = dd<£.(z), ^(z)> = ddE„(z) and the 
integral 

J J l S o ^ d d F ^ A * ) 
exists for every te Uj and every i = 1, 2,.. . , N as we assume. We obtained that 

Xi(t) = Atxt(0), i=l,2,...,N, teUt. 

Corollary to Theorem 4. An N-dimensional covariance function R(', ') is 
normal if and only if for every N-tuple zr = (zu z2,..., zN) of complex numbers 
zT R(', ') Z is a one-dimensional normal co variance function. 

Another connection between normal covariances and normal operators in a Hilbert 
space is shown in Theorem 5. 

Theorem 5. Let a group {Ts, 5 e R j of normal, in general unbounded, operators 
be given in a Hilbert space (tf, < •, •>). Let, for every x, y e 9 = f] ®(TS), <Tsx, Tty} 

sefii 

be a continuous function on the plane. Then for every N-tuple xu x2, x3, ..., x^ 
of elements in Jf belonging to the subset 9 

R(s,t) = {(Tsxi,TtxJ>}?J=l 

is an N-dimensional normal covariance function (@(TS) is the definition domain 
of Ts in Jf ). 

Proof. The subset B is not empty because 0 e 9) in every case. Let xux2, ...,xN 
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belong to Qi. First, we need to show that the matrix function R(-, •) is a covariance 
function. Let n be an arbitrary natural number, let al5 a2, ..., a„ be an arbitrary 
rc-tuple of complex numbers and sl9 s2, ..., sn an arbitrary w-tuple of reals. We must 
prove that „ „ 

X Y,ak*i(Tslxik, TSix(V> > o 
^ = 1 1 = 1 

where xik e {xls x2, ..., x.v} for every k = 1,2, ...,n. This inequality holds evidently 
because „ » 

k=l l - l fe=l 

For next steps, it is suitable to introduce the function Sxy(u, v), x, y e Q), defined 
by the relation 

Sxy(
u> v) = (.T(U+V)j2x, T(tt-p)/2 y? ' 

We immediately see 
Rxy(s, t) = Sxy(s + t,s - t); 

hence, Sxy(-, •) is continuous on the plane. Let zT = (zt, z2, ..., zN) be an arbitrary 
AMuple of complex numbers and we must prove that 

zTR(-,-)z 

is a normal covariance function. To prove this fact we need validity of the equality 

Tf*Ts = TsTf* 

on 9. As {Ts, s e Ux} is a group then Tf+S = TfTs = TsTf, i.e. 9(Tt+s) = @(TsTt) = 
= 9(TtTs) must hold too. Next, it follows ^?(Tf) c ®(TS) and simultaneously 
M(TS) cz 9(Tt) (0t(Tt) is the range of Tf. Let n be an integer. Then, 

(Ts*y = T„: 

thanks to the group property holding for {Ts*, s e R j too. Now, let t = n.s. Then 

Tf*Ts = Tn*sTs = (T*)n Ts = TS(TS*)« = TsTf* 

because TS*TS = TSTS*. Similarly, in case t = s . (p\q), where p\q represents a rational 
number, we can prove 

T*TS = TST* 
as 

rp*rp rj,* — (T* \P (T \Q (T \l( T* \P T T1* 
Jt Js — lS.plq 1q.s/q — \1s/q) ' 1 s/q) ~ \Js/q) \ 1s/q) ~ 1s1t ' 

Finally, let t be quite arbitrary. Then, there exists a sequence {tn}„= t tn = s . p„\qn -> t 
where pn\qn are rational and continuity of the scalar product in 2tf proves 

Tf*Ts = TST* 

for every pair s, t of reals. If x e &> then Tf xe 3> as well because T,+Sx = Ts(Tfx) 
which implies Tfx e @(TS) for every real s. This proves that TtxG 9. If Tsx e B 
then T*(Tsx) is well defined as Qi(Tt) = 9(Tt). In case s = n . t, n is an integer, 

T*Tsx = TsT*x 
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as it is proved above and this gives T*x e @(Tnt) for every n, T*x e 2 too. That 
means both the operators T*TS, TST* are well defined on the subset 2). Now, we are 
ready to prove the "nonnegative-definite" property of zr R(', •) z, see [6]. Let n 
be a natural number, let ax, a2, ..., a„ be an n-tuple of complex numbers, let ux, u2, ... 
..., un,vu v2, ...,vnbe a 2n-tuple of reals. Let us consider the sum 

n n N N 

I I «««/ £ I ZkZl SXkx>(Ui + Uj, Vt ~ Vj) = 
i=l j=l k=l 1=1 

N N n n 

~ } _ , 2^ZkZlL l^ai^i\T{ui + Uj + Vi-Vj)l2Xki T(Ui + Uj + Vj-Vj)/2XU = 
k=l 1=1 i=l j=l 

N N n n 
= L LzkziL Lafij(.T(Ui-Vi)/2T(ui + v.)/2xk,T(u._VJ)i2T(u. + v.),2xiy = 

k=l 1=1 i=l j=l 

N n 

~ \ L LZkaiT(Ui-Vi)/2T(ui + Vi)/2
Xk\ = 0 . 

k = 1 i=\ 

A necessary and sufficient condition characterizing normal covariances is proved, 
see [6]. This inequality, together with continuity of R,y(', •), i, j = 1,2, ...,N, 
show that the matrix covariance function R(% •) is normal. 

4. CONCLUSION 

In the literature, we can meet two types of generalization of the notion weak 
stationarity. First generalization, originated by Loeve in [3], can be characterized 
as the nonorthogonal integral representation 

x(t)~ ltZ<p(t,X)d^(X) 

in the quadratic mean sense where <p(% •) is a nonrandom complex function and 
£(•) is a second-order random process with co variance function having finite varia­
tion on the plane. The second generalization, originated by Karhunen, see [2], can 
be called the orthogonal integral representation 

(11) x(t) = StZ<p(t,X)dr,(X) 

where </>(•, •) is a nonrandom complex function and the process n(-) defines an 
orthogonally scattered random measure on the Borel field in reals. There is no 
problem to generalize the Karhunen representation in the following way: instead 
of the Borel sets with the Lebesgue measure we can consider a measure space (O, 
a, m) and an orthogonally scattered measure n(') satisfying 

E(v(Ax)fj(A2)} = m(AxnA2) 

for every Ax,A2ea. Then, the corresponding covariance function of the process 
(;c(t), te Ux} can be expressed as 

R(s, t) = c
0 <p(s, 6) <p(s, 9) dm(d). 
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Immediately, we see that a process with a normal covariance function belongs into 
the Karhunen class with 0 = U2, a is the cr-algebra of Borel sets in the plane, (p(s, 6) = 
— esA+ls/1, i.e. 9 = (X, n). The measure m(*) defined on the Borel sets is determined 
by a function E(% •), see Definition 1. In a similar way, we can handle with the 
multidimensional case. 

As well known, the spectral decomposition of weakly stationary process is con­
nected with groups of unitary shift-operators in the Hilbert space of random process 
values. Considering normal shift operators we reach, of course, the class of normal 
covariance functions. In general, if a random process possesses a Karhunen re­
presentation (11) then there exists a self-adjoint operator A defined in the mentioned 
Hilbert space such that 

x(t) = (p(t, A) x(0) 

(see [1]). In case of the nonorthogonal integral representation, mainly in the har-
monizable case, the question about the characterization of the corresponding shift 
operators, has so far been open. 

(Received February 3, 1989.) 
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