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KYBERNETIKA —VOLUME 17 (1981), NUMBER 4 

ON COMPOSITIONAL AND CONVOLUTIONAL 
DISCRETE SYSTEMS 

BEDRICH PONDELICEK 

In this paper, the following crucial notions of discrete system theory in the multidimensional 
time area are considered: linearity, causality, time independence and stability. 

During the last several years many publications concerning two and multidimen
sional digital filters have appeared (see [1], [2] and [3]). Having presented six coun
terexamples E. I. Jury [4] has shown that in extending the theorems developed for 
the one dimensional case to two and multidimensional systems many difficulties are 
encountered. It seems to be useful to investigate the relationship among fundamental 
concepts of multidimensional digital filters. 

In this paper we shall consider the following crucial notions of discrete system 
theory in the multidimensional time area: linearity, causality, time independence and 
stability. We shall use standard notation and terminology of linear space theory: 
linear spaces and subspaces, bases, and linear mappings. 

1. COMPOSITIONAL DISCRETE SYSTEMS 

By R we denote the set of all real numbers. Let N denote the set of all nonnegative 
integers. In this paper let n be a fixed positive integer and let N" denote the cartesian 
power of N. Elements of N" will be called multiindices. If u, veN", then u = 
= («!, «2, ..., u„) and v = (vu v2, ..., v„), where w;, v; eN for i = 1, 2, ..., n. We 
shall put 

w :g v if w; ^ f; for i = 1, 2 , . . . , n . 

In such case, by v — u we denote the multiindex (vx — u1, v2 — u2, •••,v„ — u„). 

Finally, for m e N by m the multiindex (m, m, ..., m) will be denoted. 

Let Sf be the set of all sequences a: N" ->• R. It is well known that £f forms a real 
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linear space with respect to addition and scalar multiple of sequences. In this paper 
we shall consider linear mappings of Sf into itself. 

For any multiindex w we define the following sequence tw e Sf: 

/„ „ \ «,/ \ / 1 for u = w ; 
< U ) ^ = < 0 for u + w; 

where u e N". 

A mapping I:N" x N" —> R is said to be a kernel, if for any multiindex M 

(1.2) the set {v : veN" and l(u, v) + 0} is finite . 

By Jf we denote the set of all kernels. Now, we can define the composition of a kernel 
I eX~ and a sequence a e Sf as the following sequence &: 

(1.3) &(«) -£ / (« . , r-)fl(-) 
veN" 

for any multiindex M. It follows from (1.2) that the right-hand side of (1.3) is well 
defined. It is clear that b e $*. We shall write b = I, a. 

In this paper by a discrete system 0 we mean a mapping <P of the linear space £f 

into itself. 

Definition 1.1. A discrete system <P is called compositional if there exists a kernel / 
from Jf such that for any sequence a of Sf we have 0(a) = I o a. 

Note 1.1. We shall show that the kernel / of a compositional discrete system <P 
is uniquely determined. Suppose that there exists another kernel J such that <P(a) = 
= J o a for any sequence ae Sf. Let w be an arbitrary multiindex. Then / o tw = 
= <P(tw) = J of and therefore, by (1.1) and (1.3), we have l(u, w) = J(u, w) for 
every multiindex u, hence I = J. 

Theorem 1.1. Every compositional discrete system is linear. 

Proof. It follows from (1.3) that I a(aa + fib) = a(l, a) + fi(l 0 b) for I e Jf, 
a, be£f and a, ft e R. • 

Note 1.2. There exist linear discrete systems, which which are not compositional. 

Proof. Since the set ST of all sequences f" (see (1.1)) is linearly independent, there 
exists a base 3? of the linear space Sf such that ST c gp. Evidently ST + 0>. The zero 
sequence and the unit sequence will be denoted by o and j , respectively; i.e. for any 
multiindex u o(u) = 0 and j(u) = 1. There exists a linear mapping ¥ of SP into 
itself such that 

/< „\ ,„/ \ / J for as 3?~ ; 
^ yW-<o for « ^ . 
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Now, we shall show that the linear discrete system ¥ is not compositional. Suppose 
that there exists a kernel J from Jf such that ¥ (a) = I o a for every sequence a 
of y . Let v be an arbitrary multiindex. Then 7 o f = ¥(f) = j and so, by (1.3), 
we have l(u, v) = j(u) for all multiindices u, which contradicts (1.2). • 

For any multiindex w we denote by rf'w the set of all sequences a e ^ such that 

(1.5) a(u) = 0 for every multiindex u ^ w . 

It is easy to show that ^ w is a linear subspace of the linear space $P and f) fw = {o}. 
weJV" 

Definition 1.2. A discrete system <P is called causal if for any multiindex w the 
following implication holds: 

(1.6) If a,beif and b - a g f , , , then <2>(fc) - <2>(a) e ^ w . 

Note 1.3. A linear discrete system <P is causal if and only if for any multiindex w 
we have 

(1.7) ^(c)e-f\v for every cefw. 

Proof. Assume that a discrete system <P is linear. Let w be an arbitrary multiindex. 
If the implication (1.6) holds, then we can put b = c and a = o. Thus we have 
$(c) 6 fw for ce-fw because $(o) = o. If (l .7) is true, then for a, b e 5^, b - a e fw, 
we have 0(b) - <2>(a) = <£(/> - a) e fw. • 

By . / / we denote the set of all mappings I: N" x N" -* R satisfying the following 
implication: 

(1.8) If l(u, v) 4= 0 for some multiindices it, v, , then T ^ D . 

According to (1.2) and (1.8) we have Jt <= Jf. 

Theorem 1.2. Every compositional discrete system with the kernel belonging 
to Jt is causal. 

Proof. Let 4> be a discrete system such that there exists I e Jt and <P(a) = / o a 
for any sequence aeSf. Let w be an arbitrary multiindex. Suppose that b - ae "Vw 

for some sequences a, be Sf. It follows from (1.5) that a(u) = b(u) for every multi-
index u ^ w. Put x = cl>(a) = I o a and y = $(b) = I o b. Let H be a multiindex 
such that u :g w. By (1.3) and (1.8) we have x(u) = XI(M> ") fl(y) = .E^"'1')-

t>eN" P E J V " 

. b(y) = y(u). It follows from (1.5) that &(b) - 4>(a) = y - x e f r Thus <2> is 
a causal discrete system. • 

Theorem 1.3. A discrete system is linear and causal if and only if it is compositional 
with the kernel belonging to Jt. 
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Proof. If a discrete system is compositional with the kernel belonging to Jt, 
then according to Theorem 1.1, it is linear and, by Theorem 1.2, it is causal. 

Suppose that a discrete system <P is linear and causal. For any multiindex w we put 
zw = <P(tw) e £f. Let us define a mapping I: N" x N" -• R in the following way: 

(1.9) l(u, v) = zv(u) for all multiindices u and v . 

We shall show that / E Jt. Assume that l(u, f) =t= 0 for some multiindices u and v. 
Then by (1.9) and (1.5) we have z„ e Sf \ "f~u and according to (1.7), we obtain that 
f e £f \ -Tu. It follows from (1.1) and (1.5) that v ^ u. Hence, by (1.8), / e Jf. 

Now, we shall prove that <P(a) = 10 a for every sequence a e £P. Let a e Sf. 
Choose a multiindex w and put p = £ a(<j) /". It follows from (1.1) that p(v) = 

vSw.veN" 

= a(u) for every multiindex v ^ w and p(u) = 0 for every multiindex v non ^ w. 
Since $ is a linear discrete system, we have q = <P(p) = £ a(u) <P(i°) = 

= £ a(v)zv. It follows from (1.9) that q(u) £ a(v)zv(u) = EI(M> t ')K ! ;) a n d 

ugw,DeJV" Dgw.ue iV" ueW" 

thus, by (1.3), we have $>(p) = g = J 0 p. If a multiindex v ^ vv, then a(v) — p(v) = 0 
and therefore, by (1.5), a — peir

w. According to Theorem 1.2 and (1.6), we have 
I o a -lope ir

w and $>(a) — $>(p) e -fw. Since ir
w is a linear subspace pf £f, 

we have <P(a) - I a a = <p(a) - <P(p) - (10 a - 10 p) e fw. Then $(a) - / o a e 
e D ^w = (°j > hence <P(a) = J o a for all sequences a belonging to Sf. D 

2. CONVOLUTIONAL DISCRETE SYSTEMS 

Recall that by convolution a * b of sequences a, 5 e 5" we mean the sequence 
c e y such that for any multiindex u we have 

(2.1) c(«)= X a ( « - » ) 6 C ) -
Dgu.neJV" 

It is well known (and it is easy to show) that 

(2.2) a * b = b * a , 

a * (b * c) = (a * b) * c 

for all sequences a, b, ce Sf. By <5 we denote the sequence tw, where the multiindex 
w = 0. For any sequence a e y there is 

(2.3) a*8 = a = 8*a. 

Definition 2.1. A discrete system $ is called convolutional if there exists a sequence 
a e £f such that for any sequence a e y we have <P(a) = g * a. 

Note 2.1. If $ is a convolutional discrete system, then it follows from (2.3) that 
$(a) = <P(8) * a for every sequence a e S" because 4>(8) = g * <5 =- a. 
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Theorem 2.1. Every convoiutional discrete system is compositional with the kernel 
belonging to Ji. 

Proof. If <$> is a convoiutional discrete system, then there exists a sequence ge Sf 
such that $(a) = g * a for all ae Sf. For multiindices u and v we put 

G(u,v) = (f-^ [°T V = U' 
for o non < u . 

It is easy to show that G e Jl and comparing (1.3) and (2.1) we obtain that g * a = 
= G o a for every sequence ae Sf. • 

Let w be a multiindex. By TW we denote the convoiutional discrete system such that 
TW(O) = f * a for all ae Sf. Put b = tw * a. It follows from (2.1) that for any multi-
index M we have 

(2.4) % ) = < n ( " ~ W ) ^ W - " < 
v J v ' \ 0 for w non g M . 

Hence TW is a time-translation on the linear space Sf. 

Definition 2.2. A discrete system <S> is called time-invariant if for every multi-
index w have <Pxw = xw<P, i.e. $(fw * a) = f,v * $(a) for all sequences ae Sf. 

Theorem 2.2. Every linear time-invariant discrete system is causal. 

Proof. Let <P be a linear and time-invariant discrete system. Let c e t~w for some 
multiindex w. We shall prove that <P(c) e f"w. Define sequences ckeSf ioxk = 1,2,.. . 
..., n as follows: For any multiindex u we put 

, , , s / c(w) for M; = w;, i < k, and wfc < ufc ; 
(2.5) <HM) = \ o otherwise, 

where u — (M1( M2, ..., M„) and w = (wj, w2,..., w„). Put d = £ cfc. We shall show that 
s = i 

c = d. Let M be a multiindex, M <, w. Since c e "fv, we have c(w) = 0. It follows 
from (2.5) that ck(u) = 0 for k = 1,2, ..., n and therefore C(M) = ^(M). Suppose 
that a multiindex u non <, w. Then there exists a positive integer k <, n such that 
wfc < Mfc and M; = W; for all positive integers i < k (if k > l). It follows from (2.5) 
that ck(u) = c(u) and C;(M) = 0 for (' 4= k and again C(M) = ^(M). 

Put vk = (vlk, v2k, ..., v„k), where vik = 0 for i 4= k and vkk = wfc + 1. Further, 
we define sequences bk e Sf for k = 1, 2 , . . . , n as follows: bk(u) = ck(u + vk) for all 
multiindices u. Denote dk = fk * bk. We shall show that dk = ck. Let u = (uu u2, ... 
..., M„) be a multiindex. If vk ^ M, then according to (2.4) we have dk(u) = ck(u).' 
If vk non t= M, then (wfc + l) non < Mfc and therefore Mfc <, wfc. Then, by (2.4) and 
(2.5), we have dfc(M) = 0 = cfc(M). Therefore cfc = fk * bk. 

Let us denote zk = <P(ck) and yk = $(bk). Since $ is time-invariant, we have 
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zk = <P(tVk * bk) = fk * yk. We shall show that zk e •fw. Let u = (uu u2,..., un) be 
a multiindex. If u — w, then uk < wk and therefore vk non = u. It follows from 

(2.4) that zk(u) = 0. Since <P is linear, wehave$(c) = $( £ ct) = £ $(c t) = £ z t e TTW 
fc=l k = l f t = l 

because lTw is a linear subspace of Sf. • 

Theorem 2.3. A discrete system is convolutional if and only if it is compositional 
and time-invariant. 

Proof. Let $ be a convolutional discrete system. Then there exists a sequence 
g e S" such that <P(a) = g * a for any sequence a e Sf. It follows from Theorem 2.1 
that $ is compositional. Now, we shall prove that $ is time-invariant. Let u be 
a multiindex. According to (2.2), for any ae Sf we have $(fw * a) = g *(tw * a) = 
= (g * tw) * a = (tw * g)* a = tw *(g * a) = f * $(a). 

Assume that 0 is a compositional time-invariant discrete system. Then there 
exists a kernel / e Jf such that <I>(a) = 10 a for all a e Sf. Put g = <P(5) = I o S. 
It follows from (1.3) that g(u) = l(u,0) for all multiindices M. Since <P is time-in
variant, we have, by (2.3), I o t" = 4>(?) = <P(f * &) = f * 0(8) = g * f for all 
multiindices v. From (1.3) and (2.1) now follows that 

(2.6) I(M=<f ~V) T V~U' 
y ' v ' \ 0 for i) non 5£ u 
and therefore <P(a) = I a a = g * a for all aeSf. Hence <P is convolutional. • 

Theorem 2.4. Let <P be a discrete system. 

If <P is linear and time-invariant, then it is convolutional. 
If $ is convolutional, then it is linear, causal and time-invariant. 

The p roof follows from Theorems 2.2, 1.3, 2.3 and 2.1. • 

Note 2.2. Our results from Sections 1 and 2 can be generalized for systems in which 
inputs are sequences from £f and outputs are either functions or distributions. 
In the second case we can use modified conclusions of [5] and [6]. 

3. STABLE DISCRETE SYSTEMS 

For any sequence a of Sf we put v(a) = sup \a(u)\. A sequence a is said to be 
ueN" 

.bounded if v(a) < +co. The set of all bounded sequences of Sf will be denoted by J1. 
It is well known that J1 is a linear subspace of the linear space S*'. 

Definition 3.1. A discrete system $ is called stable if for every bounded sequence 
ae 83 we have 0(a) e 3$. A discrete system (P is said to be uniformly stable if for any 
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positive real number ft there exists a positive real number a such that the following 
implication holds: 

(3+) If a eSf and v(a) <, a, then v(<P(a)) g jS . 

Note 3.1. A linear discrete system & is uniformly stable if and only if there exists 
a positive real number y such that 

(3.2) v(<P(a)) = y f ° r e v e r y sequence a of Sf with v(a) <, 1 . 

Proof. Assume that a linear discrete system <£ satisfies the condition (3.2). Let a 
be a positive real number. Put /? = ay. Let ae Sf with v(a) ^ a. Then v(a_1a) <, 1, 
hence, by (3.2), we have v(#(a-1a)) ^ 7. Thus v($(a)) g ay = p. From (3.1) it 
follows that $ is uniformly stable. • 

Note 3.2. It is easy to prove that every uniformly stable discrete system is stable. 
We shall show that the linear discrete system ¥ as described in Note 1.2 is stable but 
not uniformly stable. 

Let a be a sequence belonging to the base 3P of Sf (see Note 1.2). It follows from 
(1.4) that ¥(a) e {j, 0} c S3. Since J1 is a linear subspace of the linear space 5^, we 
obtain that ¥ is stable. On the other hand, for every meN we put am = tw, where 

the multiindex w = m, and bm = £ ak. Then v(bm) = 1. According to (1.4), we have 
m 4 = 1 

¥(bm) = £ ¥(ak) = mj and so v(¥(bm)) = m. Then ¥ cannot be uniformly stable. • 
k=l 

By <€ we denote the set of all kernels J from Jf satisfying the following conditon: 

(3.3) sup £ | / ( H , « ) | < +00 . 
ueN" eeN" 

Theorem 3.1. Let <P be a compositional discrete system. Then the following 
conditions are equivalent: 

1. <P is uniformly stable; 
2. $ is stable; 
3. the kernel of <P belongs to <€. 

The proof is a multidimensional modification of one part of the proof of Kojima-
Schur's theorem from [8]. 

1 => 2. It is evident. 
2 => 3. Let <P be a stable compositional discrete system with a kernel L Let v 

be a multiindex. Evidently f e 3S and so <t>(f)eS%. It follows from (1.1) and (1.3) 
that there exists a positive real number X(v) such that 

(3.4) 2\l(u, v)\ S X(v) for all multiindices u . 

Suppose that I e X \ <€. Then, by (3.3), there exists a multiindex u± such that 

^ |/(Ml, v)\ > 1 + /(0). 
weJV" 
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It follows from (1.2) that there exists a positive integer k1 such that if l(uu v) + 0, 
then P _= fcx. 

Now, we shall define by induction a bounded sequence a. Put 

(3.5) a(0) = 0 

and 
a(v) = sgn l(u, v) for any multiindex p <. Ui} v 4= 0 . 

Let m be a positive integer. Suppose that there exists a multiindex um and an integer 
fcm > k,„_1, where fc0 = 0, such that 

(3.6) £ |/(„,„, p)| > m + X *(»)• 

(3.7) If /(«,„, t') + 0 , then v ^ fcm . 

For any multiindex u :g fc„, and p non ^ fcra-i we have 

(3.8) a(v) = sgn l(um, v) . 

Since I e Jf\(£, according to (3.3), there exists a multiindex um+ j such that 

£|/(wm + i , p ) | > m + 1 + X 2(p). 

The condition (1.2) implies that there exists an integer fcm+1 > fcm such that 
if l(um+1, v) 4- 0, then v ^ km+1. For any multiindex v 5£ fcm+1 and v non g fc~m 

we put a(v) = sgn l(um + 1, v). 

Let v = (P. , P2, .-., P„) + 0 be an arbitrary multiindex. Then there exists a positive 
integer m such that 

/.__! < max {p., p 2 , . . . , P„} ^ fcm 

and so p 5S fcm and v non ^ fcm-i- This implies that the sequence a is defined for all 
multiindices. It follows from (3.8) that 

(3.9) |a(p)| = 1 for all multiindices v +- 0 . 

Put b = _>(„) = I c a. Now, we shall show that b(um) > m for every positive 
integer m. It follows from (3.5), (3.4) and (3.9) that for all multiindices v we have 

- /(«_,, p) a(v) ^ \l(um, P)| ^ A(p) - |/(t/m, p)| 

and therefore 

(3.10) l(v) + I(um, v) a(v) ^ \l(um, p)| . 

Denote by Lm the set of all multiindices u such that u 5g fcm. According to (1.3), 
(3.7), (3.8) and (3.6), we obtain that 

K"m) = I I ( "m, tM U )= I l + I 2 . 
veN" 
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where 

h= £ I(um, v) sgn /(«.„. t>) = £ |I("m, t>)| > m + £ (A(») - |/(um,t,)|) 

reLm\Lm - , usLm \Lm - i ueLm - i 

and 

I2 = I I(um, v) a(v). 
veLm.i 

It follows from (3.10) that b(u,„) = Ir + I2 > m for all positive integers m and 
therefore be$p\@l. According to (3.9), we have aeSS, which is a contradiction 
because <P is stable. Therefore Ie<€. 

3 => 1. Let <P be a compositional discrete system with the kernel J belonging to c€. 
Let a be a sequence with v(a) <. 1. Put b = <$(a). For any multiindex u, by (1.3), 
we have \b(u)\ = I £ J(ii, v) a(v)\ < £ |/(u, «)| |o(»)| = £ |/(«, o)|. Then (3.3) im-

ueJV" ueJV" ueJV" 

plies that 

v(<P(a)) = sup £ |I(", «)| • 
tieiV" veN" 

It follows from Theorem 1.1 and Note 3.1 that <P is uniformly stable. • 

Theorem 3.2. A linear and causal discrete system is uniformly stable if an only 
if it is stable. 

The proof follows from Theorem 1.3 and Theorem 3.L • 

In what follows, we denote by s/ the set of all sequences ae Sf satisfying the follow
ing condition: 

sup £ \a(v)\ < +co • 
mN" veN",v&u 

Let g be an arbitrary sequence of S". Using (2.6) we can define a kernel / such that 
I o a = g * a for all sequences a e $". From (2.6) it follows that for any multiindex u 
we have 

Y,\I(U,V)\= z I«O-«OI - z m\, 
veNn veNn,v£u weNn,w^u 

where we put w = u — v. This implies that / e <€ if and only if g e #J. Hence, by 
Theorem 3.1 and Note 2.1, we have the following: 

Theorem 3.3. Let $ be a convolutional discrete system. Then the following condi
tions are equivalent: 

1. <& is uniformly stable; 

2. <P is stable; 

3. <P(8) belongs to s£. 

(See Theorem 1 in [7].) 
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Theorem 3.4. A linear and time-invariant discrete system is uniformly stable if 
and only if it is stable. 

The p roof follows from Theorem 2.4 and Theorem 3.L • 

(Received November 11, 1980.) 
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