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KYBERNETIKA — VOLUME 7/(1975), NUMBER 2 

Discrete Twice Optimal Control Systems 

ZDENĚK VOSTRÝ 

In this paper the properties of the closed-loop linear discrete control systems with feedforward 
and feedback controllers are discussed. First the stability problem is mentioned. Then the optimal 
transfer functions relating the system output to the reference input and to the disturbance are 
developed. The main result is a twice optimal control. 

INTRODUCTION 

In this paper we shall consider discrete, constant linear systems which are minimal-
state realizations of given transfer functions. These transfer functions will be written 
in the complex variables z or £ = z"1. 

We say that the polynomial a = a0z" + a^z""1 + ... + a„ is stable if and only 
if all its zeros lie inside F, where r denotes the unit circle |z| = 1. 

The polynomial a=a0 + a1£ + . . . + a„£n is stable, a = a+, if and only if all 
its zeros lie outside T. Any polynomial a can be factorized into a ~ a + = a, where a ~ 
has no zeros inside r and a+ is stable. 

The transfer function a/a, where a, a are polynomials, is defined stable if and 
only if a is stable. Consequently, if any zero of a polynomial a lies on r then the 
polynomial a is unstable. 

Let us consider polynomials a, b. We say that a divides b and write a ,| b, if and 
only if there exists a polynomial c such that b = ac. 

If the greatest common divisor of a and & is a polynomial d with degree at least 
one, we shall write (a, b) = d, if the degree of d is zero we shall write (a, b) = 1. 



STABILITY OF TWO-CONTROLLERS CLOSED-LOOP 
CONTROL SYSTEM 

Consider the closed-loop control system (l), 

149 

(1) 

where &\, &'2 and &'3 are minimal realization of the transfer functions S\, S2

 a n c ^ S3 
respectively. Let the S*\, S"2, Sf3 be given in the form 

*i+1 = A^»a ) + BaUn

a), oc = 1, 2, 3 , 

,,<«) = Cax„x) + Dau„a), Dl = 0 , 
then 

(2) Śa = Da + Ca(zl - A.У1 Ba = 

where xn

a) are state vectors, u„a) are scalar inputs, y„a) are scalar outputs and Aa, Ba, 

Ca, Da are matrices, §a are transfer functions and sa, &a are, for each a, relatively 

prime polynomials in complex variable z. 

The state equation of the whole system is 

(1) -
Л+1 = л-- ßiD.DзC^, ßiC 2 , - ß i D 2 C 3 " 'x,1'" 
(2) 
Л+1 ~B2D3CU A2, - ß 2 c 3 x„2) 

(3) 
Л+1 в3cu 

0, Лз 43) 

in a shorthand notation 

x п + i = A>c„. 

The stability of the system (1) is given by the stability of the characteristic poly

nomial of A, i.e. of 

z\ - A l + B.D.D.C,, -B,C2, BtD2C3 (3) det (zl - A) = det 

It is known [6] that the determinant of a matrix 

G = 

B2D3CU z\ - A2, B2C3 

0, zl - A3 

[::]• 
where o, b, c, d are submatrices and a, d are invertible square matrices, can be com

puted as 

(0 det G = det a . det (d - c o _ 1 Ь ) = det d . det (a - Ьd^c). 



150 Hence 

(ii) det (a - bd~1e) = det a . det d 1 . det (d* - co"1/*) . 

If we use the equation (i) and (2) then the characteristic polynomial (3) is given as 

det (zl - A) = det (zl - A 2 ) . det (z/ - A3) . det (zl - A. + B ^ S ^ ^ . 

Taking the property (ii) into account then 

det (zl - A) = det (zl - A.) . det (zl - A2) . det (zl - A3). (1 + S^z§3). 

We supposed that Sf u y2 and Sf3 are minimal realization of the transfer functions 
§u §2 and §3 respectively, and hence 

det (zl - A„) = ax , for a = 1, 2, 3 . 

The characteristic polynomial is given as 

X = det (zl - A) = &1a2a3 + SJ2§3 . 

Theorem 1. Let $/?
u$

p
2,$

p
3 be minimal realizations of the transfer functions 

§u §2, S3 respectively. Then the closed-loop control system (l) is stable if and only 
if the polynomial % = &i&2a3 + ^ j S ^ is stable. 

We can write any transfer function also in the complex variable £ = z~l. For 
example S = sja, where s and a are relatively prime polynomials in £• 

Definition 1. The pseudocharacteristic polynomial of the system (1) is 

X = oxo-2(j3 + sxs2s3 . 

It is evident that 

X = det (zl - A) = det (zl(l - z~lA)) = z"x , 

where n is order of the matrix A. 

Hence it follows that for the test of stability of the system (l) we can test only the 
pseudocharacteristic polynomial x-

Theorem 2. Let $fu Sf2, Sfi
3 be minimal realizations of the transfer functions 

Su S2, S3 respectively. Then the closed-loop control system ( l) is stable if and only 
if the polynomial x = axa2a3 + sts2s3 is stable. 



OPTIMUM CONTROL PROBLEM WITH ONE CONTROLLER 151 

It can happen that the least square control cannot be practically used for some 
systems. For example, let the transfer functions of the system be S = C/(l ~ C) 
and the reference signal W = l/(l — 0-5C) then the optimal least square controller is 

R _ 0-5(1 ~ 0 
1 - 0-5C ' 

The configuration of the above system has the form (4): 

(4) -^HZrHZr-7^ 

The error signal is 

E = — W= 1 . 
1 + R S 

The pseudocharacteristic polynomial is (see Theorem 2) 

x = ( l - C) (1 - 0-5C) + 0-5C(l - c) = i - C -

Hence, there is a mode in system (4) which does not depend on time and system is 

not suitable for applications. x is not stable. 

Consider the following control system (5). 

(5) 

where 

S = — — , W = , R = 0 - 5 , P = 2 0 . 
1 - C 1 - 0-5C 

The error signal E = SR(P — l)/(l + SRP) = 1 is equal to the above error signal 
but the pseudocharacteristic polynomial (see Theorem 2) is x = 1 — C + 0-5 . 2-OC = 
= 1. This system can be applied because it is stable. 

The sufficient and necessary stability conditions for the system (4) are known 
[3; 4] in the form 

Y 
(a) KWY = — = sM , 
w W 

(t>) 1 - KWY = <JN , 



where sja is the transfer function of the system £f and M, N are any stable transfer 
functions for which 

sM + oN = 1 , 

but s, a, M, N must be functions of complex variable £ = z" 1 ! 

For the stable systems the above conditions are reduced to the condition (a). 

CLOSED-LOOP SYSTEMS WITH TWO CONTROLLERS 

The necessary stability condition for the system (5) is only one 

KwY = sM . 

Theorem 3 . Let S" be a minimal realization of the transfer function S = sja, 
then any transfer function KWY = sM, where M = mjp is arbitrary stable transfer 
function, can be realized by stable closed-loop system (5). 

More, there is always possible to find P and R such that the pseudocharacteristic 
polynomial is equal only to p. 

It is evident that % can be chosen as any stable polynomial for which p | %. 

Proof. Consider the.control system (5) and denote S = sjo, R = rjg, P = pjn, 

M = mjp and suppose, that (r, g) = 1, (s, a) = 1 and (p, n) — 1, (m, p) = 1. 

It is evident that 

(6) KWY = — = = = sM 
W \ + SRP OQTZ + srp 

and hence 

(7) M = ^ = - rn . 
p OQTZ + srp 

Choose 

(i) m = rn such that (sr, an) = 1 , it is always possible, and 

(ii) p = OQ% + srp . 

The equation (ii) is a Diophantine equation in polynomials for the unknowns Q, p. 
This equation has a solution [1] if and only if (an, sr) | p. 

For our purpose (an, sr) = 1 and the equation (ii) has always a solution. 

All solutions has the form 

Q = Q0 + srt, 

p = p0 - ant, 

where t is an arbitrary polynomial, @o, p0 is a particular solution. 



The effective method of solution is given in [ l ] . Now we must check validity of the 153 
condition 

(iii) (r, Q) = 1, {P,K) = 1. 

Suppose that (r, Q) = dx and (p, K) = d2, then from (i) 

di | m , d2\m 

and from (ii) 

dx | p, d2 | p . 

Hence (in, p.) + 1 and since we supposed that (in, it) = 1. It can be seen that the 
above problem has infinitely many solutions. 

Example 1. Let 

s = «Lz-*) and ic-fl-ay, tod 
1 - C C - 2 

the controllers R, P such that the pseudocharacteristic polynomial x = M = i — 2. 
From (6) and (7) 

Af = 
s C - 2 

Write 

/( = 0-̂ 71 + srp , m = I'K . 

The condition {sr, an) — 1 gives 

r = 1 - 2C , n = 1 

and the pseudocharacteristic polynomial is in the form 

( C - 2 ) = ( i - c ) e + C ( l - 2 C ) 2 p 

Hence, the general solution is 

e = - 2 - 4 C 2 +C(1 -2C) 2 r , 

P - - i - ( i - c ) « . 
Choose / = 0, then 

R=- l - V , P = - l . 
- 2 ( 1 + 2C2) 



154 LSC — CLOSED-LOOP LEAST SQUARE CONTROL 

Let us be given S = sja and a reference signal W = wjv, v has no zero inside r, 
synthesize such controllers R and P that the cost functional 

(8) j-JLJ^^S 

is minimized and the psuedocharacteristic polynomial is stable with minimal degree. 

It can be seen that 

E = (1 - sM) W 

and the classical approach [4] to the minimization of the above cost functional gives 
the optimal transfer function 

v* r"s=w*l 

™ ~ ^*s~* |_s* = y*J® ' 
where w= denotes the substitution of £ _ 1 for £, w* is the spectral factor of w = w such 

that w* has no zeros inside T and w* = w* = w = w and [* ] e denotes the partial fraction 

expansion without unstable fractions. 

The LSC problem has a solution if and only if the transfer function M from (9) 
is stable. 

Further procedure is the same as the proof of Theorem 3. 

Example 2. Consider 

S--Ц. * - - - -
(1 - 0 2 2 - C 

then the optimal M from (9) is 

M " ( 2 - C ) [ f t ] . = 0 ' 5 

the error signal 

E = 0-5 , 

and the cost functional 

/ = 0-25 . 

From Theorem 3 the minimal degree of the pseudocharacteristic polynomial is given by the de
nominator of M. 

For our purpose fi = i, 

m = 0-5 , r = 0-5 , % = 1 

and 

(1 -Q2Q+ 0-5CP = 1 . 



Choose e.g. the solution with minimal degree of Q, then 155 

0 = 1 , p = 4 - 2C and R = 0-5 , F = 4 - It,. 

This optimal control system has the very interesting property, its free motion 
reaches the steady state in a finite time. 

For the control system (4) the least square control gives the same error signal but 
the pseudocharacteristic polynomial % — (1 — £)2 and the closed-loop system is 
not stable. Moreover, other solutions which minimize the above quadratic cost 
functional do not exist. 

OTOC — CLOSED-LOOP OUTPUT TIME OPTIMAL CONTROL 

Let us have S = s\c and a reference signal W = wjv such that (s", v) = 1, synthe
size such controllers R, P that the error signal is a polynomial with minimal degree 
and the pseudocharacteristic polynomial is stable and of minimal degree. 

By Theorem 3 Kwy = sM, where M is any stable transfer function. 

The error signal 

E = (1 - sM) W 

must be a polynomial and 

uw — smw 
e = . 

Hv 

After rearranging of this equation we can write 

fiw = five + swm . 

It is evident that /t | sw. We choose 

(10) n = s + w + 

as stable polynomial, then 
w = ve + s~w~m. 

Hence e = w~x, where x is a polynomial, and we obtain 

(11) vv+ = vx + s~m . 

All solutions x, m of the equation (11) give the polynomial error signal e = w~x. 
The time-optimal error signal is given as e = w~x, where x is the minimal degree 
solution of the equation (11). The problem has a solution if and only if (s~, v) = 1. 
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Consider the configuration (12), 

(12) 

where d denotes white noise with zero mean and variance equal one and F is a stable 
transfer function. 

It is known that then the spectral density of the signal D is given as F~F. 

The variance of the signal Yfor W = 0 and stable closed-loop system is 

(13) I = ±[ Ľl 
2щ] (1 + S=R = P=] 

°F dC 

") (1 + SRP) ' 

The basic problem in our task are stability conditions. 

Theorem 4. The necessary and sufficient conditions for the stability of the control 

system (12) are 

(0 KDY — — = cN , 

(ii) 1 - KDY = sM , 

where M, N are any stable transfer functions for which 

oN + sM = 1 , 

(iii) (C"«", r~p~) = 1 , 

where Q~, n~, r~, p~ are unstable factors of the polynomials Q, n, r, p respectively. 

Proof. The pseudocharacteristic polynomial has the form 

X = OQn + srp 

and the transfer functions 

Knү — 

1 - KПy = 

OQП 

CQП + STp 

srp 

CQП + SГp 

= cN , 

= sM . 
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- £ , M = r-P 
1 X 

N-«n, м = r*. 

Necessity. 

(i), (ii) Let / is a stable polynomial, then it is evident that N, M are stable. 

(iii) Suppose that 
(r~p~,Q~n~) = d~ , 

then the polynomial % = agn + srp has the factor d~, a contradiction. 
Sufficiency. Suppose the conditions (i), (ii) and (iii) hold and in addition consider 

that x has an unstable factor ji~. Then from the conditions (i) and (ii) it follows that 

P ~ \ Q ~ - ~ , P~\r~P~. 

From this the polynomial (r~p~, Q~n~) contains the factor /?" which is a contradic
tion with condition (iii). 

Task formulation MVC. Let us have S = sja and a stable filter F = fj(p for the 
configuration (12). Synthesize such controllers that the closed-loop system is stable 
and the functional (13) is minimized. 

Four our purpose it is suffices to find only R, = RP see (13), and if the condition 
(iii) from Theorem 4 is satisfied then this problem is reduced to the problem with 
one controller, which is treated in [5] for both stable and unstable S. 

Those results are: 
The controller 

(.4) «.-jjJ. 
where 

tpy 
(15) M . - — - _ - ; , V, = _ 
v / s*j*cr s f*a* 

and x, y is such a solution of the equation 

(16) s~x + a~q>y = s~~f*a~~ 

that the polynomial y has the minimal degree, is the solution of the MVC problem if 

and only if M „ Nx are stable. 

Then the variance of the signal Y is 

y~y dC (l7) "Ы ь~~ь~ c 
s*,j*, <T* denotes the spectral factors of ss~,ff~,aa~ respectively, s~~, a~~ 
denotes the reciprocal polynomial, s~~ = s~(£~l) £es~, where 8s~ denotes the degree 
of the polynomial s~. 



TWICE OPTIMAL CONTROL 

Considering the two-controller control systems (12). We can require stability of 

the closed-loop system and optimal transfer functions KDY = YJD and KWY = YJW 

simultaneously. 

From the practical point of view it is possible to consider the following problem. 

What transfer functions KWY can be achieved if the transfer functions S and Km 

in a stable control system (12) are given? 

Theorem 5. Let S and KDY be given such that KDY = oNu 1 — KDY = sM, 

where M „ Nt are stable transfer functions (see Theorem 4). Then the necessary and 

sufficient conditions for stability of the system (12) are 

(i) KWY = sM , 

where M = mjfi is a stable transfer function, 

(18) m~ | rlQl , 

where Rj = M1JN1 = rj/gj and (r._, gj) = 1. 

Proof. Necessity. 

(i) Let the pseudocharacteristic polynomial % is stable, then 

M = ^ 
1 

is stable. 

(18) Let x is stable. 

The transfer function KWY can be written as 

KWY = sM 

and 

•j7T Qxr 
M = 

?! + s r j )p (CT<?I + sr^Q 

Consider that m~ includes a unstable factor d~ which does not divide /-,§., then 

d~ | r, d~ | n. It contradicts to stability condition (iii) from Theorem 4. 

Sufficiency. Let (i) and (18) hold. For given M and r^QL we can write 

M r _ m(aQ1 + srj) 
(19) Я = 

N i Q flQ1 

p _ Mл _ _ _ A""i 

M я m(ťre! + srj) 



where 

(r, Q) = 1 , (p, n) = 1 . 

Factor ize 

î = rro^riri", .1 = ero-u-r 
such t h a t 

m~ = r ^ ^ , 

t h e n f rom (19) it follows t h a t 

r~ = r^0 , Q~ = Qi± , p~ = r _ , w" = <2i"o 

a n d the stability c o n d i t i o n (iii) f rom T h e o r e m 4 is satisfied. 

Example 3 (MVC and LSC together). Let 

S = _ _ _ _ , f ,_____, «,,_____ 
3 - C 4 - C 1 - C 

be given in the configuration (12). Synthesize such controllers R, P that the system (12) is optimal 
in both MVC and LSC sense. 

MVC: 

s~ = C ( 1 + 2 C ) , s~~ = 2 + C, a~ = 1 

<p = 4 - C , j=j* = 1 . 
The equation (16) has the form 

C(l + 2C) x + (4 - C) y = 2 + C • 

The solution with the minimal degree of y is 

* « * , y = i + .C 
From(15)and(14) 

M . - - A - , iv 1 =(izi)Ił__), 
6(_+C) 6(2 + 0 ( 3 - 0 

»_*-__ з - c 
N. (4 - C) (3 + 20 

It can be seen that Mt, Nx are stable. 

LSC: 

Suppose that all transfer functions of the form KWY = sM cm be achieved, then the optimal M 
for LSC is given by (19) as 

M=L__ir____±_____Ll _____ 
2 + c|_(2 + r 1 ) ( i - o J e 2 + c 



160 In this case the stability condition (18) is satisfied and the system (12) will be stable. 

From (19) 

p _ M _ (3 - C) • 6 

N. (4 - C) (3 + 2C)' 

P _ _ i _ l 
M 6 

and the solution is complete. 

The pseudocharacteristic polynomial is 

Z = 36(3-C)(C + 2). 

Example 4 (MVC and OTOC together). Consider S, F, W as in Example 3. Synthesize control

lers R, P such that the system (12) is MVC and OTOC optimal simultaneously. 

MVC: 

See Example 3. 

OTOC: 

The equation (11) has the form 

(1 - C) x + C(l + 2C) m = 1 . 

The solution with minimal degree of x is 

x - 1 + K . m = i , E = 1 + |C -
From (10) 

H - 1 , M = i . 

For this M the stability condition (18) is satisfied. Analogously to Example 3 

д _ (2 + 0 ( 3 - C ) 2 
(4-C)(2C + 3) ' 

P - l 

2(2 + C) 

The pseudocharacteristic polynomial is 

Z = 1 2 ( 3 - C ) ( 2 + C)2 

Example 5 (MVC and OTOČ together). Let 

S - — - , _ - - - — , . I F -
3 - C 4 - 2 C 2 ( 1 - C ) ( 4 + 3C) 

be given in the configuration (12). 



MVC: 
s~= = C , s~~ = 1 , 0-- = 1, 

<? = 4 - 2 C 2 , f=j* = 2 + C . 

The equation (16) has the form 

Cx + (4 - 2C2) y = 2 + C • 

The solution with the minimal degree of y is 

X = 1 + C, J> = i -

From (15) and (14) 

2 + C (2 + C) (3 - C) 

It can be seen that M1; TVj are stable. 

OTOC: 

The equation (11) has the form 

(DE) (1 - C) (4 + 3C) x + On = 4 . 

The solution with minimal degree of x is 

x = 1 , m = 1 + 3C 
and the error signal is E = 1. 

From (10) 

^ = 4 , m = 1 + 3C . 

For this nj the stability condition (18) is not satisfied. 

In spite of the fact we shall find a solution of the OTOC problem. 

Consider the general solution of (DE) 

x = 1 + Ct, 

m = 1 +3C - ( 1 - C)(4 + 3C)t, 

where t is an arbitrary polynomial with degree dt. We shall try to find a solution x, m 
such that m~ \ ryQx holds while dx is minimal. This solution can be obtained by 
setting dt = 0, 1, 2, . . . successively until the required solution is found. 

There are two posibilities: 

(i) to find a / with minimal degree such that m is a stable polynomial, 
(ii) to find at with minimal degree such that 

m~ = r~e; = 1 + c. 



Sub (i) 

Suppose that the degree of t is chosen zero, t = T0 =£ 0. Then 

(a) m = 1 - 4 T 0 + (3 + T 0 ) £ + 3 T 0 £ 2 . 

The stability check [4] gives the following condition 

1 - 8 T 0 + 7 T 2 

- 3 + 2 0 T O + 7 T 2 

By rearranging of this inequality we obtain 

4 

> 1 . 

1 -
3 + т0 

> 1 

and hence follows 

00 ч < - i • 

The solution of our problem is any T 0 which satisfies (b). 

Sub (ii) 

Suppose that the degree of / is zero and (1 + Q I nt, then m(— 1) = 0 and from (a) 

0 = - 2 - 2 T 0 . 

Hence 

T 0 = - 1 . 

Now we have to check if m~ \ Qxf\,-

For this T 0 

m = 5 + 2{ - 3C2 . 

Making use of (1 + Q \ m we can compute 

m = (1 + 0 (5 - 30 • 

Because m"~ = 1 + f the problem is solved. 

The error signal is given as 

E = 1 + fro , 

where 

T 0 < - 1 

or as 

£ = 1 - C . 

In our case both error signals are polynomials with degree one. Let us choose for example 
T0 = — 1, then 

R = M_ = ( l + 0 ( 5 - 3 Q ( 2 + 0 ( 3 - 0 

p = M i = 1 

M (2 + 0 ( 5 - 3 0 



CONCLUSION 

This paper shows properties of two-controllers closed-loop control systems and 
methods of synthesis. It seems that the twice optimal control, where OTOC problem 
is solved under the condition that system is MVC optimal, has always a solution 
white MVC and LSC problem together cannot always be solved. 

Both controllers are realized by a D.D.C algorithm and it makes no difference 
to realise two algorithms instead of one. 

(Received May 27, 1974.) 
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