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KYBERNETIKA- VOLUME 24 (1988), NUMBER 1 

NORMÁL COVARIANCES 

JIŘÍ MICHÁLEK 

The main goal of this paper is to characterize the class of normal covariances for random 
processes. This notion generalizes a known weakly stationary case and can be a suitable mathe
matical tool for describing real random processes which are not weakly stationary. 

The notion of a normal covariance was introduced by the author in the paper 
[1]. Characterization of normal covariances for random sequences is given in [2]. 
The class of normal covariances was discovered by studying of locally stationary 
covariances which were introduced by Silverman in [3]. The name — normal co-
variances - is based on a close connection with the theory of normal operators 
in Hilbert spaces. 

Definition 1. Let R(-, •) be a covariance defined in the whole plane R2. The co-
variance R(~, •) is called normal if it can be written in the form 

R(s, t) = J J ! J e;'Cv + t ) e l r t , -« ddF(;., p), s e R. , . e R. 

where E(*, •) is a two-dimensional distribution function with finite variation. 

The class of normal covariances is sufficiently large because every continuous 
weakly stationary covariance and every continuous symmetric covariance (for 
details see [1]) are normal. Their product is a normal covariance too. Let {Z(s)}, 
$ 6 Rj, be a complex valued random process with everywhere vanishing expected 
value and with a normal covariance. Then by use of the Karhunen theorem such 
a process can be expressed in the form of a stochastic integral 

Z(s) = JJ±S ei-* c 1 - dd«(A, /*) 

understood in the quadratic mean sense where £(•, •) is a plane martingale satisfying 

E{Z(XU Ml) T(xZlh)} = ^(min (Xu X2), min {jiu fx2)). 

Theorem 1. Every normal covariance function is continuous at the whole plane. 
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Proof. Let R(', •) be a normal covariance, let (s, t) e IR2 be quite arbitrary. 
Let hu h2 be real numbers. We must estimate the difference \R(s + hu t + h2) — 
- R(s, t)\. Let z = A + i/t, then 

\R(s + hut + h2) - R(s, t)\ = | J ' J + : (e(s + *l)z e(,+*2)* - esz e'2) ddF(A, /.)| = 

= | j"J+~ esze,2~(e*ize"^ - 1) ddF(A, fi)\ < 

< J-J-+-e^+')A|e^+fc)e i ,(/..w,2)_1 | d d F ( A ) / . ) = J J - ^ e ^ + O / ^ ^ f c ^ ^ d d f ( A ) ^ ) , 

where 

j(A, p, hi, h2) = |eA("'+*2) cos ((h, - h2) n) + i eA(*1+*2) sin ((hj - h2) /i) - l | 

and 
limj(A, n,hu h2) = 0 for every (A, /.) e R2 . 

/n->0 
fts-*0 

Furtherj(A, h l5 h2) g 2eA(*1+"2) + 1. When ft. + h2 St OandA ^ Othene;"("1+"2) < 
< e2A£, if A < 0 then e*("1+*2) < 1 (it is possible to consider |ft,J < e, |h2| < e 
because of h1 -> 0, h2 -* 0). In case that h t + h2 < 0 the situation is quite analogous. 
For every l e R , and every hu h2 with \hx\ < e, \h2\ < e 

gac+Ogittt + fa) ^max( l , e A ( s + , + 2 E ) ) 

that is an integrable majorant function as we assume the existence of integral 
J f+™ eA(6+,) e i ' '( ,~ , ) ddF(A, /.) for every (s, ?)• Using the Lebesgue dominated theorem 
we immediately obtain that F(-, •) is continuous at (s, t). • 

Further properties of normal covariances are the following: 

1. For every (s, t)e U2 

\R(s, t)\ < (J+™ e2sA dFi(A))1'2 (J'!» e2,A dF^A))1 '2 = E1/2(s, s ) . R1^, f) 

where F t(-) is the first marginal of F(-, •), i.e. 

F . ( A ) = r i » d F ( A , / . ) . 

2. The function Ei(s) = R(s, s) = J + ^ e2sA dFj(A) is a nonnegative definite kernel 
with respect to sum, i.e. 

^ 1 ( t 1 + T 2 ) = I + Se 2 ^ 1 + t 2 ) dF 1 (A) 

is a symmetric covariance in (tlt r2) e U2. 

3. Similarly, the function R2(t) = R(t, -t) => J ! ^ e 2 i " ! dF2(/i), where F2(-) is the 
second marginal of F(-, •), is a weakly stationary covariance. 

4. Without loss of generality, we can put E(0, 0) = 1 that means the function F(-, •) 
will be a probability distribution function in the plane. 

The following theorem will characterize normal covariances as functions that are 
in some sense nonnegative definite. 
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Theorem 2. A covariance function R(% •) defined at the whole plane is normal 
if and only if 

1) R(0, 0) = 1 
2) R(-, •) is continuous 
3) there exists a function S(-, •) such that for every (s, t) e U2 R(s, t) = S(s + t,s - t) 

and for every finite collection (a l 5 a 2 , . . . , a„) of complex numbers and every 
real numbers ut,..., u„, vu ..., v„ 

IZ«i« jS(u, . + uJtv, - Vj) ^ 0 . 
i J 

Proof. First, we shall construct a suitable Hilbert space. Let Lbe the linear set 
of all complex valued functions that are everywhere vanishing except a finite number 
of points in the plane, i.e./(•, -)eL if and only if there exist (uh u;) 6 U2, i = 1,2,... 
..., n such that/(w ;, u;) + 0 and/(-, •) = 0 otherwise. We can in L define an Hermite 
bilinear form </, g>,f, g e L by the relation 

<f, 9> = E I / ( " , v) g(x, y) S(u + x, v - y). 

According to our assumption | | / | 2 5: 0 and hence | * | is a seminorm in L. Let 
heUi and let us define a shift-operator Th in L in the following way 

Thf(u,v)-f(u-h,v-h). 

Let JV0 cr L, JV0 = {/: | |/ | | = 0] and let us consider a factor space LJN0. Then the 
bilinear form defined above is a scalar product and || • | is a norm. Let H be a comple
tion of LjN0 with respect the norm to | - | | . Then H is our underlying Hilbert space. 
As every Th maps N0 into N0, there is a possibility to translate every operator Th 

from Linto H. The definition domain $){Th) of every T,, will be the linear set LJN0 

in H, 3i{Th) is thus everywhere dense in H. Let us consider for every operator Th 

its adjoint operator T* and let us prove that S)(T*) => LJN0. Let/, g e LJN0 then 

<TJ, gУ = )Z I / ( и - Ä, » - h) g(x, y) S(u + x,v-y) = 

= X £ / (« , o) f/(x, y) S(« + (x + Ä), D - (y - h)) = 

= X ! / ( « , v) g(x -h,y + h) S(u + x,v-y) = </, S„a> 

where Shg(x, y) = g[x - h, y + h). As this equality holds for every feLJN0 that 
is everywhere dense in H the element Shg equals T*g. We proved that 3>(Th) => 
=> LJN0. It means the every operator Th can be closed, in other words, for every Th 

there exists a closed operator Th in H, Th c Th. Now, we shall show that ThT* = 
= Tfc*Tft on LJN0. When feLjN0, then ThTh*f(u, v) - Thf(u - h, v + h) = 
= f(u-2h,v)=T*f(u-h,v-h)=ThTJ(u,v). This fact implies, further, 
that for every pair / , g e LJN0 

<TJ, Th9y = {Th*TJ, fl> = <T„T„*/, gy = <Th*f, Th*gy 
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because Th = Tft** on LJN0. At this moment we can construct a closed enlargement 
Th of Th. An element fe H belongs to 3(Th) if there exists a sequence {/,}"= 1 <= L/iV0 

such that /„ - > / and {Tft/,,}^°=i is convergent too. If / t = lim T,/„ then we put 

/ . = Thf. There is no problem to prove that T„ is in this way defined unambiguously. 
Let {gn}n=1 ~ LJN0 be another sequence converging to / , but Thgn ~* gx + / i -
Then for any g e LJN0 

<g,fi - Qi> = <9, lim T„(/„ - <?„)> = lim (g, Th(fn - g„)} = 

= lim <T*g,fn - g„} = <Th*g,f - / > = 0 . 

Thanks to the fact that L/At0 is dense in H g1 = / 1 . As \\Thf\\ = [|Tft*/|[ for every 
feLjN0, we can prove that 9(T*) = 3)(Th). Further, Tft* = (%)* and because 
of closeness of Tft T** = Tft. It remains to prove that Tft*Tft = TftTft* and after this 
we can state that Tft is a normal operator in H. First, we must prove that @(T* T„) = 
= 9(ThT*). Let fe@(Th*Th), i.e. Tje 9(T*) and simultaneously fe£>(Th). At the 
same moment fe Q>(T*) = 3>(T*) and we can consider T*f. Let g e L\N0 be quite 
arbitrary then (Tng, Th*f} = <0, T**T*/> = <a, T,Tft*/> that means that T*fe@(Th). 
We have proved that 9(ThTh) <= 3>(ThT*). Quite analogously we can prove the 
opposite inclusion. We see that for every operator T„ there exists a normal enlar
gement Tft, Tft = TA on LlN0 and {Th}, he Rx, forms a group on the linear set 
LJN0. For every Tft there exists a resolution of the identity in H {P1^}, zeC such that 

T„ = JjtZ z dPj. 

Let <5(-, •) be the element in L//V0 defined as <5(0, 0) = 1, <5(M, V) = 0 otherwise. 

Let us calculate <Tft,<5(-, • ) , T„2<5(-, •)>. Thus 

<Tftl<5(-, •) , Tft2<5(-, •)> = 

= E I rftl<5(«, i>) T„2<5(x, y) S(« + x, t> - y) = 
u,v x,y 

- Z S (̂M ~ V y ~ fti) ^ ( x ~ /!2> y - !i2) S(" + x, v - y) = 
«,D x,y 

= £ p ( « , v) 5(x, y) S(hx + h2, hx - h2) = R(hu h2) . 
u.v x,y 

By use of the polar coordinates every operator Tft can be expressed as 

r»-j:S/-:.Ve,''dB»(A,Ai) 
where {Eh(-, •)} is another resolution of the identity in H. At this moment we put 
h = 1/B and the group property Tftl(T,,2) = T,,2(Tftl) = T,,1+ft2 enables that for every 
integer j e Z 

n , . = T„u. 
Then we can write 

R(jln,kjn) = / i S / i J e W ^ e W - W d ^ ^ . , .),,,(., .)> 
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using properties of the resolution of identity in H. We can continue and express 

_(//«, fc/n) = J_ _ J _ - e ^ - v * e l _ o - ^ d < £ i / ; , p/n)d(% . ) 5 ( . ) . } > _ 

Under the choice of suitable j , k such that j/w -> s, kjn -> t if n tends to + oo the 
continuity of R(; •) gives that 

R(s,t) = l i m J i ^ J í ^ e ^ + ^ ^ e ^ - ^ d d E 1 ' " ( . « , _ > • ) 

if we denoted <£$,,,„„$(•, •), <5(-, •)> = F\ll./.>•)• Let 

n /„ A _ f+°0 f+nit (s + 0« P V(s -0 He). 1/n 

K,^s, fj - J _„ J_„-e e aar(a/lI jWll) , 
we see that R„(-, •) is a normal covariance and we shall prove that Rn(s, t) -> R(s, t) 

as n -* + GO. First, we estimate 

| J ! £ J1J5 e ^ + " e1**-'' 6AF\1%JM ~ J - « JJ--e"t«+*W"] e ^ " ^ ' " 1 d d F ^ ( W l l ) | £ 

i„ :e 
=•[(/+'-•)/ «] ( ew.-o _ ewü-чw) ddғ(V;и>/J/и)| + 

+ |J!Sj+^e 1« s-'>(e*+'> - ^u+k)M)ddFl!;,:P/n)\ S 

_. J+S J .Se ' r o + «« le'^-'-w-*^' - 1| ddE(V;Bip/B) + 

+ |j+sj+««e«it/+*)/-i(^.+'-tf+»)/-) - i j d d E ^ , , ! . 

We can choose;', fe e Z that j/« -» s, fe/n -> t when n -> + GO and 0 g s - j/n < l/n, 
0 < / - fe//; < l/n. Then, the first term can be estimated as 

J + S J ! S e " t t / + t ) / " ] le10"" - 1| ddE(V;B>/!/B) _; ( J ! S J + ^ e ^ ^ + ^ d d F 1 / ; , ^ ) ) 1 / 2 

( J + S j + ^ | e i M - l | 2 d d E ( V ; M / B ) ) ^ = 

= R1'2((j + /c)/n,0' + fe)/n)(jiҷ2(l - cos(ej))dF\{«my<* 

where 0n = s - t - jjn + fe/n and F\§M = J+ . &F{l*n,my Thanks to the conti
nuity of R(-, •), R((J + fe)/n, (J + fc)/n) -» R(s + t, s + 0 as n -> +co. Since 
- l/n < 0„ < l/n cos (0„nj8) ^ cos (/?) for every natural n and hence 

J_S(1 - cos (^ ) )dE l (» / n ) = J+„(l - cos (0„«. )) d E ^ } g 

< J ^ ( l - c o s ( . ) ) d E ^ ) = l - R e < . 1 / „ ( l ) , 

where 

9 l /„(«) - J !„e""dE_& = J i _ J i _ c ^ d d f ^ = R„(«/2n, - «/2n) . 

It means we must prove that lim R„(lj2n, - l/2n) = 1. Every operator T1/n can be 

expressed as T1/M = A1/n. UUn, where A1/H is a positive self-adjoint operator and U1/n 

is unitary. In our case 

AUn = ltZltW&E$Mt Ulln = J + Z 1-l^dEl'^. 
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Then we can write that UuJ(u,v) = f(u,v - 1/n) and <Ui/n<5(", "), <5(-, •)> = 
= S(0, 1/n) = R(l/2n, - l / 2 n ) . On the other hand, 

<U1/n«5(-, -),8(; •)> = r-Zri^^Eli:^; •), 8(; •)> = J ^ e * d F ^ , = ^ j ) . 

As we suppose the continuity of R(-, •) we obtain lim <p1/n(l) = 1. The second 
term "_MX> 

rzr-Ze*W+k)M(e*u+,-U+k)M - 1) ddF^/,,) 
can be estimated in the following way. 

|j+»e«*U+fc)M^+.-U+kV-] _ l)dFl(2 /B) | g 

= (r-z^lu+k)MdF[{:ln))^(rz(^ - i)2dFi/n
/n))

i/2 = 

The last inequality implies that 
(e2«/» _ 1 ) 2 ^ ( 1 „ ee„y 

for every a and hence 
J+» (ea8„ _ 1}2 d F l /„ / B ) g J+oo ( e 2 W „ , _ 1 ) 2 d F l ^ _ 

= J i _ (e4(a/"> - 2e2(a/n) + 1) dF[[:in) = J ! S (e4« - 2e2tt + 1) dF^ -

= R(2/n, 2/n) - 2R(l/n, 1/n) + 1 

and thanks to the continuity of R(-, •) we can state that 

n l i m J ^ ( e - " - l ) 2 d F j / n
/ n ) = 0 . 

We have proved that 

\Rjjjn, fc/n) - Rn(s, t)\ -> 0 as n ~> oo where jjn -> s , kjn-* t. 

As Rs(//
n> fc/n) = F ( J 7 « . fc/n) and R.(-, •) is continuous we obtained that 

lim Rn(s, t) = R(s, t) for every (s, i) e R 2 . 

Further, we shall prove that the sequence of the first marginals {Fj(#)} "= x is compact 
in the sense that there exists a subsequence converging to a probability distribution 
function. We know that for every j e Z 

R„(j,j) = Sn(2j, 0) = R(j,j) = J i _ e 2 " dF|(" /n) 

is not depending on n 6 N. Thus, for every j > 0 

^ f j O ^ I - ' o o e ^ d F ^ + ^ - F } ^ ) 

that means 
F i ( " l / n ) _ l - R ( j , ; ) e - 2 ^ . 
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When s is chosen quite arbitrarily we can find a. = ai(e) such that for every neN 

F[{ai/n)>l-e. 

Similarly, one can prove that there exists a suitable a0 = a0(s) such that for every 
n e N 

Plkto < e 

because R(j,j) = J+™ e2"J dEJ("/B) holds for negative j e l too. This fact shows 
that the sequence {E}(")}™=1 is compact, i.e. there exists a subsequence {Ei(.)}"=,i 
converging to E!(-) at all points of continuity. Without loss of generality we can 
assume that {Ei(")} is just convergent to Ei(-). 

In the case of the sequence {E2(.)}"=i we shall consider the sequence of the corre
sponding characteristic functions {<Pi/„(.)}„°=i where 

?i/„(0 = J + ^ d E 2 ( ; / „ ) . 
We know that 

<p1/n(2fc/n) = Ji™e2 i W" ) P dFl{;/n) = R(kln, - fc/n) = S„(0, 2/c/n). 

We can choose fc e Z in such a way that kjn -> t as n ->• + co and 0 < f — fc/n < 1/n 
for every neN. First, we shall prove that 

(p1/n(kjn) - (p1/n(t) -> 0 as n -» + oo . 

As<Pi/„( t)=J-^e i" idE2g/„ ) then 

k/„(fc/n) - </>i/„(t)| = | J i S ( e ^ - e ^ d F 1 ^ = 

= i j i s ^ ^ f ^ ' - ^ w - i)dFi'(;/n)\ < (jisi^-w-)) - i|2 dE1^)1'2 = 

= V2(J-™(i - ™s(t - kin)p)dF\{;ln)yi2 g 

= V 2 ( J - . " ( l - cos (/?)) dE2g,)1 / 2 = V(2) (1 - Re <p1/n(l)y
2 -> 0 as n -> oo 

as was shown sooner. The assumptions of the theorem yield immediately that the 
function R(tj2, — tj2) = S(0, t) is a characteristic function, i.e. 

S(0,0 = J+ .Se i ! 'dE2(/5). 

As 

<pl/n(2kjn) = S(0, 2fc/n) = J+£ ^ l k m dF2($) then <p1/n(2t) -* S(0, 2f) as n -> oo ; 

we have proved that 

Fl'(;/n) - F2(P) 
at all points of continuity. 

Now, we can estimate the measure of K = [a0, ai) x [/J0) /?j) j n the plane 

JJKddE(V;Bj/!/n). 
As 

J J ^ d d F ^ = HI™ tfw-o(«) W > 0 * ) ddFr^i,., = 
= J*0 J-

+S ddE(V;„,WB) - J3 j * . ddE(V;B,Wn) - j« j ; - ddF\^m 
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then 
IIK ddF(v;B,/n) * (Fii:i/n) - F{<:oln)) - j + - j * . ddF^>Wr0 -

- J^S JS ddE^, / , ) = ( * / - > - -^i,/-)) - ( ^ ( U + 1 - Flil/n)) > 1 - 2e . 

because E{(.) -*• F ^ - ) and F2(") ~* IM") as n -> co and Ei(-), F2(-) are probability 
distribution functions. This inequality proves that the sequence {E(

1.//„,./„)},7=i is 
compact. Hence, there exists a subsequence {F(

1./"£k,./,,,c)}fcLi that is convergent to 
a probability distribution function F(-, ' ) . It remains to prove that 

R(s, t) = JJi™ eA(s+,) e"*-" ddF(A, n) . 
We proved that 

R(s, t) = l i m J + ^ J+™e« (s+,) e 1 ^ " " d d F ^ w • 

At this moment we need possibility to change the order between integration and 
convergence. This change is possible under uniform integration of |e a ( s + , ) ei/,(s"')l = 
= e«(s+,» with respect to the sequence {Fll]Zki,/„k)}k = 1. We know that 

R((s +0 /2 , (s + 0/2) = S(s + t,0) = j h m J + : e" ( s + , ) dE ; (
/ ; „ ) 

is a continuous covariance function because the function S(-, 0) forms a nonnegative 
definite kernel with respect to the sum. Every function of these properties can be 
expressed as a bilateral Laplace transform 

S(s + t,0) = J + £e" ( s + , ) dGi(a) 

where G«.(") is a probability distribution function because S(0, 0) = 1. Sooner we 
proved that Ei(./„) -> Ei(') as n —> 00, and on the basis of the convergence of moments 
we state that Gi(-) = Ei(-). We have proved 

l i t n f f + 0 ° IP<*(S + 1 ) p>/»(s-«)| AAP^I" — f f + c ° |p«(5 + «) »i/l(»-<)l H H F 
M n l J J - o o | e e I aat^/nk,jl/nk) ~ J J - 0 0 | e e I a a J > , / > ) 
fc-»00 

i.e. the function ea(s+,> is uniformly integrable with respect to the sequence 
{FtllL-/nk)}k = i- Further, the convergence F ^ ,./,*) ~* H'> ') a s k ~* °° implies 
the existence of J J 1 " ea ( s+ , ) e1"8"'1 ddF(a, /?). Together, we can change order 
between integration and convergence and we can write 

R(S; t) = J J i * e«(s+,) e W s " ° ddF(a, p). 

On the contrary, let R(-, •) be normal. Let 

S(«,i») = JJ : t£e"V'»ddF(a , j8) . 

Then for arbitrary au a2 , . . . , a„ e C and arbitrary Ml5 u2, ..., «„, » 1 , i i j , . . . 1c<6 
e Ri surely 

because 

£ Y>A e"<"+--> et"^-%) = I 2>j e^ e " T = ° • • 
j t ; 
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The class of normal covariances can be also described by use of the corresponding 
reproducing kernel Hiibert space (RKHS). 

Theorem 3. Let R(-, •) be a continuous covariance function defined in the whole 
plane U2.R(', •) is normal if and only if 

R(s + h, t) = <R(s, u); R(t, u + h)) 

holds for every real h, <•, •> is the scalar product in RKHS due to the covariance 
function R(-, •). 

Proof. Let R(*, •) be normal. Then 

R(s, t) = JJ+™ e*(s + t) e i / , ( s-" ddF(«, P), (s, t)eU2. 

Let h be any real number, thus 

R(s + h, t) = tf+Z e«
(s+h + ,)

 e
i « s + "- ' ) ddE(«, P) = 

= JJ±? e«s e1" e«(,+k) e W ^ j ddE(a, p). 

Similarly, 
R(f, u + h) = tt + ™e*(, + "+h) eW'-"-*> ddE(a, p) = 

= tftZ e*('+A) e w ' -* J e*" e ^ ddF(o=, p) 

a n d R(s, «) = Ij ^ e*s e^s e™ eW- ddEE(a, p) . 

Now, by use of the "reproducing property" m(s) = <m(-); R(s, •)> holding for every 
m( - ) eRKHS we obtain immediately 

R(s + ft, f) = <R(s, M); R(/, u + ft)> . 

On the contrary, let for every ft e Kj the covariance function R(-, •) satisfy 

R(s + h,t) = <R(s, u); R(t, u + ft)> 

in the corresponding RKHS. Let us define the shift-operator Th in the RKHS by the 
relation 

ThR(s, •) = R(s + ft, • ) . 

The definition domain of every Th is formed by all linear combinations ]T a ;R(s ;, •), 
; = i 

where <x;, j = 1 , . . . , n, are complex numbers. The construction of the RKHS gives 
that the definition domain 3>(Th) of Th is everywhere dense linear subset in the RKHS. 
Let T* be the adjoint operator to Th in the RKHS. Let us prove that Q){Th) <=. 2(Th). 
Let m(-) e ®(Th). By definition of Th y(-) e RKHS belongs to 9(T*) if and only 
if for every x(-) e 3>(Th) 

<T,x(-); y(.)> = <*(•); Thy(')} . 

When x(-) = >>,R(s ;, •), m(-) = J^PJR^J, •), then T„x(-) = >~>;R(s; + ft, •) and 

<T„x(.); m(-)> = X » & < % + ft, «); R(r,, «)> = 
i / 

= I L W ( s . + h, tj) = £ » ; /5,<R(S ; , «); R(t,, « + ft)> = <x(-); m*(-)> 
i J i y 
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where _*(•) = S . R ( . > ( ' ) + h) = T*m(-). In other words, the adjoint operator 
j 

T* is represented by the shift operator in the argument in the RKHS, i.e. 

Th*R(s, •) = R(s, (•) + h) . 

It implies that Tft* is everywhere densily defined and hence the operator Tft possesses 
a closed enlargement Th in the RKHS. There is no problem to show that for every 

mi(>), m2(-)e®(Th) 

<_»_..(•); T„m2(-)> = <TA*m1(-); Tft*m2(-)> 

and since this moment we can follow the proof of Theorem 2. We shall prove that 
every operator Tft in the RKHS is normal and by means of their spectral resolutions 
one can show in the same way as was used in the proof of Theorem 2 that the co-
variance function _(•, •) is normal. • 

Remark. In this part we shall consider two covariances. The first one 

Rv(s, t) = ec(s + ' ) 2 / D e - a ( s - ' ) 2 / f l
 e - i i , ( s 2 - ' 2 ) / D , D = Aac - b2 > 0 , 

is normal, the other one 
R2(s,t) = e-ns2 + t2), } > > 0 , 

is not normal. The covariance Rt(s, t) is normal because 

jR.(M) = n + « e .*+oei/.-oe-c««*+*. +. . ^ 0 

In case when b = 0 we obtain a locally stationary covariance because then Rx(s, t) = 
= Si[(s + t)j2] S2(s - t) where S.(u) = e

(4c/D)"2 > 0, S2(v) = e-a"2/D is a charac
teristic function. Further, this case is interesting also because the correlation function 
corresponding to Rt(s, t) for b = 0 

Q(S, t) = " .S ' - _ p- [ («+c) /B] (s - f )2 

Ri/2(s,s)Rl/2(M) 

is depending on s — t only. 

On the other hand, the covariance R2(s, t) is locally stationary also because 

R2(s, 0 = e- 2 y C ( s + ' ) / 2 ] V ( s - ' ) 2 / 2 , 

although the first term e-
25,r-<s+')/2]2 j s n o t covariance. When we put, in the case 

of _ . ( • , •) a = c = 72/2 we have 

R,(s, t) = e2s ' = e ( s+ , )2 /2 e~ ( s- ' )2 /2 , 

and y — 1 for the case of R2(', '), then 

R2(s, t) = e- ( s 2 + ( 2 ) = e - c ( s + ( ) / 2 ] 2
 e - ( s - ' ) 2 / 2 . 

The function ec(s+()/2]2is a covariance but e_C(s+')/2:!2is not covariance. If we consider 
the shift-operator Tft in the RKHS due to the covariance e2s ' then 

R,(s + h,t) = e 2 ( s + t ) ' = e 2 s ' . e2*' = R^s, t) . R^h, t). 
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This fact yields that for every m(-)eS>(TA) 

Th(m-) = m(-) R,(h, •) , 

that shows <TAm(-); x(-)} is a continuous linear functional on 2>(Th) and hence 

3>{T*) => S>(TA). On the other hand, a similar resolution in the case of R2(-, •) is 

not possible because 

R2(s + M ) - e -"">" e - ' - e - — > c-"-. e " " -

Thus 

TAm(-) = R2 ( ^ , ^ £ «,.R2(5„ •) e~2*" 

when m(*) = £ «;R(s;, •) and the assumption m„(-) -> 0 in ®(TA) need not imply, 
; = i 

in general, that <TAm„(-); x(-)> -» 0. This fact causes that the adjoint operator 
TA* is not well defined ((®(T*) $ ^(TA)) and TA cannot be normal in the RKHS. 

(Received April 17, 1987.) 
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